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Abstract. This paper proposes the first mutation-based technique for
the repair of Alloy 6 first-order temporal logic specifications. This tech-
nique was developed with the educational context in mind, in particular,
to repair submissions for specification challenges, as allowed, for example,
in the Alloy4Fun web-platform. Given an oracle and an incorrect submis-
sion, the proposed technique searches for syntactic mutations that lead to
a correct specification, using previous counterexamples to quickly prune
the search space, thus enabling timely feedback to students. Evaluation
shows that, not only is the technique feasible for repairing temporal logic
specifications, but also outperforms existing techniques for non-temporal
Alloy specifications in the context of educational challenges.
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1 Introduction

Besides their role in traditional formal methods, namely model checking, formal
specifications are becoming central in many software engineering techniques,
such as property-based testing, automated program synthesis or runtime mon-
itoring. Therefore, software engineers with little expertise on formal methods
are increasingly being required to write and validate formal specifications. Un-
fortunately, students and professionals still struggle with this task, and more
advanced tool support is needed if formal specifications are to be embraced by
a wider community [10].

Alloy [9] is a formal specification language supported by automated model
finding and model checking, being the quintessential example of a lightweight
formal method. Its most recent version 6 [11] is based on a first-order relational
temporal logic, enabling both structural and behavioural modeling and analysis.
For these reasons, Alloy is often used in formal methods introductory courses4.

? This work is financed by National Funds through the Portuguese funding agency,
FCT – Fundação para a Ciência e a Tecnologia within project EXPL/CCI-
COM/1637/2021.

4 https://alloytools.org/citations/courses.html
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Alloy4Fun [12]5 is a web-platform for Alloy that supports automated assess-
ment exercises through the creation of specification challenges: instructors write
a secret predicate that acts as an oracle, and the students have to write an
equivalent predicate given an informal description. If the submitted predicate is
incorrect, the student can navigate through counterexamples that witness the
inconsistency with the oracle. Unfortunately, in our experience, novice practi-
tioners struggle with interpreting such counterexamples and tracing the problem
back to the specification.

The automatic generation of hints to guide students in fixing their code has
long been employed in educational coding platforms. One approach to the gen-
eration of such hints is to apply automated repair techniques and then derive a
hint back from the found sequence of repairs [13]. Although automated repair
for specifications is still largely unexplored, recently, a few approaches have been
proposed for the previous (non-temporal) version of Alloy, namely ARepair [18]
and BeAFix [2]. However, the educational scenario has some characteristics that
prevent their adoption for hint generation. The main issue is that their per-
formance (likewise most techniques for code [17]) is still not good enough to
support hint generation. Timely feedback is particularly important in this con-
text, to avoid the student hitting bottlenecks and frustration when interacting
with the platform. Additionally, ARepair uses test cases as oracles, and it is
difficult to manually write a set of test cases that brings its accuracy up to an
acceptable level. BeAFix is better suited to repair specification challenges, since
it uses the Alloy checks as oracles, but prunes the search space by exploiting
multiple suspicious locations and multiple failing oracles, techniques that are
useless in this context, where we just want to fix one (usually short) predicate
written by the student that failed one specific check against the oracle.

This paper presents a new mutation-based technique for the repair of Al-
loy 6 specifications that can be used in the educational context for timely hint
generation. It is the first repair technique to consider the full logic of Alloy 6,
including both its first-order and temporal constructs. Also, it implements a
pruning technique based on evaluating previously seen counterexamples, that
can be used to optimize repairs in models with a single faulty location, as is the
case of specification challenges. Our evaluation shows that the proposed tech-
nique considerably outperforms existing automated repair techniques for Alloy
(when considering only the first-order subset of the language they support).

The rest of this paper is organized as follows. Section 2 presents existing
work on automated specification repair. Section 3 presents the novel specification
repair technique and associated pruning strategy, whose performance is evaluated
against the existing approaches in Section 4. Lastly, Section 5 draws conclusions
and points directions for future work.

5 http://alloy4fun.inesctec.pt/
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2 Related Work

There is extensive work on automated program repair [7,6], with techniques be-
ing broadly classified as search-based (or generate-and-validate) – which search
for possible solutions and test them against the oracle – or semantics-driven
(or constraint-based) – where the needed repair is encoded as a constraint from
which a correct fix is generated. Most approaches use test cases as oracles, al-
though a few rely on reference implementations (e.g., in the educational context)
or program specifications (e.g., in the context of design by contract). In contrast,
there is very little work on automated specification repair. In [4] a search-based
technique is proposed to fix OCL integrity constraints against existing model
instances. SpeciFix [14] is a search-based technique for fixing pre- and post-
conditions of Eiffel routines against a set of test cases. Techniques [15,3] for
semantics-driven repair in the B-method focus on repairing the state machine
rather than the broken specifications. Two techniques – ARepair and BeAFix –
have been proposed for automatic repair of Alloy specifications, which we further
detail next.

ARepair [18,19] uses test cases as oracle. The downsides of this approach
are twofold: it is prone to overfitting, where an accepted fix passes all the tests
but not the expected properties; and the user is required write (high quality)
unit tests, something that is not common practice for Alloy or specifications
in general. ARepair starts by feeding the model and tests into AlloyFL [20], a
mutation-based fault localization framework for Alloy, which returns a ranked
list of suspicious Abstract Syntax Tree (AST) nodes. Then, it checks if the muta-
tion provided by AlloyFL on the most suspicious node retains currently passing
tests and passes some previously failing tests. Otherwise, it creates holes and
tries to synthesize code for these holes that make some of the failing tests pass.
These tests are performed with Alloy’s evaluator, avoiding calls to the solver.
This process is repeated until all tests pass. The synthesizer returns complex non-
equivalent expressions for a specified type and bounds. Since a huge amount of
expressions is synthesized, ARepair presents two search strategies, one which
chooses a maximum amount of tries per hole and tries to prioritize certain ex-
pressions; and another which iteratively fixes all holes except one for which it it
tries all expressions to find the one that makes most tests pass.

In contrast, BeAFix [2,1] uses the check commands of an Alloy specification
as oracles, focusing on the repair of the system specification referred to by the
check. This is a more natural scenario since defining checks to verify the intended
properties of a design are common practice. BeAFix relies on a different fault
localization technique for Alloy, FLACK [22], which it only runs once for the
initial model, unlike ARepair. To generate the fix candidates, BeAFix defines
a set of mutation operators that are then combined up to a certain maximum
amount of mutators. Mutated expressions are then tested against the oracles
using Alloy’s solver. Since the number of candidates grows exponentially with
the maximum amount of combined mutations, BeAFix relies on two pruning
strategies to discard groups of candidates that are guaranteed to not fix the
specification, without calling the solver for a full check. Partial repair checking is
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var sig File {
var link : lone File

}
var sig Trash in File {}
var sig Protected in File {}

//SECRET
pred prop4o {

eventually some Trash
}
//SECRET
check {

prop4 <=> prop4o
}
// some file will eventually be sent to the trash
pred prop4 {

}

Fig. 1. An example specification challenge in Alloy4Fun

used when there is a command Checki that refers to a suspicious location l0, but
not another suspicious location l1. If Checki is still invalid under mutation m0

for l0, it is not worth to pair mutations for l1 withm0 since they will never render
Checki valid. Variabilization is used when a Checki fails for a pair of mutations
m0 and m1 for suspicious locations l0 and l1, having yielded a counterexample.
To check whether m0 is a mutation worth exploring, variabilization freezes m0

and replaces l1 by an existentially quantified variable and checks whether the
counterexample persists for Checki. If so, there is no possible value for l1 that
fixes the specification for m0 at l0 and that mutation can be automatically
discarded.

3 Alloy Temporal Repair

This sections presents the main contribution of this paper: an automatic re-
pair technique for Alloy 6 temporal specifications, suitable for the educational
domain. Required Alloy concepts are introduced as needed, but for a more thor-
ough the reader should consult [8].

3.1 Overview

Our goal is to use automatic specification repair to generate hints to students
in autonomous assessment platforms. For Alloy, Alloy4Fun is currently the only
framework providing such functionality, by allowing the definition of secret pred-
icates and check commands. A typical usage of this feature is in the creation of
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Fig. 2. Counterexample to prop4

specification challenges: the instructor writes a hidden predicate representing a
correct answer, and a hidden check command that tests it against an initially
empty predicate that the student is expected to fill. As an example, consider
the Alloy snippet presented in Fig. 1, modelling a simple file system where a file
can link to another file, be put in the trash, or be set in a protected state. This
snippet belongs to an exercise given to students in a formal methods course at
University of Minho, Portugal [12]. The keyword sig declares a new signature
in a specification, grouping together a set of atoms of the domain. Signatures
can be defined as subsets of other signatures using keyword in. Inside signatures,
fields can be declared to introduce new relations between atoms, for example the
link binary relation. Signatures and fields can have multiplicty constraints, such
as the one in link stating that each file links to at most one other file (lone).
The var keyword indicates that the content of a signature or field can change
between time instances.

Each exercises has multiple specification challenges. The fourth one of this
exercise asks the student to write a formula that evaluates to true iff a file
is sent to the trash at any point in time. The student is asked to write such a
formula in predicate (pred) prop4. Hidden to the student, marked with the special
comment //SECRET, a check command tests whether the student’s predicate is
equivalent to the instructor’s oracle written in prop4o, written using the temporal
operator eventually and cardinality test some. The most common erroneous
solution submitted by the students is the following.

pred prop4 {
some f : File | eventually f in Trash

}

Without temporal operators, expressions are evaluated in the initial state, so the
outermost existential quantifier is evaluated in the first state. So this predicate
is actually stating that a file present in the first state is eventually sent to the
trash, disregarding scenarios where a file created after the first state is sent to
the trash. Checking against the oracle, Alloy would return a counterexample
trace such as the one in Fig. 2, where a file is directly created in the trash in the
second state6. Students would then interpret the counterexample, trying to find
the error in their reasoning.
6 Note that in this challenge the evolution of the system is not restricted and files are
not required to be created before being sent to the trash. The goal of the exercise
was precisely to train students to write the weakest specifications of the stated
requirement, independent of concrete system implementations.
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Search-based automatic repair approaches usually implement a generate-and-
validate process: alternative candidate solutions are generated and then tested
against the oracle for correctness. Mutation-based approaches generate candi-
dates by mutating nodes of the AST. In this scenario, it is natural to use a repair
technique whose oracles are themselves specifications provided in the check com-
mands, rather than test cases, as does BeAFix. For instance, for the incorrect
submission above, with search depth 1, mutants like the ones below would be
generated and tested against the oracle:

1. some f : Trash | eventually f in Trash

2. some f : File | eventually f in File

3. some f : File | always f in Trash

4. some f : File | after f in Trash

5. some f : File | eventually f not in Trash

6. all f : File | eventually f in Trash

7. after some f : File | eventually f in Trash

8. eventually some f : File | eventually f in Trash

Of these mutants, only the last one is valid and equivalent to prop4o. Note
that this approach tests the semantic equivalence of the submissions against the
oracle, rather than its AST. This also means that validating a mutant amounts
to calling the solver to run the check command. Calls to the solver are expensive,
and since the number of mutants may be overwhelming, this process in general is
infeasible without pruning strategies. Unfortunately, BeAFix’s pruning strategies
are not effective in this scenario: partial repair can optimize the procedure when
there are multiple failing checks, but in this scenario each challenge amounts to
a single check; variabilization optimizes the procedure when there are multiple
suspicions locations, but here we already know that the suspicious location is
the single predicate filled by the student.

The idea behind the pruning strategy proposed in this work is that a coun-
terexample for a candidate mutant will likely be a counterexample for similar
candidates. For instance, the counterexample returned for the initial student
submission in Fig. 2 would actually discard the invalid mutants 1–5 presented
above, avoiding 5 additional calls to the solver. Calling the solver for mutant 6
could return a counterexample with some files in the trash in the first state that
are then removed in the second, serving also to discard mutant 7. The principal
advantage of this reasoning is that testing a mutant specification over a concrete
counterexample does not require calling the solver: it can be performed efficiently
with Alloy’s evaluator. Therefore, by storing counterexamples obtained for pre-
viously discarded mutants, new candidates can be quickly checked against them
before calling the solver to run the check command.

3.2 Mutation-based repair with counterexample-based pruning

The technique proposed in this work has in common with BeAFix the fact that
it generates fix candidates through a set of mutations. The main differences are
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Name Mutation Example
RemoveBinary A [bop] B  A A and B  A

A [bop] B  B
ReplaceBinary A [bop] B  A [bop’] B A and B  A or B
RemoveUnary [uop] A  A always no A  no A
ReplaceUnary [uop] A  [uop’] A no A  some A
InsertUnary A  [uop] A no A  always no A

BinaryToUnary A [bop] B  [uop] (A [bop’] B) A in B  no (A + B)
QuantifierToUnary [qtop] a:A | B  [uop] A no a:A | foo[a]  no A
ReplaceQuantifier [qtop] a:A | B  no a:A | foo[a]  

[qtop’] a:A | B some a:A | foo[a]

Table 1. List of mutators for Boolean formulas.

twofold: the development of a new pruning technique suitable for specifications
with a single check command and suspicious location, and the support for the
temporal logic of Alloy 6 that has not been addressed thus far.

In Alloy, a check command with formula φ over a specification defined by
formula ψ (in Alloy, defined through fact constraints) is converted into a model
finding problem for a single formula φ and not ψ. For instance, in the challenge
from Fig. 1 ψ is empty, so for the prop4 example shown in Section 3.1 the check’s
formula would simply be converted to

not ((some f : File | eventually f in Trash) <=>
(eventually some Trash))

When such a formula is passed to the solver, if the check is invalid it will re-
turn a counterexample c (such as the one in Fig. 2 for the example) where the
specification facts ψ hold but the check φ does not. If there is no such coun-
terexample, the check holds and the solver returns ⊥. Alloy 6’s analyzer checks
assertions either with SAT solvers or SMV model checkers, the former only for
bounded model checking. Although Alloy’s logic is first-order, such analysis is
possible because there is a bound imposed on the size of the universe by defining
scopes for signatures (the default scope is 3). For bounded model checking, the
default analysis for temporal properties, it is also possible to define a scope for
the temporal horizon (the default being 10 steps). For a concrete counterexample
c, Alloy also provides an evaluator that can efficiently calculate the value of any
formula φ without calling the solver, which simply returns true or false.

A mutation m of a formula φ is simply a pair (l, o) of a location l in φ (which
can be seen as a path through the AST, identifying a concrete node) and an
instantiation of a mutator o from Tables 1 or 2 (to be presented shortly). These
mutations m are uniquely identified by the location and operation. Each candi-
date mutant results from the application of a sequence δ of such mutations to the
specification that is to be fixed. Order within δ is relevant since a mutation m1

may refer to a location introduced by a preceding mutation m0, and a mutation
m1 cannot refer to a location previously removed by a preceding m0.
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Name Mutation Example
RemoveBinary A [bop] B  A A + B  A

A [bop] B  B
ReplaceBinary A [bop] B  A [bop’] B A + B  A - B
RemoveUnary [uop] A  A ∼A  A
ReplaceUnary [uop] A  [uop’] A ^A  *A
InsertPrime A  A’ A  A’
InsertBinary A  A [bop] B A  A + B
InsertUnary A  [uop] A A  ∼A

ReplaceRelation A  B A  B
Table 2. List of mutators for relational expressions.

A procedure that we abstract as mutate takes a specification φ and a lo-
cation l and generates all possible mutations for all AST nodes below l. In our
example, l would identify the sub-formula that resulted from the student’s sub-
mitted predicate (the left-hand side of the equivalence). This procedure is lazy,
returning an iterator ∆ to generate new mutations on demand. Procedure apply
represents the actual application of a sequence of mutations δ to a specification,
returning a new specification mutant. The skeleton of the available mutation
operations are presented in Tables 1 and 2 for Boolean formulas – composed of
Boolean connectives, first-order quantifications and temporal operators – and
relational expressions – composed of relational operations, transitive closure and
temporal primes –, respectively. Mutators are guaranteed to not change the type
of an expression, so, for instance, RemoveUnary for Boolean formulas cannot
remove a multiplicity test operator, since its sub-expression is a relational ex-
pression, and an operator is always replaced by another of the same type (i.e.,
Boolean connectives cannot be replaced by relational operators). Operations
that require the insertion of relational expressions (namely InsertBinary and
ReplaceRelation) only introduce a single relation at a time and takes into
account type information to avoid creating expressions considered irrelevant ac-
cording to Alloy’s type system [5]. For instance, InsertBinary for an expression
A only creates intersection expressions A & B for relations B whose type has some
elements in common with the type of A. For the particular case of introducing
a join operator, InsertBinary also only explores mutations that preserve the
arity of the original relational expression.

An abstract view of the repair procedure is shown in Algorithm 1. The proce-
dure registers a set cands of candidate sequences of mutations δ. At each depth
level, the procedure iterates over all cands and adds an additional mutation m
to a candidate δ. Procedure mutate is called over φ already mutated with the
previous candidate, so that only mutations over valid locations are generated (in
case locations from the original φ0 were removed by δ, or new ones introduced).
Moreover, to avoid testing redundant mutants, whenever a new candidate is gen-
erated it is only analyzed if it has not been previously seen in cands. Although
abstracted in Algorithm 1, this membership test ∈ ignores the order of the mu-



Timely specification repair for Alloy 6 9

Input: A formula φ0 representing an invalid check and a location l in φ0 to fix.
Output: A passing formula or ⊥
cands← {[]};
cexs← [(solve(φ0), 1)];
for d ∈ 1 . . .MaxDepth do

cands′ ← ∅;
while cands 6= ∅ do

δ ← cands.pop();
∆← mutate(apply(φ0, δ), l);
while ∆.hasNext() do

δ′ ← δ ++[∆.next()];
if δ′ 6∈ cands then

φ← apply(φ0, δ
′);

valid← true;
cexs′ ← cexs.clone();
while cexs′ 6= ∅ ∧ valid do

c← cexs′.pullHighest();
valid← evaluate(φ, c);
if ¬valid then cexs.incPriority(c);

if valid then
c← solve(φ);
if c = ⊥ then return φ;
else cexs.pushPriority(c, 1);

cands′.push(δ′);
cands← cands′;

return ⊥;
Algorithm 1: Repair procedure with counterexample-based pruning

tations, meaning that two sequences [m0,m1] and [m1,m0] are considered the
same. This is sound because we assume that a candidate δ cannot contain more
than one mutation for the same location l.

Without counterexample-based pruning, for each candidate δ′ the procedure
would simply calculate a mutant φ as apply(φ0, δ′) and call the solver (here, pro-
cedure solve(φ)). The procedure stops when a specification φ is valid according
to the solve, or the maximum search depth MaxDepth is reached, returning ⊥.
In the example previously presented, the InsertUnary mutator can be applied
to obtain the expression eventually some f : File | eventually f in Trash.
The next most common incorrect submission is

some f : File | eventually always f in Trash

which, besides the same problem of only quantifying on the files available in
the first state, also assumes that a file in the trash must stay there indefinitely
(temporal operator always). This requires search level 2: one mutation to add
an outer-most eventually, and another to remove the always through Remove-
Unary. The third most common is

eventually File in Trash
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which incorrectly states that at some point in time, all existing files are in the
trash. It can be fixed through a single application of BinaryToUnary, resulting
in eventually some File & Trash, which is yet another formula equivalent to
prop4o.

To avoid expensive calls to the solver, our technique’s pruning strategy first
evaluates the candidate formula against previously seen counterexamples. These
are kept in a priority queue cexs, where the priority of each counterexample c
is the amount of candidates they were able to prune. So for each mutant, the
evaluator is called (procedure evaluate) to test φ for every previously found
counterexample following the established priority. If φ still holds for a counterex-
ample c, then it is still an invalid mutant, so φ is discarded and c has its priority
increased in cexs. Only after passing all previously seen counterexamples is the
solver called for φ. If the solver returns ⊥, then φ has effectively been fixed.
Otherwise, a new counterexample c is found and added to cexs with minimal
priority.

3.3 Implementation details

To improve performance, richer data structures were used in the implementation
of Algorithm 1. To avoid repeating the generation of all mutations for all candi-
date mutants that have ASTs that are still very similar to each other, mutate
is not freshly called for every candidate. Instead the candidates are stored in
a list with a pointer to their predecessor candidate. Thus, to generate all the
candidates up to a depth, the index to the candidate being checked is kept,
as well as the candidate that generated the latest added candidates. When the
end of generated candidates is reached, more are generated from the candidate
after the one the latest candidates were generated from. The last counterexam-
ple used to prune is also tracked and is tested first, the reasoning being that
candidates coming after one another will likely mutate the same locations, and
thus, also be more likely to be pruned by the same counterexamples. To prevent
combining mutators that would generate incorrect or repeated candidates (for
example, when sub-expressions are removed), a mutation also registers black-
listed locations that can no longer be mutated. Lastly, rather than just keep
track of mutations δ in cands, we also maintain the associated mutant φ to
avoid re-applying mutations.

The technique was implemented as an extension of Alloy 6. It does not make
modifications to original Alloy 6 source code. Instead, it only adds new packages
and uses the public methods of the original, hopefully making it easier for any-
one to follow the implementation and to update to future Alloy releases. The
source code is public and can be found on GitHub7, as well as a Docker con-
tainer8 to allow easier replication of the results. In the implementation, the user
has to specify by hand the suspicious predicate that is to be fixed. However,

7 https://github.com/Kaixi26/TAR
8 https://hub.docker.com/r/kaixi26/tar

https://github.com/Kaixi26/TAR
https://hub.docker.com/r/kaixi26/tar
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the technique itself has no limitations in terms of compatibility with fault local-
ization techniques, and could have been paired with one of those techniques to
automatically identify such predicate.

4 Evaluation

In this section we evaluate the performance of the proposed technique for timely
Alloy 6 repair (TAR, in the presented results), with the goal of answering the
following research questions:

RQ1 What is the performance of mutation-based repair with counterexample-
based pruning for temporal Alloy 6 specifications?

RQ2 How does its performance compare with that of existing automatic repair
techniques for static Alloy specifications?

RQ3 What is the actual impact of counterexample-based pruning?

Alloy4Fun stores all submissions made to challenges. These are available to
the creators of the challenges for subsequent analysis. Tutors at the Universities
of Minho and Porto have been using Alloy4Fun in classes for several years and
publicly share the data after anonymization9. These challenges follow the shape
of the one in presented in Fig. 1, so it is easy to identify the oracle and the
student predicate to be repaired in each submission. Thus, for RQ1 we executed
TAR for all erroneous submissions to challenges with mutable relations (only
allowed in Alloy 6) in the 2021 Alloy4Fun dataset. This amounts to two exercises
(TrashLTL and Trains) composed of 38 challenges, totalling 3671 submissions.
These results are summarized in Fig. 3, for different search depth levels, and
also in the bottom part of Table 3. BeAFix also used a subset of Alloy4Fun
challenges for their evaluation [2] (those compatible with the previous Alloy 5
version). For RQ2, we’ve also run TAR for submissions to those purely first-
order logic challenges. This amounts to 6 exercises (TrashRL, ClassroomRL, CV,
Graphs, LTS and Production) composed of 48 challenges with 1935 submissions.
ARepair requires the user to specify test cases which are not available for the
Alloy4Fun challenges, but writing them ourselves could introduce a bias in the
process. Instead, we used counterexamples generated during the counterexample-
based pruning process as test cases. For each student submission for a challenge,
counterexample-based pruning iterated over a set of counterexamples until a
fix was found. Counterexamples more commonly occurring in this process have
contributed to fixing the most incorrect submissions, and thus are representative
of the challenge. We ran ARepair for the same structural Alloy4Fun challengs
as BeAFix using the top 10 and top 25 counterexamples as test cases. For the
comparison of BeAFix against ARepair in [2], the authors used AUnit [16] to
automatically generate test cases, which resulted in a unusually high rate of
incorrect fixes by ARepair. The expectation is that our approach to test case
generation is fairer for ARepair. These results are summarized in Fig. 4 for
9 https://doi.org/10.5281/zenodo.4676413

https://doi.org/10.5281/zenodo.4676413 
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different search depth levels and in the top part of Table 3. ARepair may still
report incorrect fixes due to over-fitting; the data considers only correct repairs
All executions of TAR were also ran with counterexample-based pruning disabled
to answer RQ3. Since feedback is expected to be provided quickly, the timeout
was set to 1 minute for all procedures. All tests were run on a Linux-5.15 machine
with docker version 20.10 and an Intel Core i5 4460 processor.

Fig. 3. Percentage of specification challenges repaired by the proposed approach under
a certain time threshold, for different search depth levels and with and without pruning

RQ1 The data in Fig. 3 shows that TAR is viable for Alloy 6 repair. It is able to
repair about 35% of the specifications by 2 seconds, and by 1 minute it is able
to fix 56%, results that even surpass those for non-temporal Alloy repair, as we
will shortly see. Increasing the depth to 3 does not seem to increase significantly
the performance of the approach, and with depth 2 the results stagnated at 45%
by 10 seconds. As shown in Table 3, of the 46% challenges that failed to be fixed
under 1 minute, 10% were due to time-out while the remainder failed due to an
exhausted search space.

RQ2 As can be seen in Fig. 4, TAR consistently outperforms BeAFix, partic-
ularly in smaller time thresholds. At 2 seconds, BeAFix is able to fix 27% of
the specifications against the 42% of TAR, a 60% improvement. Although by
the 1 minute threshold the difference is reduced to 16%, we consider this to be
already too long for a student to wait for automatic feedback. BeAFix was able
to successfully fix 47% of the specifications within an 1 hour timeout [2], which
is still less than the 52% of TAR with a 1 minute.
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ARepair (25 Tests) BeAFix TAR
Exercise Cases Fixed (%) TO Failed Fixed (%) TO Failed Fixed (%) TO Failed

Classroom 999 102 (10%) 246 651 311 (31%) 578 110 408 (41%) 52 539
CV 137 26 (19%) 6 105 77 (56%) 44 16 85 (62%) 1 51

Graphs 283 181 (64%) 0 102 220 (78%) 28 35 240 (85%) 4 39
LTS 249 20 (8%) 5 224 35 (14%) 144 70 33 (13%) 5 211

Production 61 18 (30%) 1 42 47 (77%) 10 4 50 (82%) 0 11
Trash 206 89 (43%) 6 111 182 (88%) 14 10 193 (94%) 0 13

total (static) 1935 436 (22%) 264 1235 872 (45%) 818 245 1009 (52%) 62 864
TrashLTL 2890 - - - - - - 1832 (63%) 116 942
Trains 781 - - - - - - 213 (27%) 47 521

total (temporal) 3671 - - - - - - 2045 (56%) 163 1463
Table 3. Performance of the 3 techniques under 1 minute threshold and maximum
depth 3

Fig. 4. Percentage of submissions to static challenges correctly repaired by the pro-
posed approach under a certain time threshold, for different search depth levels and
with and without pruning
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Fig. 5. Classification of submissions to static challenges according to which tool was
able to effectively repair them under 1 second

In our evaluation, ARepair was only able to propose a repair that passed
the oracle check in less than 5% of the specifications by 2 seconds, and 22%
within 1 minute using the top 25 counterexamples selected using TAR’s pruning
technique. This strategy for the generation of test cases proved to be fairer than
the experiments in [2] where ARepair only proposed fixes that passed the oracle
for 9% of specifications for the same dataset within 1 hour, but is still well
below the performance of TAR and BeAFix. Even disregarding the oracle check,
ARepair reported to be able to pass all unit tests in 814 (42%) submissions for
the benchmark with 25 unit tests, which is still below TAR and BeAFix.

To provide a better understanding of how the specifications fixed by each of
the 3 techniques overlap, the Venn diagram in Fig. 5 classifies the specifications
according to which tool was able to repair them under a threshold of 1 second.
There was no specification that ARepair was able to repair that TAR missed.
As for BeAFix, there were 9 specifications that BeAFix repaired and TAR failed
within 1 second, against 306 the outer way around. Of those 9 cases, 6 were due
to the fact that BeAFix was able to find a repair under 1 second while TAR took
longer. The other 3 required the introduction of a join operation that changed
the arity of the relational expression, a mutation supported by BeAFix but not
by our InsertBinary.

RQ3 Looking at the performance of TAR with pruning disabled shown in Figs. 3
and 4, it is clear that the impact is particularly relevant at lower threshold
levels: at 2 seconds, the technique without pruning is only able to fix about
27% of the specifications, 22% less that the 35% fixed with pruning. As the
threshold increases the impact of the pruning technique is reduced. Furthermore,
the average amount of generated counterexamples – which amount to calls to



Timely specification repair for Alloy 6 15

the solver – is low, around 5.4 for the static benchmarks; and around 6.4 for the
temporal benchmarks. These counterexamples end up being able to prune an
impressive amount of candidates, the number being, on average, around 100000
for the static benchmarks, 76% of which are pruned by the same counterexample;
and 160000 for the temporal benchmarks, 67% of which are pruned by the same
counterexample.

5 Conclusions

This paper presented a mutation-based technique for the automatic repair of
Alloy 6 specifications, being the first to consider its full temporal first-order
logic. A new pruning technique was proposed that is suitable for target context
of the new technique, namely educational scenarios. Evaluation over a dataset
of student submissions has shown that, in this scenario, the proposed technique
is able to produce timely repairs and that it outperforms existing approaches to
Alloy repair (when considering only the non-temporal Alloy subset).

To be effectively used as a hint system in the educational context, the found
repairs must be translated back into a hint that can guide the student in the
right direction without explicitly providing the correct solution. The technique
for the derivation of hints from repairs, and its subsequent implementation in
the Alloy4Fun platform, is the next step in our research plan. This is expected
to be followed by proper empirical study to assess the usability and efficacy of
the technique in the educational context.

The proposed pruning technique registers the counterexamples that were
able to discard the most mutants. Arguably, such counterexamples are more
“representative” of the expected property as they identified the most semantically
different formulas, a reasoning we followed to use this rank to generate test cases
for ARepair in the evaluation. We intend to explore whether this information
would also be helpful feedback to the students, namely whether returning the
top ranking counterexamples from the pruning process is more productive than
the randomly generated ones.

A technique for Alloy repair was developed independently of this work and
published after the submission of this manuscript [21]. The timing did not allow
for a proper comparison, but we intend to expand our evaluation against it in
the short term.
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