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Resumo

Mineração de sugestões para corrigir especificações formais

O crescimento da complexidade de aplicações informáticas tornou falhas e erros de software uma

inevitabilidade. Para ajudar a garantir que uma aplicação funciona como previsto, profissionais recorrem

a modelos de software para detetar e corrigir problemas nas fases iniciais de desenvolvimento. Espe-

cificações formais são modelos de software que permitem a desenvolvedores especificar rigorosamente

estruturas e comportamentos de software. Infelizmente, a sua complexidade inerente também pode

impor problemas nos principiantes que as tentam aprender. Uma maneira possível de abordar este pro-

blema seria o emprego de práticas de reparação de especificações e geração automática de sugestões

para ajudar os alunos a corrigir tentativas erradas.

Alloy4Fun é uma plataforma online para a aprendizagem de Alloy, uma linguagem de especificação

formal com capacidades de analise automática. Alloy4Fun permite a instrutores criar e partilhar desafios

de especificação formal com avaliação automática. Recentemente, uma técnica de geração automática

de sugestões for desenvolvida para esta plataforma, mas provou ser insatisfatória devido ao seu fraco de-

sempenho. O objetivo desta tese foi explorar outras técnicas para geração de sugestões, nomeadamente

técnicas de geração de sugestões baseadas em dados, que poderiam usar o conjunto de dados publico

de submissões históricas de estudantes do Aloy4Fun para fornecer dicas de forma mais eficiente.

O principal resultado desta tese, SpecAssistant, é um novo sistema de geração de dicas baseado

em dados para Alloy. Este extrai informação do conjunto de dados do Alloy4Fun para construir grafos

de submissões, dos quais são extraídas sugestões a partir de regras personalizadas pelos desenvolvedo-

res de cada desafio. Para avaliar o SpecAssistant, realizamos uma série de experiências quantitativas,

com o objetivo de avaliar a disponibilidade e o desempenho do nosso sistema. As nossas descobertas

demostram que o SpecAssistant consegue fornecer dicas para uma porção significativa de submissões,

apresentado um desempenho que supera o sistema de sugestões precedente.

Palavras-chave: Alloy, Geração de Dicas Automáticas, Métodos Formais, Mineração de Dados
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Abstract

Mining hints for fixing formal specifications

The increasing complexity of software applications has made software bugs and errors an inevitability.

To help ensure that software functions as intended, professionals rely on software models to detect and

correct faults early in the development process. Formal specifications are software models that allow

developers to precisely specify software structures and behaviors. Unfortunately, their inherent complexity

can also pose problems to newcomers while learning them. One possible way to address this issue could

be to employ automated hint and specification repair techniques to help students fix incorrect attempts.

Alloy4Fun is an online platform for learning Alloy, a formal specification language with automated

analysis features. Alloy4Fun allows educators to create and share specification challenges with automated

assessment. Recently, a hint generation technique based on automated repair has been developed for

this platform, but proved unsatisfactory due to its poor performance. The goal of this thesis was to explore

other techniques for hint generation, namely data-driven hint generation techniques which could leverage

the Alloy4Fun public data-set of past student submissions to provide hints more efficiently.

The main outcome of this thesis, SpecAssistant, is a new data-driven hint generation system for

Alloy. It mines the Alloy4Fun data-set to build submission graphs, from which hints are extracted using

policy rules customized by the challenge developers. To evaluate SpecAssistant we performed a series

of quantitative experiments, with the goal of assessing our system’s availability and performance. Our

findings show that SpecAssistant can provide hints for a significant portion of invalid submissions with a

performance that greatly surpasses that of the previous hint system.

Keywords: Alloy, Automated Hint Generation, Data Mining, Formal Methods
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1

Introduction

In the past decades there has been a rush in software growth as the world becomes more and more

digitized. Applications are also becoming increasingly more complex. As complexity increases, bugs and

errors become an inevitable problem. If not properly identified and solved, these errors can cause failures

in the applications, which can be problematic and result in damages that vary according to the system

in question. An error on a web-page will cause an inconvenience to a user attempting to use it. An error

in a hospital’s equipment could cost someone’s life. Assuring that an application works as expected is

essential in software development and has become a very important subject in computer science.

1.1 Contextualization

The core of software development is the design of abstractions [17]. An abstraction is a model of the prod-

uct itself, only a simple and pure representation of the structure and the core ideas, which are conceived

before production. The quality of such abstractions is one of the major factors in the quality of the final

product. A good abstraction will normally cause a natural flow in the software’s development, from its de-

sign to its production, resulting in simple and optimal components that can easily be modified or expanded

without the need for extensive reorganization or changes. On the other hand, bad software abstractions

tend to cause major problems in the production phase, where components will become clumsy and bur-

densome as they are forced to accommodate for unexpected problems, and even the simplest changes

become problematic resulting in enormous development costs. In this case, the final product is usually

composed of extremely complex components, that require developers to master a mass of superfluous

details, while either developing workarounds or accepting the frequent and inexplicable failures.

Abstractions are also important to the developers themselves, since they want simple and easy to

understand models that don not compromise on factors such as robustness and scalability. With this

in mind it is expected that with careful consideration of the problem and its future endeavors one could

easily develop a fine product. Unfortunately, this is rarely the case due to a problem commonly referred

as wishful thinking [30]. Developers come up with simple and robust abstractions which turn out to

be incoherent and possibly inconsistent in production, resulting in the sort of nasty problems previously

1



CHAPTER 1. INTRODUCTION

mentioned. These flaws are not directly derived from the developed abstractions, but from the environment

imposed by programming, where compilers and tools admit no vagueness whatsoever and tests instantly

revel errors and faults.

There are several ways of combating this issue, the most interesting and effective ones rely on for-

mal specifications. These abstractions are built using unambiguous notations based on mathematics,

which enable automated verification and validation. Over the last few decades there have been several

developments is this regard, resulting in the appearance of several advanced tools for developing formal

specifications. One of these tools is Alloy [17], which is the main focus of this work.

1.2 Problem

Even with their overwhelmingly advantages in software development, formal specifications are still not

used by a significant portion of developers. This is because newcomers tend to have several difficulties

in understanding and adopting the mathematical techniques and the inherent level of precision and rigor.

Even with the most recent state-of-the-art tools, where these concepts keep getting simpler an simpler,

this problem still endures.

Alloy is a clear example of this issue. It relies on first-order logic extended with a few relational

operators, and has a straightforward and minimal syntax and semantics. However a significant number

of college students still found themselves confounded when using it [23]. A big part of this issue was

the poor feedback of the Alloy tools, as the provided counter-examples were difficult to understand by the

users. A possible and feasible way of mitigating this would be the introduction of automatic repair and

hint generation techniques in these tools, to help newcomers learn the language.

1.3 Objective

Automatic program repair and hint generation are very prominent and active topics in software engineering

[44, 27]. Currently, Alloy4Fun [23] is one of the few automated assessment platforms for learning formal

specifications, and thanks to its support for specification challenges with autograding it has been used

as learning platform for Alloy in graduate courses for a few years. Recently, this application has been the

target of the development of a hint system based on automatic program repair techniques [10]. However,

the developed system presents some shortcomings: besides its performance issues, it usually fails to

provide hints on submissions which deviate a lot from a valid solution.

Based on the success of recent data-driven hint generation systems on educational programming

platforms [36, 38], it became apparent that the existing data-set of submissions of Alloy4Fun [22] could

be used to significantly upgrade its current hint generation mechanism, allowing not only to speed up the

whole generation process but also to increase its availability.
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The main objective of this dissertation is to explore several of the most recent and useful hint gener-

ation techniques for learning how to program [26], and develop a new technique for Alloy specifications.

To guarantee the quality of experience of the user, the new technique should have some minimum per-

formance requirements, i.e. the system should present the hints nearly instantly after reading the user’s

current submission, otherwise it will most likely fall into disuse. The new technique should also be data-

driven, i.e. a technique which will mine existent student submissions to isolate patterns and solution

tactics. The reasoning behind this selection is that, by using the historical data from a diverse group of

students, we expect the resulting technique to be able to provide hints for most of the erroneous submis-

sions of new students, since they usually fall into the same erroneous patterns. Additionally, we expect

an improved performance, since upon being prompted by a student for help, the system would only need

to consult the stored information to produce a hint. The information required to start and maintain this

system will originate from the historical data of Alloy4Fun [22] and also the new submissions that the

system to be developed will receive overtime.

1.4 Alloy Specification Assistant

The technique developed in this dissertation resulted in a tool named SpecAssistant, a hint generation

system for Alloy which can be integrated within Alloy4Fun. It achieves its purpose by mining a vast

repository of submissions obtained from multiple attempts at solving a few Alloy4Fun exercises. This data

is organized into a submission graph, akin to a directed graph, from which hints can be computed.

After creating the submission graph, our system allows the developer of a new challenge to customize

the policy used to compute the hints. This customization is accomplished by defining value ranking rules

based on pre-computed attributes of the submission graph.

When SpecAssistant is presented with a user’s submission it attempts to match it to the historical

submission graph. If a match is successful, it retrieves a submission that would make the user get closer

to a solution, based on a customizable policy. Finally, using a simple text generation and code highlighting

technique, the gathered information is transformed into a hint.

We performed several benchmarks to evaluate our system, and we were able to confirm that the

developed hint generation technique is capable of instantly providing hints for a significant amount of

invalid submissions. As a result, our system may help students learn Alloy without the efficiency issues of

the previously implemented hint system of Alloy4Fun [10]. Furthermore, there is an expectation that our

system will enhance its performance over time, as the Alloy4Fun data-set of historical submissions grows.

1.5 Document Structure

This thesis has the following structure.
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Chapter 2 describes version 6 of the Alloy modeling language. The chapter presents an illustrative

model which is used to describe every essential concept of the language, such as its static and dynamic

modeling features.

Chapter 3 presents Alloy4Fun, the target application of this project. This chapter mainly explores this

application’s features and architecture, alongside the structure of its database.

Chapter 4 explores the state-of-the-art in automated hint and repair systems. It begins by presenting an

abstract framework which details the common concepts and processes of most hint generation systems.

Afterwards, it explores and details several different hint generation techniques, discussing their features,

advantages and disadvantages, and how they could be used in our system.

Chapter 5 describes the developed hint generation system, named SpecAssistant. The chapter starts

by describing the fundamental principles and techniques within our system. Subsequently, we describe

the implementation of these techniques in Alloy4Fun.

Chapter 6 presents the evaluation preformed on SpecAssistant. A series of data-mining validation

techniques were used to answer a series of research questions, with the main purpose of quantifying our

system’s availability and performance.

Chapter 7 presents some conclusions and perspectives on future work.
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Alloy

Alloy [17] is a popular formal specification language complemented by an analyzer capable of automated

instance generation and validation. Just like any formal specification tool, it helps developers find issues

and holes in their systems. Its biggest advantage over its competitors is the analyzer. Unlike most tools

which require conventional analysis based on theorem proving (i.e. mathematical proofs), Alloy provides

fully automatic analysis on its models which give instant feedback to the developers. This comes at a cost

of not having a “complete” analysis, since it only examines a finite number of cases. However, thanks to

its optimizations, the space of cases examined for each model can be immense, which makes this less

of an issue.

This chapter offers a presentation of Alloy’s essential and unique features, as well a basic understand-

ing of model specification.

2.1 Static Modeling

2.1.1 A Basic Model

Structural (or static) models form the basis for any formal specification. These define the structure as

well as the rules which the respective instances should satisfy. To demonstrate Alloy’s structural modeling

capabilities we have built a simple but descriptive example of a basic traffic system, composed of both a

road network and the vehicles which traverse it. To begin, we will first model the roads of our network using

two basic constructs: signatures and binary relations. The respective Alloy declarations are presented in

Listing 2.1.

sig Road {
adjacent : set Road

}

Listing 2.1: First model
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This model declares the signature Road using the keyword sig, and the adjacent binary relation,

which associates each road to a set of its adjacent neighbors. It is not a correct model though, since

it allows several invalid configurations. The most problematic cases include roads that are adjacent to

themselves, roads that contain unidirectional adjacencies, and finally traffic systems that do not represent

a connected graph, consisting therefore of multiple scattered road groups.

2.1.2 Instance Representation

Before diving into the constraint language it is important to clarify how Alloy represents its instances.

Signatures, relations and generally any type of data is represented as a set of tuples of atoms in Alloy.

Atoms are primitive entities which have a few basic properties. First, as implied by their names, their are

indivisible and cannot be broken into parts. Furthermore they are immutable, meaning their properties

remain constant over time and, finally, they are uninterpreted and thus do not contain any meaning

associated to them unlike other forms of data, for example, numbers.

Since they have no inhered meaning, the user must declare relations to attach to them the desire

meaning. A relation is a set of tuples of the same arity and, as implied by the name, relates the atoms.

The different arities of the sets describe the “shape” of value they represent. Signatures, like the Road
we previously described, are in fact sets of atoms similar to unary relations. Binary and multi-relations

describe predicates. For the case of our adjacent relation, a tuple would indicate that the road in the

second element is adjacent to the road in first element.

It is important to comprehend this notion since most constrains revolve around manipulating these

sets, for example intersecting them and composing them. For example, let us consider a signature 𝑎 and

two binary relations named 𝑅 and 𝑆 whose values are 𝑎 = {(𝐴), (𝐶)}, 𝑅 = {(𝐴,𝑋 ), (𝐵,𝑌 ), (𝐶,𝑍 )}
and 𝑆 = {(𝐶,𝑍 )}. Composing a with R (denoted in Alloy as a.R), would result in a unary set with the

second elements of 𝑅’s tuples in which the first element is present in 𝑎, i.e. the set {𝑋,𝑍 }. Additionally,
we can see that S is contained within 𝑅 (denoted in Alloy as S in R) since the only tuple of 𝑆 (𝐶,𝑍 ) is
present in relation 𝑅. Their set intersection would be 𝑆 and their set union would be 𝑅.

2.1.3 Model Constraints

To prevent erroneous configurations in our model we must restrict it with the use of constraints. Alloy’s

language provides a type system for constraint definition, which shares several concepts with other mod-

eling languages but also defines new Alloy specific constructs. The language includes constructs such as

quantified variables, set and predicate operators, and so forth. Most of these common constructs will not

be explained in detail, with the exceptions of some of the Alloy specific constructs.

In addition, the variety of syntax options allows for a constraint to be written in many different forms.

For example, specifying that a road cannot be adjacent to itself can be done with any of the expressions

present on Listing 2.2.
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all r : Road | (r->r) not in adjacent
all r : Road | r not in r.adjacent
no adjacent & iden

Listing 2.2: The not self adjacent constraint specified in different styles

All of these constraints are semantically equivalent and represent three possible styles of specification

allowed by in Alloy’s logic. The first constraint is represented with the predicate calculus style where the

formulas consist of checking the membership of tuples in relations. The formula follows this style, by uni-

versally quantifying (all) a variable r of type Road and checking that the tuple (r->r) is not a member

of the relation adjacent. This first-order logic style usually results in overly verbose constraints. The

second constraint is specified with the navigational expression style, which somehow relates sets formed

by navigating relations from specific quantified variables. This is visible in our example, where we claim

that for every variable r of type road, r is not contained within the set of r’s adjacent roads represented

by navigating (i.e. composing) r with the adjacent relation. The final constraint uses the relational

calculus style, where each rule is described solely with relational expressions without quantifiers. As such,

these tend to be very compact and syntactically simple, although this style can also result in extremely

enigmatic constraints. Our example states that the intersection (&) of the relations adjacent and iden
(where iden is the predefined identity relation which maps every atom to itself) must be empty (no checks

for emptiness).

The remaining constraints can be specified as follows. To specify that a road must be adjacent to

each of its adjacent roads we can simply write the constraint in Listing 2.3.

adjacent in ~adjacent

Listing 2.3: Bidirectional adjacent constraint

This expression dictates that the relation adjacent is contained within ~adjacent, its converse relation.
As such, this forces the relation to be symmetric and so, if a road is adjacent to another, then the reverse

will also have to be true.

Finally, we must specify that all the roads are connected. Thanks to our previous constraint, we can

assure this by saying that every road allows for a path to any location on the map.

all r : Road | Road in r + r.^adjacent

Listing 2.4: Connected roads constraint

In Listing 2.4 we specify that for every Road r, the entire Road set is contained within the union (+) of the
road itself and every road reachable from it. To specify the reachable roads, we use the transitive closure

(^) on the relation adjacent. The set r.^adjacent represents the union of the sets r.(adjacent),
r.(adjacent.adjacent), r.(adjacent.adjacent.adjacent), and so on.
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With every constraint specified, to enforce them within our model we simply must add them inside a

fact. Facts declare our constraints as assumptions and so Alloy will only generate instances that respect

all constraints within them. Additionally, to make it easier to identify in the future, we will name our fact

RoadConstraints.

fact RoadConstraints {
no adjacent & iden
adjacent in ~adjacent
all r : Road | Road in r + r.^adjacent

}

Listing 2.5: Road constraints

2.1.4 Subtyping

Our model now characterizes features common to all roads. However, in real life not all roads are equal.

Depending on their expected traffic flow and their accessibility, these can be subject to different rules

and designations based on their needs and purposes. For this example we will take into consideration

three types of roads commonly used by urban planners. The first type will be labeled as Local roads,

which are roads with high accessibility and low traffic flow to buildings and leisure areas. These roads

also present large active fronts for public transport. The second type will be labeled Collector roads

which are responsible for gathering and distributing traffic of multiple Local roads, and thus are able to

provide higher traffic flows at the cost of lower accessibility to buildings and other civilian infrastructures.

Finally, the third type will be labeled Freeways. These have have limited access points in order to be

able to provide a high traffic flow between their collectors and other types of medium flow roads. Roads

also have other characteristics regarding, for example, construction characteristics and naming schemes.

However, since these factors are not relevant to our model we will not consider them for better clarity.

To specify that a road can be categorized within one of these types, we simply must indicate that these

represent subsets of the original signature. This is done by declaring these road types as sub-signatures,

by either adding extends Road or in Road to their declaration, which will cause different behaviors in

the instance generation. Although both the extends and in keywords will specify these entities as sub-

signatures of Road, the extends keyword will force these subsets to be disjoint, unlike the in keyword.

By having the subsets disjoint, a road will only be able to have one designation at a time and so there will

not be cases where, for example, a road is both a collector and a freeway. As such, in our example the

sub-signatures will be declared with extends.
Finally, we must force the signature Road to be the union of its extensions. This is achieved by

qualifying the original signature with the keyword abstract. Since the signature itself has not changed,

every constraint previously defined will remain valid. These changes can be viewed in Listing 2.6.

abstract sig Road {
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adjacent : set Road
}
sig Local, Collector, Freeway extends Road {}

Listing 2.6: Road subtypes

With the road types specified, the only thing remaining is to describe their constraints. Previously we

implied that, with the exception of local roads, all road types connect multiple roads. As such, roads with

only one access point, often designated as “dead end streets”, must be local roads. To specify this, we

can simply specify that if a road has only one adjacency then this road is part of the set of local roads.

Additionally, road access between each type of road is restricted. Local roads can only connect to

other local roads or collectors, while freeways can only connect to other freeways or collectors. As such,

to enforce these properties we will specify a constraint for each type of road, dictating that the set of it

is possible adjacent roads must be contained in the union of the roads that they are allowed to connect.

For the specific case of the collectors this is redundant since these are allowed to connect to any kind of

road. Finally we can present these constraints in a new fact, presented in Listing 2.7, which we will

name RoadTypeConstraints.

fact RoadTypeConstraints{
all r : Road | one r.adjacent implies r in Local
Local.adjacent in Local + Collector
Freeway.adjacent in Freeway + Collector

}

Listing 2.7: Road type constraints

2.1.5 Other Declarations

To complete the structure of our model the only thing missing are the vehicles which drive through the

traffic network. Similarly to how our road network is defined, all the modeled vehicles will be an extension

of an abstract signature named Vehicle, with the location of each vehicle being captured by a simple

relation between the vehicles and the roads. The specified vehicles will be both cars and buses. Cars will

have no additional trait specified. Buses, on the other hand, continuously follow a circuit within specified

regional areas, which only includes local roads or collectors. The resulting declarations are presented in

Listing 2.8.

abstract sig Vehicle {
location : one Road

}
sig Car extends Vehicle {}
sig Bus extends Vehicle {
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area : set Local+Collector,
circuit : area -> one area

}

Listing 2.8: Vehicle specification

Here we can see two new types of relations which possess interesting properties. Starting with the

area relation, we can see that it pairs each Bus to a set containing either the collectors or the local roads

that it will navigate, specified by using the union operator in the declaration. Later, some constraints may

require the restriction of this relation to a particular type of road. This can be specified with the operator

: > followed by the restricting set. For example, a restriction of area to the local roads would be specified

as area : > Local .

Range restrictions have a counterpart named domain restrictions which are specified with the < :
in a similar way. As implied, these act in the same way but on a relation domain instead of its range.

These are not particularly useful regarding the area relation, although the same cannot be said for other

relations, such as location for example. The location relation maps each vehicle to the road it is

located. These vehicles can be either buses or cars, and as such if the user finds itself in a situation were

it must differentiate a specific relation based on one of these signatures, for example cars, it would specify

the relation with Car < : location, where the location’s domain has been restricted to the set Car.
Continuing to the circuit relation, its purpose is to specify the circuit in which each bus will move.

The circuit itself is defined as a relation, which pairs each road belonging to the area of the bus with the

following one according to its itinerary. As such the entire relation couples two “inputs” (the bus and the

road in question) to a single “output” (the next road following the circuit), thus being a ternary relation.

As presented, declaring such relation is as simple as preprending the additional inputs (in this case the

area representing the road in question) to the relations range, splitting them with the operator ->. This
is not restricted to one additional input: if the user finds itself in need of specifying additional inputs, it

can add them in the exact same way, and thus declare more complex relations of increased arity.

With the new relations defined, we still need to ensure that the model respects the required constraints,

specially on the circuits. First, we must ensure that the circuit is in fact a periodic chain. To start, the

easiest way is to declare the relation as being simple (or functional), i.e., for every bus, each road of the

area has exactly one path forward. This can be done with a constraint. However, due to how common

these types of relations are, Alloy provides keywords which can enforce this in the relation’s declaration.

In our case, this keyword is the one that is present before the relation’s range. Next, we must ensure the

circuits properties themselves, this being that each is a periodic chain of all the roads present in the given

bus’ area. Finally, we must ensure that the circuit respects the actual road system. The constraints are

presented in Listing 2.9.
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fact Circuit {
all v : Bus {

v.circuit in adjacent
all r : v.area | v.area in r.^(v.circuit)

}
}

Listing 2.9: Circuit constraints

As we can see, in this fact we specify two constrains for all possible Buses. The first constraint dictates

that the circuit of any bus is a subset of the road network (defined through the adjacent relation) and

thus forces it to be respected. The second constraint specifies that the area of the bus in question is

reachable via the circuit from any of its roads. This intricate constraint imposes three restrictions when

in conjunction with the simple relation constraint previously imposed in the declaration of circuit. The

first one is periodicity: since every quantified road is contained within the buses area and each road can

only specify one other road as its successor, the relation is forced to be a cyclic ring. The second and

third behavior are related, by specifying that the entire area of the bus is contained within the previously

mentioned cycle, we guarantee that any road of the bus’ area has both a successor and predecessor in

the circuit, thus forcing the circuit to model the entire area of the bus.

2.2 Structural Model Analysis

2.2.1 Analysis Commands

To start analyzing our model we first need to specify the desired analysis commands. There are two

types of analysis a user can enact, these being model validation and model verification. Model validation

commands, which are described by run blocks, allow the user to browse several automatically generated

instances of the specified model. This is extremely useful, since it allows the user to quickly detect

possible errors that had yet to be recognized. Model verification on the other hand, described by check
blocks, are designed for property checking. When presented with properties from the user, these will

check their validity against a wide range of instances in search for counter-examples. If the properties

fail for an instance, then Alloy will present it to the user, otherwise the analyzer will notify the user that

the properties may be valid. This uncertainty on the validity occurs due to the check not being complete,

since the analyzer exhaustively searches every possible case within a finite universe. However, the scope

of this universe can cover a very large number of possible cases and as such provide enough assurance

for most real world scenarios.

For our static model we will mostly focus on model validation, since by being immutable there are yet

not many relevant properties for us to check. The most typical way to start model validation is to declare
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a simple empty run block. These blocks have a similar syntax to the fact block, allowing the user to

optionally name them and also specify additional constraints for it to consider during instance generation.

These constraints are not part of the model like facts, but simply allow for a more fine search within the

generated instances. Our first run block, named Empty, is presented in Listing 2.10.

run Empty {}

Listing 2.10: Empty run

2.2.2 Visualization Types

To visualize the generated instances we simply have to execute the specified command. This can be done

through the button Execute on the editor or though the program’s execution context menu. If all the

constraints are consistent, Alloy will present an instance which when accessed will launch a new window

within the analyzer with its depiction. The first instance for our model is presented in Figure 1.

Figure 1: Default visualization of an instance of the static model

As we can see, by default the analyzer will display the instance as a graph while providing simple

variations on the relations colors. This is not however the only type of instance visualization. The first

four buttons off the window offer different styles of presenting the model. Viz corresponds to the default

graph representation already presented, Txt lists each set and their atoms in a plain textual format, Table

pretty prints each set as a table, and finally Tree displays an instance as an horizontal hierarchy based

fork tree. These three options of visualization are presented in Figure 2. The most interesting view and

the one that we will be using from now on is the graphical view.
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(a) Text View

(b) Table View (c) Tree View

Figure 2: Other visualization options
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2.2.3 Themes

Themes are an essential part of the graphical view. They allow for the user to specify not only the shapes

and color of atoms and relations, but most importantly the form in which these are represented, i.e.

whether these should be present as atom attributes, as nodes of the graph, or if they are not relevant

to be displayed at all. The default theme, presented in Figure 1 displays all available information, where

every atom is presented as a yellow rectangle and every relation as a different colored arc between its

atoms. Some sub-signatures may be also displayed as attributes depending on their context. This is

usually sufficient in small instances, however as these grow this style can become extremely difficult to

understand. Besides the default, regarding Alloy generated themes there is also the magic layout. This

functionally that can be called with the button labeled Magic Layout, and proceeds to assign different

shapes and colors to the atoms, which can mitigate a few of the problems of the default layout. However,

the resulting visualization can still be very difficult to understand. To exemplify this, we will execute the

block run OneBus {one Bus} which will force the instance to contain a single bus. The resulting

instance after applying the Magic Layout is presented in Figure 3.

Figure 3: Magic layout example

From this example we can observe that Alloy’s automatic themes do not provide much help in easing

the instance’s comprehension, more precisely regarding the circuit relation, which can barely be dis-

tinguished from the area relation and requires us to search for the scattered labels in order to piece it

together. If we were to add a second bus it would become even worse, as in addition to finding the labels

we would also need to match them to the correct vehicle. The best way to visualize complex instances is

to define a personalized theme. To do this, we must use the Theme button which will in return display a

menu allowing us to customize the visualization. On this menu, our signatures and types will be displayed

in a hierarchical form which corresponds to how they where defined in our model. As a result, in addition

to the precise tuning of our signatures, changes regarding multiple extensions of the same signature can

be defined solely within their parent signature. For example, if we choose to see all atoms corresponding
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to roads as hexagons, we simply need to change our Road signature’s shape, which will then cause all

road types to inherit said change. Beyond both types and sets, the most relevant customization options

concern relations, and the user can specify these to be either hidden or represented with arcs or atom

attributes. An example of the theme customizer is presented in Figure 4.

Figure 4: Theme customizer

Since themes are burdensome to setup, Alloy allows for them to be saved as .thm files, which can later

be loaded to visualize an instance. This not only prevents the user from wasting time on redefining themes,

but also provides it with the ability to hot-swap between them and thus providing multiple perspectives on

the same instance.

Our personalized theme will display vehicles as different colored boxes and roads as different colored

Hexagons. Additionally, both area and circuit will be hidden since their comprehension will be difficult

with either arcs or attributes. Instead, we will rely on the evaluator to analyze these relations.

2.2.4 Evaluator

The evaluator is a console like interpreter which allows the user to evaluate arbitrary expressions regarding

the model. Although it is very useful for a precise analysis, it does not provide full access to the language,

for example it is not possible to define new facts. Its utilities include listing the values of sets and evaluating

predicate expressions. For our instances, we will mostly use it to consult the values for the buses areas

and circuits. Exemplifying, asking for the circuit of the bus in the instance of Figure 3 and Figure 4 can

be done with the expression Bus$0.circuit , as seen in Figure 5.
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> Bus$0.circuit

Local$0 Local$1
Local$1 Local$0

Figure 5: Prompt for the circuit of a Bus

Since the expression already specifies the bus in the circuit’s relation, each of the tables line will simply

pair a road in the first column with its respective successor in the second one. As such, we can visualize

that the circuit of this bus follows the roads Local0 -> Local1 -> Local0 -> ... periodically.

2.2.5 Model Validation

As previously mentioned, model validation involves the inspection of several automatically generated in-

stances in order to detect potential model problems. In most model specifications, these examinations

usually are not enough to completely validate the model. However, thanks to their automatic and arbitrary

nature, these instances provide instant feedback to the user, empowering it with extremely useful knowl-

edge of its model and the possible unwanted scenarios it allows. As a result, this forms a crucial step in

any efficient model validation.

As mentioned before, these instances are generated with run blocks. These blocks can optionally be

named and are accompanied by a constraint were the user can optionally restrict the analyzer’s instance

generator. When executing the run block, Alloy will generate a random instance in a new window. For the

case of our empty run (Listing 2.10), the resulting instance was presented in Figure 1.

What we have not explained yet is the fact that a run command is not restrained to this instance.

By pressing the button New, the analyzer will attempt and possibly generate a new instance that also

satisfies the specified constraint and model. This process can be repeated innumerous times so long as

there are enough valid instances that satisfy the specified restrictions. In Figure 6 two additional valid

instances of the empty run are displayed.

Figure 6: Additional instances of the empty run
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Additionally, run blocks also provide keywords to specify the size of the domain that will be analyzed.

This can be done by using the keyword for after the block declaration, to specify the desired scope for

executing the commands. For example, the command run {} for 6 will generate instances with at

most six atoms in each top-level signature (Road and Vehicle in our case). If we want to specify an exact

scope we can add the keyword exactly resulting in run {} for exactly 6. It is also possible to

precisely control the scope for each signature, for example, limiting the analysis for up to three roads and

up to two vehicles can be made with the command run {} for 3 Road, 2 Vehicle.

2.3 Dynamic Modeling

2.3.1 Behavior Specification

Dynamic models describe how systems can behave with the advancement of time. Typically, dynamic

models are some sort of state transition systems. Alloy 6 introduced the ability to define said specifications,

a feature which before was supported by the Electrum extension [21, 11]. To demonstrate these dynamic

modeling features we will expand our previous example.

In particular, we will explore a traffic system with moving vehicles, which gradually traverse the road

network. Every dynamic model should specify the events that can happen to any entity that belongs to

the universe in question. Nevertheless, only some of these are actually useful to study in each model.

First, the signatures and relations whose value will change over time should be declared as being variable

with the keyword var. In our example, we plan only to vary each of the vehicle’s location and thus this

relation must be declared as a variable relation. The new definition is presented in Listing 2.11.

abstract sig Vehicle {
var location : one Road

}

Listing 2.11: Declaration of the variable location

After declaring the mutable structures that characterize the state, the first step to describe a dynamic

model is to specify its initial states. This involves declaring constraints regarding our variable components

using the logic constructs already used in static modeling. For our traffic system we will specify that initially

the cars are located in any local road, while buses will be located in one of the roads of their itinerary.

These constraints are declared in a fact named init as presented in Listing 2.12.

fact init {
all c : Car | c.location in Local
all v : Bus | v.location in v.area

}

Listing 2.12: Initial state fact
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After defining the initial states, the next step it to specify the model’s behavior and evolution using

Alloy’s temporal logic. These can be solely implemented within facts, however the best common practice

is to describe each possible event with a predicate. Predicates are very similar to facts and specify a list of

constraints. The main difference is that they do not inherently declare any assumptions, and are instead

evaluated only when called upon in other blocks. Additionally, entities can be shared in said calls, allowing

for the abstraction of the constraint block themselves.

The main event that can occur in our model is when a vehicle moves between roads. In the speci-

fication of this event, our predicate will have to dictate that the vehicle in question will only move to one

of its adjacent roads. In addition, if said vehicle is a bus, the chosen road must correspond to the one

specified in its circuit. A possible specification is presented in Listing 2.13.

pred move[v : Vehicle] {
some r : v.location.adjacent {

location' = location ++ v->r
v in Bus implies r in v.location.(v.circuit)

}}

Listing 2.13: Move event

As we can see, the specified predicate move receives the vehicle in question and verifies that for

one of its adjacent roads, the new locations (specified by using the prime operator in location') will
be equal to the current locations overlapped (++) with the tuple relating the vehicle to its new road. In

addition, if the vehicle is a bus, this road must also be specified as the circuit’s successor for the current

location. This specification will allow for several types of movements between the vehicles and the roads,

which, in conjunction with other vehicles and other possible actions, will allow each state to branch out

into several valid new states.

The second behavior that we must describe regards the changes caused by any other possible event.

As previously mentioned, dynamic models must take into account all possible occurrences regarding

their defined universe, otherwise their specifications will not be complete abstractions of their intended

systems. As such, even without the ability to precisely identify or describe such events, we must disclose

how they affect our model. In most dynamic models, these external events do not affect the declared

mutable structures, and can intrinsically be viewed as stuttering steps. Specifying such stuttering is very

simple, since we only need to specify that the value of any of our mutable structures remains the same.

For our model, the stutter specification will state that the new value of the relation location will equal

its current value. The resulting predicate is presented in Listing 2.14.

pred stutter {
location' = location

}

Listing 2.14: Stutter event
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With every possible event specified, the only thing left to specify is how these will be interleaved to form

complete instance traces. For this, we must enforce that every state transition follows one of the specified

events, i.e. some vehicle moves or the systems stutters. To enforce this in every state we simply need to

enclose the resulting expression within the always temporal operator. The resulting fact is presented in

Listing 2.15.

fact Traces {
always (stutter or some v : Vehicle | move[v])

}

Listing 2.15: Traces fact

With the valid traces specified, the only thing remaining in our model is to define the liveness rules it

should satisfy.

2.3.2 Temporal Logic

Dynamic model constraints can be specified through the use of temporal operators. These specify how

the constrains will be checked throughout an instance trace, and can be distinguished between future or

past operators.

Regarding future operators, themost commonly used are the unary operators always, eventually
, and after. As previously seen, always states that its enclosed expression is true in any possible

state. On the other hand, eventually declares an expression as an inevitability, while after forces

its enclosed expression to be valid in the next state. Additionally, these operators can be mixed to form

more complex expressions. For example, if we want to specify an intermittent event we can use the

combination always eventually 𝜙 . Alloy also supports the binary temporal operators 𝜙 until 𝜓

and𝜓 releases 𝜙 , the former dictates that𝜓 will happen and 𝜙 must be true until then, and the latter

dictates that 𝜙 can only stop being true after𝜓 .

Past operators function mostly as counterparts for the future ones. The unary operators once,
before, and historically, dictate that the enclosed expression was once true, was true in the

previous statement, or was always true, respectively. It is also possible to use the binary operators 𝜙

since 𝜓 and𝜓 triggered 𝜙 , the former stating that 𝜙 became true after𝜓 occurred, and the latter

that 𝜙 was always true, or at least true after 𝜓 .

2.3.3 Liveness Constraints

With the previously presented operators we can complete our model and specify the final constraints to

correct its behavior. The first regard buses, and how these vehicles must continuously move throughout

their circuit in order to provide their public service. The second regards freeways and vehicles, and dictates

that no vehicles are allowed to stop in freeways. This is to ensure the drivers safety in these high flow
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roads, since stopped cars form obstacles which can easily cause traffic jams at best or traffic accidents

at worst. The resulting constraints are presented in Listing 2.16. These are called liveness constraints

because they force some “good” behaviors to happen, unlike safety constraints that only forbid some

“bad” behaviors from happening.

fact Liveness {
all b : Bus | always eventually move[b]
all v : Vehicle |
always (v.location in Freeway implies eventually move[v])

}

Listing 2.16: Liveness constraints

As depicted, the first constraint dictates that every bus will always eventually move, and in conjunction

with the definition of move will thus provide its intended service. The second constraint states that for

every state if a vehicle is located in a freeway, then it will eventually move to an adjacent road.

2.4 Dynamic Model Analysis

Similarly to what was described in our static model, our model analysis will be divided into two phases.

In the first phase we will begin by validating our model, by inspecting arbitrary instances generated with

a run block, to have a first glance of our model, and confirm that there are no evident mistakes. In the

second phase, we will be resorting to check blocks to verify expected properties about our model.

2.4.1 Model Validation

In order to validate our model we can start by executing the command:

run Empty {} for 6 but 1 Vehicle

When opening the generated instance the result is the trace presented in figure 7.

When compared to the static analyser, presented in Figure 1, we can see that the visualization now

depicts two different states of the model as well as a depiction of the trace on top, highlighting which

transition is currently being displayed. In addition, the New button is gone, and is now replaced by six

buttons. The first one named New Config works in the same way as the old button, and thus will cause

the analyzer to generate a new configuration with new values for the static signatures and relations. As the

name suggest the next button, named New Trace, will generate a new trace for the same configuration,

if possible. Following we have the New Init button which generates a new initial state on the current

configuration. The New Fork button will attempt to branch the current displayed transition generating a

different next state. Finally we have two arrow buttons which allow us to move forwards and backwards

along the trace.

20



2.4. DYNAMIC MODEL ANALYSIS

Figure 7: Dynamic model visualizer

2.4.2 Model Verification

To verify our model we will be examining two different types of properties on both buses and cars, namely

Safety and Liveness properties.

2.4.2.1 Safety Properties

We will begin by studying some of the vehicles’ Safety properties, which specify the absence of unwanted

behaviors on our system. These properties tend to be easier to model check, since these can in fact be

refuted by exhibiting only a finite number of steps that leads to a “bad” state. These are typically specified

using the pattern always 𝜙 , where 𝜙 specifies an invariant that all reachable states must satisfy.

Starting with buses, we want to specify that a bus will never leave its area of operations. To specify

this we can simply state that for every bus we will always have its location contained within its area. The

resulting check is presented in Listing 2.17.

check BusSafety {
all v : Bus | always v.location in v.area

} for 6 but 1 Vehicle

Listing 2.17: Bus safety

When executed, Alloy will attempt to search for a counter-example within ten steps using a bounded

model checking verification technique, where it will generate and test several possible examples. If it fails

to find such a counter example it reports that the property may be valid for every case. A user has the

flexibility to modify the verification behavior either by adjusting the scope of the bounded verification or by

eliminating the restriction, thus performing an unbounded model checking verification.
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Proceeding to the cars, we can specify that, for example, to reach a freeway these must have passed

through a collector. Expressing this can be done by saying that for all cars in all states, if they are located

in a freeway then they were once located in a collector. The resulting check is presented in Listing 2.18.

check CarSafety {
all v : Car |

always (v.location in Freeway implies
once v.location in Collector)

} for 6 but 1 Vehicle

Listing 2.18: Car safety

Just like the previous property, Alloy will not be able to find any counter-example and thus report that

this propriety may be valid.

2.4.2.2 Liveness Properties

To finish our verification we will be checking Liveness properties which specify behaviors that the system

must have. These are an essential part of the verification, however they are also more difficult to express

and to verify, since a counter-example to a liveness property must be an complete infinite trace where

the desired behavior never happened. Most liveness properties conform to the pattern eventually 𝜙 ,

were 𝜙 dictates an expected state the system should reach.

For the buses, we will verify if these in fact serve every road in the area while moving through the road

network. A possible specification could be that, for every bus, its location will periodically pass through

every road in its area. As mentioned in Section 2.3.2, an intermittent property can be described with the

combination always eventually. The resulting check is presented in Listing 2.19.

check BusLiveness {
all v : Bus, r : v.area |

always eventually v.location = r
} for 6 but 1 Vehicle

Listing 2.19: Bus Liveness

When executed, Alloy did not find a counter example, implying that this property could be valid.

Finally, for the cars we will attempt to verify that these keep periodically returning to local and collector

roads (they cannot remain in a freeway forever). This is very similar to the previous property, being that

now instead of buses we have cars, and instead of the roads of the bus area we have our Local and

Collector roads. The resulting check is presented in Listing 2.20.

check CarLiveness {
all v : Car | always eventually v.location in Local + Collector

} for 5 but 1 Vehicle

Listing 2.20: Car Liveness
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Upon executing, Alloy will find that this is not true for all possible scenarios. To see why this does

not hold we can inspect the counter-example trace. In this case, it consists of an instance with a circular

freeway with three road segments, one collector, one local road, and one car. In the initial state (0) the

car is located in the local road. Then the car will move from the local road as depicted in Figure 8.

Figure 8: Counter-example’s first transition

Proceeding from the collector in state (1), the car will move to Freeway2, as depicted by Figure 9.

Figure 9: Counter-example’s second transition
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From this point onward the car will loop through the states (2) and (3) indefinitely. In the 3rd, 5th,

7th, ... transitions the car will move from Freeway2 to Freeway1. In the 4th, 6th, 8th, ... transitions the

car will reverse its previous move, going from Freeway1 to Freeway2. This is visible in Figure 10.

Figure 10: Counter-example’s third transition

As a consequence of the car looping forever in the freeway, it will never return to any local or collector

road, thus making the property invalid.
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Alloy4Fun

As presented previously, the Alloy Analyzer provides several ways to specify and analyze systems. Just like

most modern programming and modeling languages, these models are saved in files on local storage,

which allows the individual users to freely manage them as they see fit. This approach although very

versatile, can prove very impractical when taken into a collective scenario, most notably in an educational

context where students must constantly send models back to their teachers in other to get feedback on

their results. In this case, besides the dilatory and error-prone process involved in manually sharing the

model files, the teachers and tutors also need to dedicate a lot of time on repetitious tasks for validating,

organizing, and transmitting feedback to their students. Alloy4Fun was conceived precisely to solve these

issues.

Alloy4Fun is a web application that allows online editing, verification, and sharing of Alloy models and

instances [23]. It provides a fully working online Alloy platform, where users can specify models and

run commands similar to the Alloy Analyzer. Additionally, it allows users to create specification exercises,

which can then be shared with other users. A user which receives an exercise can attempt to solve it and

will be instantly provided with feedback. Additionally, any user can save their models and instances in

the platform at any time, upon which they will be provided with a permalink which can be used to later

retrieve the saved model. This link is anonymous, as it does not store any information about its creator

or access history. The user has full control over the livelihood of the link and can use it as they see fit,

whether it is simply storing it or sharing it with other users.

3.1 Interface

Alloy4Fun replicates the main features of the Alloy analyzer in a web application format. Upon accessing

alloy4fun.inesctec.pt (the current deployment’s URL) the user will be presented with an empty

online editor, where it can specify a model. In Figure 11 we have a screen capture which displays a model

of a File System’s trashcan.
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Figure 11: Alloy4Fun overview

In addition to the editor, we can see three buttons on the right, where the first one, Execute, as

implied, executes a command from the model, which can be chosen from the drop-down presented directly

above the button. When pressed, the web page will expand depending on the output of the execution.

Valid check commands (or invalid run commands) will merely present a success (or insuccess) message,

while invalid check commands (or valid run commads) will display their respective counter-examples (or

instances). This behavior is presented in Figure 12, where an erroneous check was run.

Figure 12: Counter-example depiction

The second button, labeled Share model, allows for the user to save the model within the platform.

Upon this, the platform will return to the user a permalink of the saved model. This link is anonymous,
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and it is the responsibility of the user to keep track of it, as the platform does not provide any means

of recovering said links. This is by design, since it keeps the interaction with the platform as simple

as possible, and avoids the hassle of storing credentials and ensuring the mandatory data protection

regulations that are associated with it. The third and final button allows for the user to download the

derivations of a previously shared model. This is useful for gaining insights about the users attempts and

learning processes, which could prove useful for future research and developments.

3.2 Usage

To use the platform a developer simply needs to write an Alloy model and the commands it wishes to

verify. The user can then execute the commands and visualize their results within the analyzer and

also share/save the model. The example built in Chapter 2 can be found in http://alloy4fun.
inesctec.pt/56DQPgL2jSnHAMKbi.

3.2.1 Exercises

Additionally, the developer can also create exercises with this platform. These are defined solely with the

Alloy language and an additional functionality to hide code from the model. To exemplify this process

we will be building an exercise based on the previously developed static model (Section 2.1) where the

objective will be for the user to specify every modeled constraint.

A kind of exercises that can be easily encoded in Alloy4Fun are specification challenges. These are

composed of an empty predicate block where a user would write their solution, alongside an hidden oracle,

i.e. a construct that allows to automatically test the submissions. To create a challenge from our model

the simplest way would be to have a single empty predicate and to use all the current facts as an oracle,

and simply have the student test its implementation with a single check. However, this would not be

optimal as there is no way to uniquely isolate faulty constraints. A student would be required to write and

validate the entire model at once, which will quickly overwhelm it.

The best way is to split the current assumptions into several predicates and only compare the relevant

ones with the student’s solution. For example, for any of the constraints in Listing 2.2 we would specify the

challenge as presented in Listing 3.1. We will firstly define an empty predicate inv1 which corresponds

to the block the student must complete. Following, we define the predicate inv1o which will contain

the solution to the problem. Finally, to allow automatic feedback to the user, we simply define a check
command which will verify if the student’s solution is semantically equivalent to the specified oracle.

After specifying the constraint challenge we will want to hide some of its blocks, since we do not want

to present the solution to the users or allow them to cheat by changing the validation process. Alloy4Fun

allows this by adding the comment //SECRET before a code block. When saving and sharing, the

platform will now provide two different permalinks for the exercise, a public one which hides the secrets

and a private one which will display the complete model.
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pred inv1 {
// A road cannot be adjacent to itself

}
//SECRET
pred inv1o {

no adjacent & iden
}
//SECRET
check inv1{

inv1 iff inv1o
}

Listing 3.1: Constraint challenge 1

This approach allows the challenge developer to precisely control which constraints to verify in each

challenge. However it also decouples all of the assumptions from the model, which can cause errors. For

example, the connected constraint in Listing 2.4 is correct thanks to the previous assumption in Listing

2.3. To ensure the same correct behavior on our challenge we must declare our assumptions in the

verification command. This is commonly done with an implication as seen in Listing 3.2, were we have

two assumptions. Additionally, this tactic can also be used to filter irrelevant invalid states to better depict

counter-examples to the users.

//SECRET
check inv3{

inv1o and inv2o implies
(inv3 iff inv3o)

}

Listing 3.2: Command of inv3

When the developer finishes specifying an exercise containing one or more challenges it can then

share it. Upon this, Alloy4Fun will generate two permalinks which correspond to the public and private

views previously mentioned. The public link can then be distributed among competitors, while the private

link allows the retrieval of the complete model and also the submissions which derived from it. The

permalinks of our exercise can be accessed through Table 1.

PUBLIC http://alloy4fun.inesctec.pt/BFrGk6AiedYr6Q46b
PRIVATE http://alloy4fun.inesctec.pt/dJF3ab5vwCxTS4tAh

Table 1: Permalinks to an exercise
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3.3 Architecture

The Alloy4Fun application is composed of three components. The core component is the web-service

itself which provides the interfaces required to access the main web-page and thus the application’s

services. Next, we have a component responsible for dealing with the Alloy language, labeled API. The

final component is a NoSQL database implemented with MongoDB. A visualization of these components

and their interactions is presented in Figure 13.

Figure 13: Alloy4Fun architecture

Web-Service The web-service is developed in JavaScript with the use ofMeteor1, a full-stack framework

for web-based applications. Being a full stack application it can essentially be described as two modules,

the front-end and the back-end. The front-end is responsible for defining and providing the user interface

(i.e. the web-page) and maintaining the editors. The back-end is responsible for processing the user

actions, which range from simple database reads and writes to more complex methods involving the

external API component.

API This component provides some of the Alloy Analyzer features as a simple Representational State

Transfer (REST) service which formats its responses in JavaScript Object Notation (JSON). Just like Alloy,

it is written in Java to ensure full compatibility. Its main function is to analyze models provided by the

framework in order to provide results, namely counter-examples. One key fact about these requests is that

they are session based, since it is desirable to keep an analyzer instance alive as long as the user has the

web-service opened on a given model. A brief description of its HTTP interface is presented in Table 2.

1https://www.meteor.com/
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Method Parameters Description

POST
“/getInstances”

• The session’s unique identifier

• The parent session’s identifier

• The Alloy model

• The command to execute

• The number of instances required

This method parses and computes the provided Alloy model
and generates its results in an internal temporary state (i.e. a
session) recognizable by the provided unique identifier. Subse-
quently it will generate the requested number of Alloy instances
from the session and serialize them within the method’s an-
swer, along with any errors or warnings that came up.
Future requests with the same identifier will skip the parsing
and solving and provide the next set of instances. Sessions
are deleted when they have been idle for 10 minutes or when
they are identified as the parent of a new session.

POST
“/getProjection”

• The session’s unique identifier

• The target instance index

• The required projection types

This method provides Alloy’s projection feature, i.e. a method
for changing and applying theme features on instances gener-
ated by the previous method. It requires the session’s identifier
and the instance’s index in order to retrieve the instance, which
will then be projected based on the types of atoms specified,
serializing each projection in the method’s answer.

POST
“/validate ”

• The Alloy model
This method simply validates (syntax and type-checking) the
provided Alloy model, returning either a success code or the
serialized error thrown by the compiler.

Table 2: API’s HTTP interface

This state-based solution offers several performance benefits, since by maintaining the models in

memory it is able to skip parsing and instance computations on several requests. However, it also intro-

duces a set of major challenges on the deployment. One of the primary drawbacks is the inability to scale

the application to a large amount of users and also to ensure its fault tolerance. This is essentially due

to the difficulty of replicating state based applications, since to maintain the integrity of the sessions each

user would have to be mapped to the exact same replica in every request. As a result, a replication of

this component would require a sophisticated solution to maintain an efficient load balance of the replicas

which would be made even more complex when accounting for failure resilience.

Database The application’s database, implemented over MongoDB2, is mainly responsible for stor-

ing the data handled by the web-service, namely the saved models and their respective instances and

counter-examples. It is comprised of the collections Link, Instance, Navigation, and Model, which

are described in the dictionaries presented in Tables 3, 4, 5, and 6, respectively.

Link
Field Format Optional Example Description
_id String NO 3cy7jaB4ESqdb2txK Unique identifier of the object

private Boolean NO false
Indicates whether the link is private
or public

model_id String NO 2Htt7FYT7dY9ETGRX Reference to the Model object.

Table 3: Dictionary of the collection Link

2https://www.mongodb.com/
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Instance
Field Format Optional Example Description
_id String NO 3cy7jaB4ESqdb2txK Unique identifier of the object
model_id String NO 2Htt7FYT7dY9ETGRX Reference to the Model object
cmd_i Int32 NO 4 Index of the executed command

graph
JSON
Object

NO
{ "types":[...],

"sets":[...],
"rels":[...] }

The serialized Alloy instance

time String NO 2020-12-13 23:28:11 Serialized date of the instance

Table 4: Dictionary of the collection Instance

Navigation
Field Format Optional Example Description
_id String NO zKAYz8BCDmHKgNoSx Unique identifier of the object

time String NO 2021-03-19 17:28:11
Serialized date of the saved in-
stance

operation Int32 NO 0
Enumeration for the navigation ac-
tion: 0 for forward, 1 for backward

instIndex Int32 NO 6 The index of the navigated instance
model_id String NO 2Htt7FYT7dY9ETGRX Reference to the Model object

Table 5: Dictionary of the collection Navigation

Model
Field Format Optional Example Description
_id String NO zKAYz8BCDmHKgNoSx Unique identifier of the object
time String NO 2020-12-13 23:28:11 Serialized date of the model

code String NO
var sig File{

var link : lone File
...

The complete code of the saved
model

derivationOf String YES dvhCng5AdxC8MqjFy
Reference to the parent model
from which this one is a derivation

original String YES 9jPK8KBWzjFmBx4Hb
Reference to the root ancestor
model

sat Int32 YES 1

Status code which classifies the
executed command as Satisfiable
(1), Unsatisfiable (0) or Erroneous
(−1)

cmd_i Int32 YES 4 Index of the executed command
cmd_n String YES inv5 Name of the executed command

cmd_c Boolean YES true
Specifies if the command was a
check (true) or a run (false)

msg String YES The name ”Traash” cannot
be found.

The message presented to the user
for the erroneous execution

theme
JSON
Object

YES
{"generalSettings":{...},
"relationSettings":[...],
... }

The customized visualization
theme, if applicable

Table 6: Dictionary of the collection Model
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Although this database schema supports all of Alloy4Fun’s functionalities, it has two noteworthy flaws

regarding some field formats. The first pertains to the choice of representing object identifiers as strings,

as opposed to utilizing MongoDB’s ObjectId types. As a result, the schema places the responsibility

of generating and maintaining unique keys on the application instead of using the database’s automatic

generation feature. This process can prove cumbersome and error-prone, especially in scenarios where

multiple applications interact with the database.

The second and more substantial flaw concerns the representation of the time fields as strings in-

stead of MongoDB’s Date, resulting in two different issues. Firstly, by forcing each program to work with

strings it requires specialized string handlers which are error prone thanks to the second issue, which

is the possible inconsistencies in date serialization. By using strings, to ensure consistency within the

database, we are trusting that each database writer uses the same date serializing technique. Unfortu-

nately, this is not necessarily the case for Alloy4Fun’s meteor web-service, as it uses the date formats of

its host operating system, which can change between deployments. Currently Alloy4Fun’s public data-

set [22] contains two date formats as result of this flaw, a ”month/day/year” pattern with a 12 hour clock

(example: 2/12/2023, 8:23:47 PM) and a ”year-month-day” pattern with a 24 hour clock (example:

2020-12-13 23:28:11), which compromise the data consistency.

The essential piece of the database is the Model collection. Each saved model (e.g. a submission

to an exercise) pairs its source code with several context data such as the theme used, the command

executed, the resulting state (i.e. whether the submission’s execution was valid, invalid or erroneous), a

reference to the root ancestor model and, most importantly, a reference to the model it was derived from.

Figure 14: Visualization of a derivation tree
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It should be noted that every time secrets are introduced in the public view of a model already containing

secrets, a fresh derivation tree is created. This means that in each branch of a derivation tree there is at

most one model with secrets. The root ancestor model is this model with secrets, if it exists, or the root

of the tree if there are no models with secrets. With these references, the database effectively stores a

derivation tree for each exercise, where each possible path from the root ancestor model to a leaf mostly

consists of a student’s attempt in solving the problem. A simple visualization of one of these trees is

presented in Figure 14, were we have three different branchs of submissions. The first two branches,

composed of submissions 0 to 2 are likely to have been created from two different attempts at solving the

original exercise. The last branch, composed of submissions 3 to 6 entails that a permalink was created

on submission 5, which was accessed and modified at least one time, resulting in the observable branch.

Due to the anonymous nature of the links, it is impossible to determine whether the branched submissions

were created by the author of the permalink or if it was the result its distribution among other individuals.

The system stores the permalinks for accessing each shared model in the Link database collection

described in Table 3. These links are associated with privacy settings, distinguishing them as either

private or public. This distinction determines whether the backend displays or conceals the secrets of the

accessed model.
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State of the Art

Throughout this chapter we will present a variety of program hint and repair systems and their correspond-

ing methodologies. We will begin by introducing an abstract hint generation framework which broadly de-

scribes the data flow across most recent automatic feedback systems. Afterwards, we will present several

hint generation systems in the context of this framework, grouping them in four types of feedback method-

ologies: Fault Localization, Synthesis-Based, Curated, and Data-Driven. Each methodology is explained

in relative detail with an extra focus on its strengths and compromises. We conclude by exploring the

application of text generation in the context of hint generation systems.

4.1 The HINTS Framework

In recent years, there has been a proliferation of diverse approaches for generating hints in programming

languages [26]. These approaches encompass a wide spectrum of unique ideas and techniques, spanning

various research domains, including behavioral and state repair [27], machine learning, data mining [2],

among others. Consequently, the hints generated by these approaches exhibit several degrees of diversity,

manifesting as error highlights, recommended actions, explanatory comments, and various other forms

of support. Despite this, there is a consistent data flow pattern that underlies most methodologies. We

always begin with a step where we analyze user submissions, which provide information that can be

regarded as intermediate unprocessed hints. The program sequentially processes hint intermediaries

through various components, which either reduce or transform the crude suggestions into useful hints for

the user. This data flow commonality does not occur by chance; rather, it constitutes the fundamental

underpinnings of any hint generation system.

The Hint Iteration by Narrow-down and Transformation Steps (HINTS) Framework [26] is an architec-

ture which abstractly depicts all of the common steps among many automated hint generation systems.

A visualization of this framework is presented in Figure 15.

The process starts with a pool of data as an input, which is commonly referred as hint data since it is

either composed of or used to generate hints. These can include data-sets produced by peers, property

based tests for the models, direct user submissions, or any other static feature that could be useful to the
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Figure 15: The HINTS framework

system. Once a data pool has been established, a hint system will then perform one or several processing

steps to generate new hint data, which can be classified within two types of actions.

• A transformation action as implied involves changing the way existing hints or data are represented.

Some examples of this are partitioning hint data, restructuring an existing entry, standardization,

or discarding duplicates. For example, an Alloy model can be broken down into its signatures,

predicates and functions, over which some could be discarded while other could be modified to

allow for custom evaluations.

• A narrow down action involves selecting subsets of hint data from the original pool. These selections

take into account two different factors: the first one is the relevance of the hints when applied to

a student’s program; the second one is their overall quality for the situation, i.e. their capability to

help the student produce a correct solution.

Each time new hint data is produced it is added to the original pool. Finally a hint system delivers the

student one or more subsets of hint data which represent the resulting hint’s information.

The HINTS framework does not imply any order or restriction in which these steps must be taken.

However most approaches need to make compromises in this regard, for example a system can become

limited to its initial input data if it has a requirement to assure the integrity of their hints during their

lifespan. Other examples include approaches that do not require any transformation to be made upon its

data, being thus able to supply hints directly from the programs.
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Over the following sections we will be discussing several examples of well developed hint genera-

tion systems. As previously implied, these systems can be abstracted and described within the HINTS

framework and thus several of these concepts will be recurrent through out our presentation.

4.2 Fault Localization Hint Generation

Fault localization systems stand on the boundary of what can be defined as a program hint or repair

system. Their main focus is to identify defects in a program’s source code, classifying the detected faults

and present the user with suggested actions, i.e. hints. The purpose of these suggestions is to present

the user with options in achieving a state free of faults. This can be valuable in a debugging context but

it does not necessarily aid in comprehending or resolving the underlying engineering issues [45]. Overall,

their general processes are very similar: faulty models are put through a series of validating artifacts which

isolate suspected faults within the original model; the suspicions faults are then presented directly to the

user, along with predefined suggestions for solving them.

Themain distinction between Fault Localization systems is their fault identifying techniques. One of the

oldest techniques is program slicing, a technique that abstracts a program into a reduced form by statically

or dynamically deleting irrelevant parts from it. Numerous studies have explored this technique [48]. A

few examples are eXVantage [46], a coverage-based testing system focused on minimizing performance

overhead, and JSDiagnosis [47], an AI-based dynamic slicing system. Another common technique is

spectrum-based fault localization, a technique which identifies faults by comparing the execution traces of

failing and passing program executions, classifying each identified difference with a fault suspicion metric.

A key challenge in these systems is ensuring their metrics achieve an effective balance between precision

and coverage of their fault detection. Similar to the previous techniques, there are also numerous works

on this topic [39], some examples include LAURA [1], a system that applies program transformations to

validate the executions, and PROUST [18], which contains a set of predefined programming plans which

are executed on the user input in order to generate a diagnostic of the bugs found in the code.

4.3 Synthesis-Based Hint Generation

Synthesis-based tutoring systems rely on generating new programs or models from a user’s submission

in order to provide their hints. These generation processes vary depending on the implementation, some

might use unit or property-based tests, while others will exhaustively mutate the prompted models into

new ones. In the specific case of Alloy there exists already several of these tools, such as ARepair [42],

BeAFix [8, 7], and TAR [10]. The techniques used by these tools are similar. Upon receiving a student’s

model the system will then begin synthesizing new submissions from the wrong ones. The used tactic

depicts the main difference between the mentioned implementations.
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ARepair employs the fault localization tool AlloyFL [43] to identify a set of suspicious declarations.

Following this, the declarations undergo systematic modifications through a predefined set of rules referred

to asmutators, creating an array of mutated declarations. This procedure repeats until either the computed

declarations passes the tool’s fault-localization tests or when it meets the limit of its search criteria. One

issue with ARepair is that its fault localization tests may not always be enough to properly validate the

synthesized model. Consequently, there is a risk of incorrect fixes being generated under the assumption

that they are valid. BeAFix is similar to ARepair as it uses FLACK [50], a fault localization tool which

benefits from Alloy’s counter-examples, to extract and mutate a set of suspicious declarations from an

incorrect model. In contrast to ARepair, it leverages the oracles of the individual models to validate each

synthesized model, which eliminates the potential for falsely validated models.

Unfortunately, both ARepair and BeAFix only support the non-temporal version of Alloy. This issue

was the main motivation to the development of the Temporal Alloy Repair (TAR) tool, which was the first

technique for fixing Alloy 6 first-order temporal logic specifications. The technique employed is designed

to exhaustively preform syntactical mutations until the tool either finds a solution or it reachs a limit

imposed by the developer. When a new model is synthesized it is stored as an Abstract Syntax Tree (AST),

a structure representing the core model as seen when parsed by Alloy’s compiler. After computing the

repaired model, the resulting AST, along with the actions that produced it, can be employed to either

rectify the original model or provide hints to the user. A visualization of the typical architecture of these

systems is presented in Figure 16.

Figure 16: Synthesis-based hint generation

As we can see, there are two types of artifacts which influence the main processing steps. The

validation metrics are mostly specified by the teacher, which generally consist of an oracle or unit tests

that can be used to check the correctness of the synthesized models. Additionally, these may also include

optimizations, such as TAR’s counter-example pruning techniques. Some quality metric is then used on

the process of selecting a final hint in the form of a tree edit. This can be as trivial as selecting the first

correct model found or more robust ones such as scoring each synthesized model based on the number

of edits required to obtain it from the original incorrect one.
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Overall these methods can be reliable at not only generating hints but also at ensuring their quality, i.e.

their ability to help the student solve their problem [10]. However their main drawback tends to be their

performance. Most implementations can often take minutes to generate a hint, which is very unpractical

in a tutoring environment where the student wants to receive instant error/success feedback.

4.4 Curated Hint Generation

This technique produces hints by converting sets of model solutions written by the teachers in an oracle

to generate a set of steps leading to a solution, labeled program strategies [13]. These strategies are

then used to examine the students submissions in order to find the ones that can help them with the next

steps of the development. To achieve this, the student’s submission must be first normalized in order to

be more likely to match with any of the stored strategies. If the match is successful, its corresponding

steps are retrieved, as well as the teacher annotations which are directly related. A few examples of these

systems include a Haskell helper named Ask-Elle [12], MistakeBrowser [15], and CoderAssist [19]. A nice

advantage of these system is that their hints can be extremely robust and rich. Since the annotations are

defined by the teachers they can include anything, from simple messages, to documentation references,

and possibly URLs or other examples. A visualization of the typical architecture of these systems is

presented in Figure 17.

Figure 17: Curated hint generation

Some variations of this technique exist, such as AutoTeach [4], where the students program is not

even used to compute the hints. In this case the system will merely provide hints to a problem sequentially

as they are requested by the user, strictly following the program strategies chain of steps.

The main disadvantage of this kind of systems is their inability to deal with unexpected mistakes.

Even when the system finds a match to an erroneous submission, and subsequently suggests program

strategies and annotations, in the general case there are never guarantees that the student will follow

them. This can result in situations were the student goes “out of bounds” and can no longer be helped by
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the hint system. This problem can be solved with edit-based approaches, where the teachers add models

and annotations to new unmapped strategies, however such a system would need to be supported by

teachers throughout its entire lifespan in order to maintain its usefulness.

An interesting note regarding this disadvantage is if a students’ solution partially matches a known

strategy, the precision, and consequently the quality, of the final hints tends to degrade. For these cases,

several hints are filtered based on the relevance for the provided solution. This filter dictates the trade-off

between quality and availability, since stricter filters will provide less hints with better quality and vice-

versa. This trade-off is essential in the overall system’s success, since although an automated system

main purpose is to be able to provide hints to the end user, poor quality hints have been proven to

discourage them from seeking help from the tool [37].

4.5 Data-Driven Hint Generation

A hint generation system is considered to be Data-Driven when it relies on historical data originated from

the users to generate and provide hints. This data is composed of any object capable of classifying a

user’s performance, such as their submissions, their program outputs, or their overall progression within

a problem.

4.5.1 Hint Factory

One of the first data-driven tutoring systems was the “Hint Factory” [40, 5]. This system uses historical

student submissions and a Markov Decision Process (MDP) for hint generation. For every programming

exercise, it starts by abstracting and aggregating the historical submissions into objects know as states.

These states are then converted to nodes of a connected graph, where the edges correspond to steps

that the students took when solving the exercise. Between all the parsed states, there can be many that

correspond to different solutions for the exercise. After the graph is built a teacher can provide hints

associated with each edge. When a student submits a solution the system will abstract the data and

attempt to match it to an existing state. If no match is found the generation process is canceled and no

hint is given, otherwise the system will then calculate the best possible path between the incoming state

and a solution with the help of a MDP. The resulting path is then used to generate and provide an optimal

hint to the student. A visualization of the the architecture of this framework is presented in Figure 18.

Hint Factory uses a MDP for selecting the best quality path, however these systems can also rely on

many other options for scoring and choosing the best path available. Overall, there is not any definitive or

standardized method for this step, and generally most algorithms tend to preform similarly in helping the

students progress [35]. This is mainly due to the human factors peculiar to each student, such as, for

example, their experience with the language. These factors are extremely hard to predict, and thus they

are always a source of deviation between the expected student’s progression and the actual performance

with the provided hints.
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Figure 18: Hint Factory architecture

A key decision in a Hint Factory system is how to represent the states, and therefore the nodes of

the graph. These should allow for the abstraction of many fundamentally similar submissions while not

compromising on their information, and consequently the produced hints. A state that cannot abstract

many submissions would become useless since it will rarely be matched with anything, while a state that

abstracts too many submissions loses the ability to provide precise and useful hint data to the user. As a

result, several approaches based on Hint Factory [31, 24] tend to have some trade-off between these two

factors, dictated by their established abstraction techniques.

4.5.2 Intelligent Teaching Assistant for Programming

The Intelligent Teaching Assistant for Programming (ITAP) [38] is a Python tutoring system which expands

the previously presented Hint Factory by introducing the ability for the graph to evolve over time. As such,

instead of an initial set of historical student data, the only thing the algorithm needs to start is a reference

solution or a way to identify if a solution is correct. A visualization of its architecture is presented in

Figure 19.

After starting, similarly to the Hint Factory, each submission will be abstracted and converted into a

state. Since ITAP is developed for Python, these states contain simply what the language’s compiler will

act upon (i.e. its grammatical tokens). With the resulting state it will then attempt to find an existing match

in the current graph. However, unlike the Hint Factory, if no match is found, the system will incorporate the

new discovery into the current graph instead of just failing. This process involves a synthesis procedure

similar to the one introduced in Section 4.3.

When a state is not matched, the system will start synthesizing new states to find solutions to the

problem by using a set of mutating rules. An advantage that this process has over a conventional synthesis-

based hint generator is the ability to skip the computation of several states when a mutation that happens

to be already registered in the graph is found. After calculating the paths to the solutions, it will then score

them based on two factors: the amount of mutations they introduce on the submission and the frequency
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Figure 19: ITAP architecture

in which the path states were queried during the process. The next state with the highest score is then

incorporated into the graph, and thus any future request involving the same submission will only need to

directly consult the graph, skipping the whole synthesis operation.

Finally, with the solution procedure obtained from either the data-driven model or the synthesis pro-

cess, the system will finally narrow down the meaningful hints to be delivered to the student. Unlike the

Hint Factory, this system is capable of a fully automatic hint generation, based on predefined template

which is capable of generating phrases which depict the code location and the required actions that the

student should follow.

4.5.3 Hint Generation with Deep Learning

Figure 20: Hint generation with Deep Learning
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Deep Learning based systems, such as SYNFIX [6], DeepFix [14] or BIFI [49], train Recurrent Neu-

ral Networks (RNNs), usually with reinforcement learning, for the purpose of correcting segments of a

student’s submission. To achieve this, the system must process a data-set of existing submissions into

smaller objects know as tokens, which represent the relevant pieces of code from the original submission.

These tokens are then used to train a RNN. When a student requests help with a submission, the system

will tokenize the given code and present it to the RNN that processes the information into new or alterna-

tive tokens. These replacement tokens are then tested against the original submission and delivered to

the user, provided they solve the original problem. A visualization of the system is presented in Figure 20.

These systems present two differences when compared to the previously described data-driven sys-

tems. The first one is the output object, as the previous systems produce solution procedures and this

technique produces correction tokens. As a result, when targeted for hint generation, an additional tech-

nique for extracting the solution procedures from each token must be employed. The second distinction

would be the evaluation method, the previous systems use graph-like structures with submissions to gen-

erate hints while this method resorts mostly to deep learning models. Besides these factors, the whole

process is essentially the same: we start with peer data that gets processed into submission data (states/-

tokens), that are then used to setup a hint generation technique (graph/RNN). Upon being prompted by

a student, the system will transform the submission data onto the established data structure, and then

generate a set of possible solutions/hints which are validated and provided back to the student.

4.6 Text Generation in Hint Systems

Text generation plays a pivotal role in most hint generation systems, since it is one of the most dynamic and

versatile ways of conveying information to the users. Using text we can generate a variety of suggestions

such as step-by-step guides and informative/analytical prompts. The process of generating text for hints

however is challenging due to the intricacies of natural languages. Generating coherent and relevant text

hints requires sophisticated grammar, semantics, and syntax systems, which are not infallible due to the

general ambiguity and subjective nature of most idioms. Generating textual hints typically follows two

distinct methodologies: Heuristic Techniques and Machine Learning Techniques.

4.6.1 Heuristic Techniques

These techniques rely on an explicit logic in order to generate the messages, which consequently makes

them more understandable and easier to implement and validate. However, they scale badly, since they

tend struggle when dealing with large amounts of data or highly complex problems, as manually crafting

rules for every situation becomes cumbersome. Some examples of these methodologies include:
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Rule-Based Generation [25] involves having a human specify a set of predefined conditions (known

as rules) and the content associated with it. When attempting to present a hint, the program will sequen-

tially test the chosen action on known rules, displaying the content of the successful matches to the user.

Nonetheless, this method can become unusable when dealing with complex or diverse data, since the

sheer volume of situations can make creating rules for every possible scenario impractical.

Template Filling [51] is an expansion of the previous approach where, instead of providing fixed

content, the human now specifies templates which are composed of predefined placeholders that are

dynamically replaced with tokens derived from the matched action. This implementation improves on its

predecessor by allowing for a greater customization of the hint. However, it is more difficult to implement

and it still has the previously mentioned problem.

4.6.2 Machine Learning Techniques

These techniques leverage preexisting data to automatically learn how to generate the required text. They

tend to be harder to understand and validate since their generation logic varies according to the training

data, making them extremely difficult to interpret and explain. Nonetheless, these techniques have several

benefits, namely their adaptive capabilities allow them to effortlessly scale to multiple text variations,

increasing the overall quality of the hints. Some popular examples of these techniques include:

Markov Chains [28] are formal methods that use probabilistic models to predict the next word of a

phrase based on the current one. These models are built by statistically analyzing preexisting text and

while being relatively simple they can produce surprisingly realistic text, but tend to lack long-term context

and coherence in their results.

Generative Pre-trained Transformers (GPTs) [9] are deep learning models based on the trans-

former architecture [41]. They are pre-trained on a large corpus of text data and generate text by predicting

the next word in a sequence using its preceding text. As a result they generate flexible and adaptive text

with the downside of occasionally producing convincing but factually incorrect content.

Generative Adversarial Networks (GANs) [29] consist of two neural networks that are trained

together, a text generator responsible for creating new content, and a text discriminator that evaluates

how close the generated content is to real data. By making both networks compete with each other we

can obtain exceptional text generating models, however this isn’t an easy process to setup since their

duality nature also makes them extremely difficult to train.

43



5

Alloy Specification Assistant

In this chapter we will present a new hint system for Alloy4Fun, which we named SpecAssistant, that relies

on existing data from the users in order to generate its output, being thus classified as data-driven. The

overall process is similar to the Hint Factory [40] approach, as it starts by processing historical data into

unique states, which are then assembled into a Submission Graph, upon which a traversal policy will be

used to select the next state, and the respective hint. Upon receiving an invalid submission to a challenge,

it will process the user’s formula and use it to match a state of the submission graph. The next state is

then determined by the predefined policy rules which assess the quality of the candidate states. Finally,

the state’s information is processed into a hint, composed of text highlights and custom messages. A

graphical view of this architecture is presented in Figure 21.

Figure 21: SpecAssistant architecture

In this chapter, we delve into the intricacies of the developed hint generation system. We will begin by

describing the fundamental concepts and processes used by the system, and how these can allow us to

generate hints. We will then describe the implementation of these techniques on Alloy4Fun, elaborating

on aspects such as the framework and libraries used, the data formats, and the user interface.
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5.1 Core techniques

This section aims to describe the core techniques of our system. We begin with a description of our

formula comparison procedures and their impact in the system. Afterwards, we proceed to characterize

how the peer data is stored in the system’s data model. Finally, we describe how the data model is

processed into the final hints which are displayed to the user.

5.1.1 Formula Comparison

Before presenting the core techniques we must first describe the data that these were designed to handle.

Every process in our system revolves around Alloy formulas which were specified by the users in their

attempts to solve challenges in a exercise. These formulas can be parsed into Abstract Syntax Trees

(ASTs), which detail the hierarchical structure of the syntactical elements within the formulas. In Figure

22, we depict the AST of the formula all s : Student | s in Human , which asserts that every

student is a human. It is composed of a quantifier that is described by a declaration and a body. The

body is defined by applying the in operation to the variable s and the set Human.

Figure 22: Example of an AST

When handling formulas, we can compare them in three distinct ways: through their lexical represen-

tation, their syntactical representation, or their semantic meaning. Each approach comes with its set of

benefits and compromises, usually involving a trade-off between the final hint’s availability and quality.

These different approaches are described as follows.

Lexical Comparison A lexical approach views and compares each formula directly as written by the

user. As such it allows the system to precisely tailor each hint to each submission, for example the system

can directly mention the user’s custom variable names or highlight portions of the text in order to draw the

user’s attention to them. Unfortunately, this greatly decreases the availability of the hints, since providing

the user with a hint requires the submission to exist in the database exactly as written by the user, which

is very unlikely thanks to all the personal choices the users can instill on their submissions.
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Syntactical Comparison A syntactical approach discards most of the user’s personal decisions, such

as parameter names and order, by focusing only on the meaning conveyed by the arrangement and

structure of keywords in the formula. Intrinsically, this abstracts multiple submissions under the same

AST, which increases the chances of providing the user with a hint. This comes at a slight cost in the

quality, as it results in the loss of certain contextual details within the formula elements. These details may

include custom names, macros and other “syntactic sugar” constructs, file locations, among others which

are valuable for providing more specific and customized hints. However, it is possible to build translations

between lexical and syntactical formats, which allow for approaches with the best of both worlds. An

example of two syntactically equivalent formulas can be found in Listing 5.1.

some r1,r2 : Road | r1=r2 ≡ some x,y : Road | y = x

Listing 5.1: Syntactical equivalence example

Semantic Comparison A semantic approach focuses solely on the meaning of the formula itself.

This allows for an large degree of abstraction, which should increase the systems ability to generate

hints. Regrettably, this semantic approach removes almost all of information that is traceable to the

original submission, and thus it cannot be used to generate contextual hints, which severely degrades the

system’s quality. Additionally, this approach also comes with some performance issues since semantic

evaluations would require the use of Boolean Satisfiability Problem (SAT) solvers to check the equivalence,

which are notoriously slow. An example of semantically equivalent formulas can be found in Listing 5.2.

adjacent = ~adjacent ≡ all r : Road | r in r.adjacent

Listing 5.2: Semantic equivalence example

Our system mixes the lexical and the syntactical approach, by having each formula inspected and

compared syntactically using lexical formats. This is achieved by normalizing the original formula to

a predefined lexical standard, so that when compared directly only syntactical differences will be visible,

allowing the system to take advantage of simple lexical comparisons without compromising the abstraction

power of the syntactic approach. The used normalization technique can vary across implementations and

generally dictates a trade-off between quality and availability. Our normalization technique implements

three rules:

Commutativity The sub-expressions of a commutative operation are arranged following some order.

For example, in the expression B and A, if A precedes B then its normalized version would be

A and B.

This rule is applied in formulas using the following operators: intersection (&), union (+), equal (=),
different (≠), and (∧), or (∨), equivalent (iff), and disjoint (disj). When dealing with these operators,
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our normalization process organizes the arguments of each operation based on their lexicographic or-

der. We have opted for the lexicographic order as it effortlessly ensures a consistent ordering across all

formulas.

Equivalence If two different operators are equivalent then only one should be used in the normalized

version. For example, if we consider that > will be the inequality operator of choice, then any

expression containing ≤ would be rewritten with it. For example, A≤B would be normalized as

not B<A.

This rule is primarily focused on the transformation of inequality operators. When confronted with the

operators ≥ and ≤, our implementation replaces them with the operators < and >, respectively, while
simultaneously switching the order of their arguments.

Identifiability Identifiers (such as function parameters or quantified variables) must be normalized un-

der the same naming scheme. For example, the syntactical equivalent formulas all x : A|x
in B and all a : A |a in B should have the variables x and a rewritten to the same name.

The assigned names can be defined as wished by the developer, so long as it is an alphanumeric

identifier which assures that syntactically equivalent formulas use the exact same names on their

identifiable nodes.

For our application, we only need to update identifiers specified by users. Specifications from de-

fault Alloy modules are equal across all environments, which as a result ensures their consistent naming

scheme. Alloy formulas include four constructs that introduce identifiers: functions, predicates, let
blocks, and quantifiers. Functions, predicates and let constructs introduce identifiers to denote one or

several formulas. The simplest way to handle these cases is to expand these identifiers to their complete

definition, effectively removing them from the AST.

For quantifiers we rename each variable identifier with the concatenation of the prefix ref and the

index of its declaration. Before this renaming, we also reorder variables according to the lexicographical

order of the respective types, and refactor disjoint (disj) clauses into the quantified formula. This reorder-

ing process also involves merging sequential quantifiers that have the same operator. A few examples of

this normalization process are depicted in Listing 5.3.

all x : X | all n : x.next| n ≠ x
{ all ref0 : X, ref1 : ref0.next | ref0 ≠ ref1

all u1 : U | some u2 : U | u in u.next
{ all ref0 : U | some ref1 : U | ref1 in ref0.next

all disj n1,n2 : N | n1 in adj.n2
{ all ref0 : N, ref1 : N | disj[ref0,ref1] =⇒ (ref0 in adj.ref1)

Listing 5.3: Examples of normalized quantifier formulas
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An additional issue that is addressed by the normalization is the treatment of constant true formulas.

Alloy lacks a dedicated syntax for expressing these constants directly, but they are equivalent to empty

code blocks. When custom empty functions or predicates are invoked within formulas, expanding their

definition can introduce these empty code blocks into an AST, which is syntactically incorrect. So we have

implemented some rules to remove them. For example, in and operations we simply drop the empty

block, and an expression if condition then x else y will be rewritten to its then branch when

presented with an empty block as the condition, among others.

5.1.2 Submission Graph

The data model is the main component of a data-driven system. In our case it is the direct byproduct of

the peer data and it plays the pivotal role in the system’s output. Our system will process this historical

data of each challenge into a model named Submission Graph, a structure which shares properties with

Control Flow [3] and Decision Graphs [32]. This graph monitors the decision-making of multiple agents

in their pursuit of solving a specified challenge, by aggregating the control flow that illustrates how their

actions and choices helped them progress through their difficulties. An abstract depiction of this model

is presented in Figure 23, which will be analyzed and explained throughout the following paragraphs.

Figure 23: Example of a Submission Graph

Similar to generic graph structures, the representation under consideration is depicted using nodes

and edges. These correspond to the two essential components of our model, States and Transitions,

which are described as follows:

States 𝑆 – States correspond to the Alloy formulas (ASTs) submitted by users while attempting to solve

a challenge and processed by our previously described normalization technique. In our system,

we also register a few key attributes of each state: the formula’s validity (i.e. indicating whether

48



5.1. CORE TECHNIQUES

it solved the challenge), its anticipated truth table size (latter referred to as its complexity), the

frequency the formula was submitted, and the frequency the formula was modified (i.e. the sum

of the out-edge’s frequencies).

Transitions 𝑇 – Transitions capture the sequence of states users followed while solving challenges.

Similarly to states, for each transition we register: the frequency, the minimum Tree Edit Distance

(TED) between its states, the proportion of times that a transition was chosen over its competitors,

i.e. the peer transitions that share the same source state.

Our system creates a different submission graph for every challenge of every exercise. These graphs

tend to have a similar shape to the graph of Figure 23, which steams from the format of the derivation tree

structures that originate them. Typically, there is a central node, here colored blue, corresponding to the

challenge’s initial formula, usually an empty block, which branches into several neighbor formulas. This

node typically has a path to every node of the graph, making the submission graph weakly connected.

As we progress outwards from the central node we traverse several paths of invalid nodes, here colored

white. Occasionally, these paths can branch to or join other paths or return back to the central node. Each

path can be a dead end, when a student interrupted a session without solving the challenge, or reaches a

valid submission, the nodes colored green. Solution nodes tend to have a higher-than-average in-degree,

because many student sessions converge into the same valid submission.

5.1.3 Hint Model

The submission graph encompasses all the potential decisions made by students, rendering it a non-

deterministic graph. In order to use it to generate hints for users, it is essential to select a specific path

Figure 24: Example of a Hint Model
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for each state, essentially narrowing the submission graph into a deterministic one. This procedure is

referred to as applying a traversal policy on the submission graph. It reduces the submission graph into

a forest of state trees, each rooted at a solution, which we have labeled as the hint model. Additionally it

discards the states that cannot reach a solution. An example of a hint model from our previous example

is displayed in Figure 24.

To create an effective hint model, we need to develop a policy algorithm capable of extracting it

from the original submission graph. However, there are some caveats to consider. Depending on the

nature of the challenge and its designer’s intentions, certain policies may be more successful at generating

superior hintmodels compared to others. Since we cannot forecast the challenge designers’ preferences,

our primary focus has been on developing a modular algorithm, designed to provide designers with the

flexibility to customize it to their policy needs.

5.1.4 Policy Algorithm

The basis of our policy algorithm is Dijkstra’s shortest path algorithm for weighted graphs. The algorithm

operates by maintaining a score on a set of tentative states, which starts as the set of all valid states, i.e.

the set of states that correctly solve the challenge. It will iteratively select the state with the best score from

this set and use it to update the scores of states that transition to it. After each selection, the algorithm

Algorithm 1: Policy Algorithm
Input: (𝑆,𝑇 ): Submission Graph
Data: 𝑂 Objective, 𝑁 : Neutral Value, 𝑅: Policy Rule
Output: 𝑚𝑜𝑑𝑒𝑙 : The hint model
begin

Initialize 𝑞𝑢𝑒𝑢𝑒, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑠𝑐𝑜𝑟𝑒 and𝑚𝑜𝑑𝑒𝑙 as empty sets;
for every valid state 𝑠 in 𝑆 do

𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒 + 𝑠;
𝑠𝑐𝑜𝑟𝑒 [𝑠] ← 𝑁 ;

end
while 𝑞𝑢𝑒𝑢𝑒 is not empty do

𝑠′← state in the 𝑞𝑢𝑒𝑢𝑒 with the best 𝑠𝑐𝑜𝑟𝑒 according to 𝑂 ;
𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒 − 𝑠′;
𝑚𝑜𝑑𝑒𝑙 [𝑠′] ← 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑠′];
forall transitions 𝑡 that leads a state 𝑠 into 𝑠′ do

if 𝑠 ∉𝑚𝑜𝑑𝑒𝑙 ∧ 𝑠𝑐𝑜𝑟𝑒 [𝑠] is worse then 𝑅(𝑠, 𝑡, 𝑠′) according to 𝑂 then
𝑠𝑐𝑜𝑟𝑒 [𝑠] ← 𝑅(𝑠, 𝑡, 𝑠′);
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑠] ← 𝑠′;
𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒 + 𝑠;

end
end

end
end
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designates the chosen state and the transition from which the highest score was computed as part of the

hint model and subsequently excludes them from any potential operations in its future iterations. Once

there are no more states to be evaluated the algorithm ends. With this framework we allow the designer

to customize three parameters. The first parameter is the objective of the algorithm, i.e. whether the goal

is to minimize or maximize the node’s scores. The second parameter is the neutral score value, which

represents the score assigned to the algorithm’s initial set of states (the set of valid states). Finally we

allow the designer to customize the rule used to compute the new score of a state given a transition. In

this rule the user has access to all of the attributes registered in the submission graph for the transition

and the two states involved, and can use their normalized values to define a custom score formula. The

pseudo-code representation of this process is presented in Algorithm 1.

In Table 7, we provide an overview of several policy options that we have experimented with. The

policy rules in this table will refer to some of the attributes registered in states and transitions, and already

discussed in Section 5.1.2. These attributes include the Tree Edit Distance (TED), the state’s complexity

(𝐶𝑂𝑀𝑃𝑋 ) and the state’s submission frequency (𝐹𝑅𝐸𝑄 ). Furthermore, the policy can mention algorithm

specific attributes, such as the current 𝑆𝐶𝑂𝑅𝐸 associated with the source node.

Name Objective Neutral Value Policy Rule
Shortest Tree Edit Distance (TED) MIN 0 𝑇𝐸𝐷 + 𝑆𝐶𝑂𝑅𝐸
MinMax Tree Edit Distance (TED) MIN 0 𝑚𝑎𝑥 (𝑇𝐸𝐷, 𝑆𝐶𝑂𝑅𝐸)
Balanced TED and Complexity MIN 0 0.5𝑇𝐸𝐷 + 0.5𝐶𝑂𝑀𝑃𝑋 + 𝑆𝐶𝑂𝑅𝐸
Proportional Complexity MIN 0 (1 − 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) ×𝐶𝑂𝑀𝑃𝑋 + 𝑆𝐶𝑂𝑅𝐸
One MIN 0 1 + 𝑆𝐶𝑂𝑅𝐸
MaxiMin Frequency MAX 0 𝑚𝑖𝑛(𝐹𝑅𝐸𝑄, 𝑆𝐶𝑂𝑅𝐸)
Popularity MAX 1 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 × 𝑆𝐶𝑂𝑅𝐸

Table 7: Examples of policy parameters

5.1.5 Policy Execution

When processing the users current submission, SpecAssistant will normalize it with the same technique

used on the peer data. Subsequently, the obtained formula will then be prompted on the hint model

which will give the best next state to guide the user. This procedure is restricted to the pre-existing data

and consequently, when a hint is solicited with an unknown submission, the system will be incapable of

providing a hint. This problem can be mitigated by querying the hint model with variants derived from the

submission’s formula, from which we could extract relevant hints.

The implemented approach for expanding the overhaul scope of each query consists in querying

the hint model with a set of mutated formulas derived from the submission. The variant formulas are

built from a combination of procedures named mutators which have the goal of transforming the original

formula based on a predefined rule. In our system, we utilize the mutators conceived in TAR [10] which

are presented in Table 8. When a submission is not in the submission graph, this method employs an
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exhaustive procedure where each mutator is systematically applied to the submission’s sub-formulas,

generating a variety of mutated formulas of which we retain in a set those that are contained in the hint

model. Finally, the mutated formula with the best score according to the selected policy rule is then

used to infer the hint. Since the transitions corresponding to the mutators do not exist in the graph, this

technique can only be used with policy rules that rely on attributes that are independent of the submission

data. For example, it cannot be used with policy rules that rely on the frequency or the proportion.

Mutator Rule Mutation Example

RemoveBinary
A [bop] B { A A or B { A
A [bop] B { B A - B { B

ReplaceBinary A [bop] B { A [bop'] B
A and B { A or B

A & B { A - B
ExtendOrReduce

A { A [bop] B
A { A + B

InsertJoin A { A . B

RemoveUnary [uop] A { A
once no A { no A

~ A { A

ReplaceUnary [uop] A { [uop'] A
once no A { always no A

~ A { A'
InsertUnary

A { [uop] A

no A { always no A
InsertPrime A { A'
RelationToUnary A { ^A
ReplaceSet [uop] A { [uop] B no A { no B
BinaryToUnary A [bop] B { [uop](A [bop'] B) A in B { no (A + B)
QuantifierToUnary [qtop] a : A | B { [uop] A no a : A |inv[a] { no A
ReplaceQuantifier [qtop] a : A | B { [qtop'] a : A | B no a : A | B { some a : A | B
RelationToBinary A { A [bop] B A { A and B
ReplaceRelation A { B A { B

Table 8: TAR’s mutators

Each rule presented in Table 8 depicts the mutator’s effect with a set of arbitrary expressions and

operators, where the former is represented by capitalized letters and the latter by the keywords: [uop]

[bop] and [qtop], denoting unary, binary and quantifier operators, respectively.

5.1.6 Hint Generation

After successfully computing the best next state, the system needs to present this information to the user

in the form of a hint. For automated repair systems whose goal is to perform auto-corrections, this can

be achieved by simply presenting to the user the fixed submission. In hint generation however, this is

more complicated since the goal is not to solve the problem but to provide an educational scaffold to the

user, i.e. provide just enough information to help a learner overcome its obstacles, without completely

solving the problem and miss the educational objective. This is made even more difficult by the fact the
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interpretation of each hint is very likely to vary between users, so to ensure the desired effect on the user,

our system should present concise information which can also be adapted to the different situations.

Taking into account these limitations, we chose to implement our hints as code highlights. This

stemmed from the fact that these serve as a visual focal point to the user and thus allowed us to precisely

guide the user to the submissions fault. Alongside the highlight, the system will also provide a text message

with further help, generated from the original state and action. The absence of any sufficiently large

repository of Alloy hints prevented us from using machine learning methodologies for text generation. As

a result our current text generation relies on a rudimentary rule-based approach. This approach generates

textual prompts based on the transition that led to the selected next state. For actions that were computed

based only on historical data (that is, the wrong submission was seen before), our system first employs

a tree difference algorithm [34] to categorize the overall transition as list of changes, specifying them as

deletions, as insertions, or as replacements. Subsequently, it will retrieve the closest change to the AST’s

root, matching its category either the phrase “Try adding something to this declaration” for insertions or

the phrase “Try to change this declaration” for the remaining categories. The chosen change is also used

to determine the faulty expression to highlight. Conversely, when transitions result from mutations (that

is, the wrong submission was not seen before), the displayed hint is drawn from the definition within the

mutator’s class, resulting in the messages found in Table 9.

Mutator Hint
RemoveBinary
ReplaceBinary
InsertJoin

Binary operator has to be changed or removed.

InsertUnary
InsertPrime

Insert an operator.

RemoveUnary
ReplaceUnary

Unary operator has to be changed or removed.

BinaryToUnary Transform into a unary expression.
QuantifierToUnary
ReplaceQuantifier

Quantifier has to be changed.

ExtendOrReduce
ReplaceRelation

A different relation is required.

InsertJoin
RelationToBinary
RelationToUnary

Add a binary or unary operator.

RemoveUnary
ReplaceUnary

Unary operator has to be changed or removed.

ReplaceSet Expression under unary operator has to be changed.

Table 9: Hints for TAR’s mutators
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5.2 Alloy4Fun Implementation

This section will provide an overview of the technique’s implementation within the Alloy4Fun application,

which involved some minor developments within meteor’s front-end, along some major developments

across three modules of the API component: the new hint system, the REST service, and an Alloy Tool-

box integration module, which can be found within the modules specassistant, alloy4fun, and
alloyaddons. This section discusses the modifications made to existing components, alongside the

implementation of the new features. The outcome of this implementation resulted in a system that, when

subjected to an invalid submission automatically retrieves a hint targeted at the current situation which

the user could consult or ignore. This hint is presented by marking the incorrect section of the code with a

blue highlight and offering a hint message about the error and the highlighted portion, which is exemplified

in Figure 25.

Figure 25: Example of a hint generated by SpecAssistant

5.2.1 Framework Migration

To take full advantage of Alloy’s functionalities, namely its parser and AST implementations, our system

needed to be developed in Java just like the Analyzer. Additionally, in our case it would be beneficial to

have the new functionalities incorporated within the Alloy4Fun API component. However, unlike the current

API component that only accesses the submitted Alloy model, the new services would also introduce the

need to access the database. To do this we had two possible approaches. The first relied on having each

client provide all data that could be required. This approach was quickly abandoned since as a result the

clients would need to provide data with sizes ranging from dozens to hundreds of megabytes, which would
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quickly overwhelm the service when presented to multiple concurrent clients. The only viable solution was

to make the API component itself able to request the data directly from the database.

This solution was not simple however. The framework in which the API component is developed

(Thorntail) was discontinued in 2020 due to the rise of better alternatives. As a result, continuing the

development with this framework would lead to problems due to the lack of support in recent years.

One of the biggest problems we would have was the use of deprecated or removed functionalities on the

database, which would require several suboptimal workarounds. Additionally, several modern libraries for

back-end development would not be available and as such the functionalities needed from them would

have to be redeveloped for this system, which would result in a waste of development time.

To avoid these problems, the API was ported to Quarkus1, a popular and rapidly evolving java frame-

work which contains the features required for our development. Additionally it also comes with several

welcoming characteristics such as rapid REST response times, optimizations for deployments on virtual

containers, and a well-defined long-term support plan. The resulting API, implemented in a module named

alloy4fun, is composed of different components which form the stack presented in Figure 26. Despite

this, the core functionality of the component and its external interfaces remain unchanged and are indis-

tinguishable from the current Alloy4Fun web service.

Figure 26: API component stack

At the top of the stack we have the REST service component which is provided by the framework on

the package quarkus-resteasy-reactive-jackson. The package itself is the combination of two

libraries: firstly we have Quarkus RestEasy Reactive, the extension that handles asynchronous and non-

blocking HTTP endpoints, and secondly we have the Jackson project2, a data-processing tool that allows

1https://quarkus.io
2https://github.com/FasterXML/jackson
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for the seamless management of JSON data as Java objects. This component’s function is to handle

every process of any HTTP communication that is not specific to our developments.

Descending through the stack we will reach the application’s core functionality, starting with the re-

source controllers, declared within the resource package. These components define the application’s

HTTP interface, i.e. the available methods, and how these interact with the system’s business logic.

Our system declares three functional controllers: AlloyGetInstances, AlloyGetProjection, and
AlloyValidate, which are responsible for implementing each of the API’s methods. Alongside the con-

trollers we also declare a number of Data Transfer Objects (DTOs) across the packages data.request
and data.transfer. These define the data formats used by our services and are succinctly described

as basic Java classes, leveraging from the Jackson library and its corresponding annotations to be auto-

matically parsed into JSON formats. An example of a DTO can be found in Listing 5.4 where we declare

the object returned by the HTTP method POST ”/getInstances”.

1 public class InstanceResponse {
2 @JsonInclude(NON_EMPTY) String err;
3 @JsonInclude(NON_NULL) @JsonUnwrapped InstanceMsg warning;
4 String sessionId;
5 Boolean unsat;
6 Boolean check;
7 String cmd_n;
8 Integer cnt;
9 @JsonProperty("static") Boolean is_static;

10 @JsonInclude(NON_NULL) Integer loop;
11 @JsonInclude(NON_EMPTY) List<InstanceTrace> instance;
12 }

Listing 5.4: InstanceResponse facade

Beneath the Controllers, lies the Service layer which embodies the heart of the application’s business

logic. It defines the core operations of the application and enforces the business rules, ensuring the in-

tegrity and consistency of data interactions. Their data-flow starts from the information provided by the

Controllers, which can include any form of data structure, which is subsequently subjected to targeted

operations and validations. Within these operations, the system might need to interact with external appli-

cations resources by calling the underlying layer, therefore scaling its functions to several other processes

and components. Finally, each service replies to the original controller which generally only needs to

transform the resulting information into REST responses. Throughout our development we will see each

service be declared in the package service, however the base application does not declare any since

the only business logic of the program is the external Alloy compiler.

Finally, at the base of the stack we find the Repositories, declared within the package repositories.
This layer is responsible for managing the interaction between the application and the underlying data,

such as an external API, the file system, and most commonly the database. The function of a repository

is to handle the application’s data ensuring its consistency which can include data parsing, persistence,
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retrieval, querying, and aggregation. Alongside each repository, within the data.models package, we

also have the data models that each one is designed to handle. They generally consist of Java classes that

comply with one or multiple interfaces required for the functionalities of their endpoints. Exemplifying, for

REST services this may simply be the previously described DTOs, for a database this might be an explicit

specification of each of the entities keys and indexes alongside each object. The most common kind of

implementation focus mainly on declaring Create, Read, Update, Delete (CRUD) repositories, where each

developer only needs to worry about defining their models and queries, leaving the possible networking

and serialization processes to be defined by the framework. Our base API declares a simple repository

used only to read and update the Session models stored within the application’s temporary memory.

Through the implementation of the hint system we have a few CRUD repositories as a result of the new

requests issued to the system’s database.

5.2.2 Data Model Management

Since each exercise involves not only different challenges but also different checking approaches, it be-

came crucial to define a process to ensure that each submission to a challenge is matched to the correct

submission graph. The only viable way to differentiate a challenge is with the combination of its first an-

cestor with secrets (original) and the executed command label (cmd_n). However, using them directly

to discriminate each challenge will give rise to a few undesirable complications, namely:

• When specifying automatic feedback exercises in Alloy4Fun it is required to split the oracle evalua-

tion from the user’s solution with either predicate or functions, in order to allow Alloy4Fun to hide

the former. These declarations cannot be accessed systematically, since the lack of any standard

for naming or structuring an exercise makes them essentially indistinguishable from other decla-

rations. In order to surpass this problem the system requires the tutor to specify a mapping that

relates the command of each problem with their corresponding user-editable predicate where the

student will write the submission.

• Alloy, and consequently Alloy4Fun, allows for the specification of multiple commands with the same

name. As such, the system has no way of distinguishing duplicate commands defined by the users

and thus the possible mismatches can lead to the assimilation of faulty data onto the submission

graphs, such as wrong answers being interpreted as valid by the adulterated command. To prevent

this we take advantage of the fact that Alloy4Fun appends the exercises hidden commands at the

end of the model, which allows us to filter every user defined command simply by knowing the

number of challenges in the original exercise.

• The first ancestor, i.e. the exercise’s original model, is not necessarily the only exercise to present

the same specification challenge. Any modification to the model’s code, for example a new com-

ment or a rewritten command label, is enough to cause the exercise to change even though the
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contained challenges themselves remain the same. If such exercises were processed separately,

each data model would ignore the states of the peers who contributed to the same challenges,

resulting in multiple smaller and less reliable hit models. To address this issue we have decou-

pled the challenges from the exercises, resulting in the need for the tutor to specify a relation that

describes how to access all the exercise variants that propose each challenge.

To address all of these problems the implementation declares two data collections: Graph and Chal-

lenge. The first uniquely identifies each submission graph, pairing it with a bundle of descriptive fields

such as a name for the challenge. The second implements all the previously mentioned mappings, relat-

ing each challenge to the respective command, and submission graph, predicates and functions where

the user will write the submission, and the maximum offset the exercise can have from the end of the

command list.

The system requires the user to specify each entity and relation in order to enable hint processing on

an exercise. When applied to a single exercise this is generally a simple and straightforward task. However,

in the context of our current project, where we have multiple exercises with variable naming schemes, this

can be cumbersome, and so we explored a more automated approach. Building an infallible method would

be difficult, but thankfully our data follows a few predefined patterns which allows us to streamline the

process. Firstly, all exercise variants have equal command names and, secondly, every user modifiable

predicate is targeted by one command at most. As a result we can automatically generate all required

information simply by indicating which exercises are variants of each other.

5.2.3 Alloy Model Processing

A core element in our development involves the methods responsible for handling the Alloy Analyzer. These

processes are used both by the API component and the newly developed hint generation component. As

a result, to ensure an ease of integration within both of these contexts, these methods where forked into

their own module, named alloyaddons.
In order to parse an Alloy model we must call one of the static methods within the class CompUtil

contained within the package edu.mit.csail.sdg.parser of the Analyzer. These methods are the

main source of latency within the parsing process, since they require that each model must be written

into a file and parsed directly from the file system, causing the application to issue several system calls

in really short periods. Unfortunately, solving this problem would require an extensive re-implementation

of Alloy’s parser and makes processing big data-sets such as the Alloy4Fun data-set really slow. We have

mitigated this issue by implementing methods that scale this class to multiple threads, allowing us to

parse multiple models in parallel.

When a model is parsed we obtain an object of the class CompModule which fully describes the

parsed model. By using the mappings defined in the previous section we can navigate this object and

find the relevant ASTs. Each AST is an instance of a class named Expr. To facilitate coding, this class
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implements the Visitor Design Pattern, a behavioral design that allows the addition of new methods to

each hierarchical class without modifying their structure.

To take advantage of this pattern the developer simply needs to declare a visitor class that belongs to

the VisitorReturn hierarchy where it will define the behavior for each required subclass. One example

of this construct is the implementation of the normalization technique, introduced in Section 5.1.1, which

implements a traversal using a visitor object described by the facade presented in Listing 5.5.

1 public class ExprNormalizer extends VisitReturn<Expr> {
2 Expr visit(ExprBinary exprBinary) throws Err;
3 Expr visit(ExprList exprList) throws Err;
4 Expr visit(ExprCall exprCall) throws Err;
5 Expr visit(ExprConstant exprConstant) throws Err;
6 Expr visit(ExprITE exprITE) throws Err;
7 Expr visit(ExprLet exprLet) throws Err;
8 Expr visit(ExprQt exprQt) throws Err;
9 Expr visit(ExprUnary exprUnary) throws Err;

10 Expr visit(ExprVar exprVar) throws Err;
11 Expr visit(Sig sig) throws Err;
12 Expr visit(Sig.Field field) throws Err;
13 }

Listing 5.5: Normalizer facade

Although the class requires a considerable number of definitions, the majority of the methods do not

actually change their receiving objects. To implement our normalization algorithm modifications are only

required on five different classes: ExprList, ExprBinary, ExprCall, ExprLet, and ExprQt.

ExprList objects define a series of commutative operations (and, or, and disj) across their list of sub-
nodes. To comply with our commutative normalization clause, the list is ordered lexicographically

by comparing their string serialization.

ExprBinary objects define every possible binary operations between two sub-nodes, distinguished as

the left node and the right node. These operations include all commutative and equivalent op-

erators targeted by our normalization. Similarly to the previous object, handling the commutative

operations involves computing the lexicographic order of its elements using their string serialization

value. Afterwards the lexically smaller node is placed on the left and the lexically bigger node is

placed on the right. When it comes to equivalent operations, when using the operators ≥ and ≤,
the implementation swaps the left and right arguments and rewrites the node using the operators

< and >, contained within a not operator.

ExprCall and ExprLet objects describe function calls and let constructs, respectively. As such, they

are replaced by their subtrees after each one of their declared variables is replaced by the value

provided to them in their arguments.
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ExprQt objects describe quantifier declarations. These are composed of a quantifier operator, a list

of variable declarations, and the quantified sub-expression. As previously explained in Section

5.1.1, to comply with our identifier normalization clause, we must reorder each of the identifiers

in order to rename each using the index of its declaration. Although conceptually simple, the

implementation of this renaming poses some challenges. Depending on how the user has written

their formula, the identifiers intended for reordering may or may not be separated into multiple

ExprQt objects, chained by their sub-formula instances. Thus, our process begins by collecting

all sequential variable declarations that share the same quantifier operator. Each declaration is an

instance of the class Decl, which is composed of a list of identifiers, the declared type, and an

optional disjoint clause.

After collecting all declarations we then proceed to assign each the minimum 𝑑𝑒𝑝𝑡ℎ within the

quantifiers AST. This 𝑑𝑒𝑝𝑡ℎ field allows us to determine the partial order induced by dependent

identifiers, such as, for example, the variable z of the formula all x,y : X, z : x.next which

must always be declared after x. In this case 𝑥 and 𝑦 would have a minimum depth of 0 while 𝑧

would have a depth of 1. If a new variable was declared that depends on 𝑧 it would subsequently

have a depth of 2, and so on. Upon computing the 𝑑𝑒𝑝𝑡ℎ for each declaration, our normalization

will start deconstructing each Decl object. Each identifier is ordered and subsequently renamed

according to its declaration’s 𝑑𝑒𝑝𝑡ℎ and the lexical order of the normalized type. Simultaneously,

every disjunct clause is normalized by combining it with the quantified sub-formula through the

utilization either the operation and or implies. The final output of the normalization is a new

ExprQt object, with the original quantifier, the renamed identifiers, and the updated sub-formula.

When normalizing an AST, our system maintains a mapping between the original tree and the normal-

ized one, in other to allow our system to trace both variable names and most importantly the file positions

required for marking down a hint’s code highlight.

After its normalization an AST can be further processed in two different ways. The first is string

serialization, which is used in interactions with the database, and when ordering identifiers. The second

is a difference algorithm, were the system is comparing two ASTs in other to determine their changes.

To accomplish this, our system uses the All Path Tree Edit Distance (APTED)3 [33, 34] algorithm, which

computes the smallest edit maps and distances between two trees. To use the algorithm we simply must

define a match relation between each node and a cost model for its three possible edit operations (𝑖𝑛𝑠𝑒𝑟𝑡 ,

𝑑𝑒𝑙𝑒𝑡𝑒, 𝑟𝑒𝑛𝑎𝑚𝑒). Subsequently, the system can compute the minimum edit distance and mapping

between two ASTs. Meanwhile, the edit mapping denoting the relation that matches identical nodes

between each tree is translated into a sequence of edit operations that are used by the hint generation

procedures.

3github.com/DatabaseGroup/apted
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5.2.4 Hint Model Computation

With the previously defined processes for handling the submissions and the Alloy ASTs we can finally start

parsing our historical data into our data models. This process is divided between three steps: firstly, we

have the model ingestion were we scan and process each submission tree from the database, and add

it to the respective submission graph; secondly, we have a classification step where we pre-compute a

series of attributes needed throughout the model’s lifetime; and, finally, we have the policy computation

step, where we narrow down the submission graph to a hint model.

Model Ingestion

As previously mentioned in Section 3.3, Alloy4Fun’s submission data is structured as derivation trees

rooted at the exercise’s original submission. Within each exercise we have a series of challenges for the

user that will have to be processed separately. Additionally, since Alloy4Fun records every execution the

students’ issued, in each of these derivation trees we can differentiate every attempt at solving a exercise

as a path of submissions from the tree’s root to its leaves. This data can be overwhelming, since a tree

may also include syntactically incorrect submissions, submissions for different exercises in different order,

executions of commands not present in the original exercise, and duplicate submission issued by the users

on their explorations. Some of these behaviors are visible in Figure 27, were we depict a tree highlighting

different commands with different colors. In the example, we have four different paths corresponding to

four different attempts at solving three challenges (inv1, inv2, and inv3) in a exercise containing two

signatures: A, which declares relation next : set A, and B, which is an extension of signature A. In this

Figure 27: Exercise derivation tree
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example the students inconsistently alternated between three challenges and also executed commands

not present in the original exercise and not corresponding to any challenge (namely run $1).
The goal of this step is to process this data by isolating each challenge from every path of the tree, and

aggregating the respective submissions in the challenge submission graph. To achieve this we must simply

divide the set of submissions by each targeted challenge, and subsequently relating the submissions of

each resulting set by the order defined within the root exercise. Upon finishing this process we simply

need to amalgamate the submissions with duplicate formulas and transitions into an initial submission

graph where we only record the frequency of each transition, as exemplified in Figure 28.

Figure 28: Amalgamated Submission Graphs

This ingestion process is implemented in a specialized Breadth-First Search (BFS) algorithm with

the CompletableFuture class, a Java class that allows for a simple specification of multi-threaded

tasks. The advantage of using a multi-threaded approach is the possible performance boost obtained

from parsing multiple models in parallel.

Attribute Computation

After populating each graph, the subsequent step is to compute each attribute needed for the policy

rule computation. One of these attributes is the proportion of times each edge was traversed, which is

calculated directly by determining the ratio between the number of times the edge was traversed and the

number of times a user submitted its source state. Another attribute is the complexity of each formula,

which is defined as the expected size of the formulas truth table. To compute this value we must count

the number of nodes in the AST𝑚 and the number of independent variables 𝑛. With these properties we

can obtain the truth table’s size with the value of 𝑛𝑚.

The final attribute we need to compute is the Tree Edit Distance (TED) between the ASTs at the ends

of each transition. For this we use the All Path Tree Edit Distance (APTED) [33, 34] library. When given

two distinct trees, the algorithm initiates a process of comparing and pairing identical nodes in an effort

to discover the most extensive node matching. Subsequently, after computing a mapping, the algorithm

highlights the nodes in each tree that remain unmatched. If there is a discrepancy in the source tree, its

token is categorized as deleted. Conversely, if a discrepancy arises in the target tree, it is labeled as an
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addition. A visual representation of the resultant mapping is illustrated in Figure 29, with deleted nodes

indicated in red and added nodes in green. The TED corresponds to the number of nodes that have been

added or deleted between the two trees. In our example, this value is 3.

Figure 29: Visualization of a tree difference mapping

Policy Computation

In this step, our program utilizes the configured policy parameters, which are included with the computa-

tion request, to calculate the desired hint model for the challenge. The algorithm itself is a translation of

the Algorithm 1 into Java, which is designed to process every data point from Java Typed objects. As such,

our neutral value and objective parameters are defined using a double and an enumeration, respectively.

The policy rule, on the other hand, is defined by a class hierarchy, implementing a Composite Design Pat-

tern. It consists of a super-class named PolicyRule, which has three sub-classes: Constant, Var,
and Binary. The super-class defines two abstract methods. The first method, normalizeByGraph,
is designed to standardize the rule’s parameters according to a specified graph. The second method,

apply, plays a crucial role in executing the defined rule on the provided edge and states.

While the PolicyRule defines how to handle the specified rule, its actual behavior is implemented

by its sub-classes. The Constant class represents a constant numerical value that cannot be normalized

and simply provides its value upon application. Next, the Var class is defined by an attribute reference.

When invoked for normalization, this object retrieves the maximum and minimum values of its target.

Consequently, when the object is applied to a state or edge, it returns the value of the attribute normalized

between 0 and 1 by the considering these limits. Finally, we have the Binary object, which can apply

one of six types of binary operations (+, −, ×, /, 𝑚𝑖𝑛, 𝑚𝑎𝑥 ) to its two sub-rules. Its normalization

process is defined by the normalization of its sub-formulas. Each one of these classes can be serialized

and deserialized as a JSON, with the use of a discriminator field named "type" created using the

Jackson project. Therefore, front-end services like Meteor can effortlessly communicate each rule using
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these objects. An example of this object in JSON format is shown in Listing 5.6, which depicts the rule

1 + 𝑆𝐶𝑂𝑅𝐸.

1 {
2 "type": "binary",
3 "operator": "+",
4 "left": {"type": "constant", "value": 1.0},
5 "right":{"type": "var", "var": "SCORE"}
6 }

Listing 5.6: Policy rule as a JSON object

5.2.5 Updated Database Schema

As result of our development, we have expanded the original MongoDB database schema, resulting in the

creation of four new collections that store the data described in the previous sections. In this section, our

primary focus is to provide a detailed description of the scheme and data formats of these new collections,

described in Tables 10, 11, 12, and 13.

Graph
Field Format Optional Example Description
_id ObjectId NO 64b9433022472102a170f762 Object Identifier

name String YES Instagram-inv2
Name of graph, (usually the exer-
cise and challenge names)

policy Object YES
{
"count": 658
"time": 2.4176935

}

A performance summary of the
policy computation, including its fi-
nal submission count and compu-
tation time

parsing Object YES

{
"dkZH6HJNQNLLDX6Aj":{

"count": 659
"time": 45.6081762

} }

A performance summary of the in-
gestion process, associating each
exercise with its submission count
and parsing time

Table 10: Dictionary of the collection Graph

Challenge
Field Format Optional Example Description
_id ObjectId NO 64b9433022472102a170f76a Object Identifier
model_id String NO dkZH6HJNQNLLDX6Aj Reference to the model exercise
graph_id ObjectId NO 64b9433022472102a170f762 Reference to the submission graph

end_offset Int32 NO 8
Maximum offset the command can
have from the end of the model

cmd_n String NO inv1Ok Name of the challenge’s command
targetFunctions Array NO ["inv1"] List of functions of the challenge

Table 11: Dictionary of the collection Challenge
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Node
Field Format Optional Example Description
_id ObjectId NO 64b9433022472102a170f762 Object Identifier
graph_id ObjectId NO 64b9433022472102a170f831 Reference to the submission graph

formula Object NO { "inv1" : "no Trash" }
Mapping from each managed func-
tion to the respective formula

valid Boolean NO false Whether the formula was correct

visits Int32 NO 52
Number of submissions which
specified this formula

leaves Int32 NO 45
Number of modifications applied
to the formula (out-edge count)

hopDistance Int32 YES 4 Minimum distance to a solution
complexity Double YES 120 Complexity of the formula
score Double YES 97.568779 Computed policy score of the node

witness String YES nuWnon2d7N7N7ZFvw
Reference to a model specifying
this node’s formula

Table 12: Dictionary of the collection Node

Edge
Field Format Optional Example Description
_id ObjectId NO 64c14e95129a556f2555df88 Object Identifier
graph_id ObjectId NO 64c14e91129a556f2555dcdf Reference to the submission graph
origin ObjectId NO 64c14e95129a556f2555df6b Origin node reference
destination ObjectId NO 64c14e95129a556f2555df83 Destination node reference
count Int32 NO 3 Number of edge crossings

editDistance Double YES 13.0
Edit distance between the origin
and destination formulas

policy Boolean YES true
Whether the edge is a part of the
hint model

Table 13: Dictionary of the collection Edge

To communicate with the new data we have defined a CRUD repository for each collection with

the use of Quarkus’s Panache library for MongoDB. This package simplifies the development process

by providing an intuitive querying system without the processes associated with managing the Mon-

goDB client. To take advantage of this tool we must first define our data models as inheritors of the

PanacheMongoEntity or one of its parent classes. As a result, each model will be presented with a

series of methods used to issue queries alongside the required processes used to manage the model’s

_id field. Afterwards the user can declare each query within the model’s respective repository, defined by

the interface PanacheMongoRepository. A simple example of this construct can be found in Listing

5.7, were we present a snippet of the Challenge repository containing two queries.

Both of these queries use the find method of Panache to declare a MongoDB match query, which

has the purpose of retrieving Challenge objects based on the conditions provided within its body.

The first query (findByModelIdAndCmdN) has the purpose of restricting the retrieved Challenge

by their "model_id" and "cmd_n" fields. It implements its body using a query language implemented
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by Panache. It is a simple language to read and process, but it does not support the complete array of

features of MongoDB. These unmet features can still be called upon with objects that can format to Binary

Javascript Object Notation (BSON) such as the Document object. This is the case for the second query

(streamByModelIdIn), where the provided object declares the body {"model_id":{$in:[...]
}}, that has the purpose of retrieving any object where the field "model_id" is contained within the

provided collection.

After specifying the query and its respective body, we finish by declaring how we want the information

delivered to our application. We can choose to retrieve only the first object found (firstResult()), have
it packaged as a Java Stream or List (stream(), list()), have it delivered across pages (page()),
among others.

1 @ApplicationScoped �
2 public class ChallengeRepository implements PanacheMongoRepository<Challenge> {
3
4 public Challenge findByModelIdAndCmdN(String model_id, String cmd_n) {
5 return find("model_id = ?1 and cmd_n = ?2", model_id, cmd_n).firstResult();
6 }
7
8 public Stream<Challenge> streamByModelIdIn(List<String> model_ids) {
9 return find(new Document("model_id", new Document("$in", model_ids))).stream();

10 }
11 ...
12 }

Listing 5.7: Challenge repository

66



6

Evaluation

The primary objective of any hint generating system is to provide valuable and contextually relevant clues

or suggestions to assist individuals in solving problems, overcoming challenges, or improving their perfor-

mance in various tasks. Our data-driven system fulfills this task by mining hint suggestions from historical

data that describes the decisions taken by multiple users. As explained throughout the previous chapter,

this process has some compromises between the system capability for presenting hints (availability) and

the effectiveness of hints in helping the user understand and solve the problem at hand (quality). As a

result, to evaluate our system we must evaluate both these aspects.

We can use a broad range of quantitative and qualitative assessments in order to precisely measure

both the availability and quality of our system. Due to its complexity, the qualitative assessment was not

planned to be conducted during the thesis and is expected to be performed in future work. As a result,

our current evaluation focus mostly on the quantitative aspects.

More specifically, our evaluation aimed at answering the following research questions:

RQ1 Is SpecAssistant viable for hint generation?

RQ2 Is it viable to frequently update the submission graphs of SpecAssistant?

RQ3 To what extent does the incorporation of mutated formulas affects the performance?

RQ4 How does SpecAssistant performance stacks up against other alternatives?

To answer these questions, we employed a range of data-mining validation and testing techniques.

These techniques encompassed data pre-processing, data-set splitting, cross-validation across various

models, as well as a superficial overfitting and underfitting examination of ours models.

6.1 Data-set Partitioning

The first step in our evaluation was to divide the existing submission data into two distinct subsets: the

training data-set, which was used to build the hint models, and the testing data-set, which was used to
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measure their effectiveness. To obtain meaningful results, it is imperative that these samples generalize

the entire system’s behavior. If we fail to generalize the training data, the biased model will likely perform

worse. Conversely, if we fail to generalize the testing data, our results may overlook some user behaviors,

which would result in biased results.

The Alloy4Fun data-set [22], our targeted data-set, primarily consists of derivation trees where each

sub-tree of the root corresponds to a distinct user attempt. These were generated by university students

as direct result of their participation in academic courses teaching Alloy at the University of Minho (UM)

and University of Porto (UP), and include nearly 70000 syntactically correct submissions. In particular,

the Alloy4Fun data-set encompasses four academic years spanning from the fall of 2019 to the summer

of 2023. For the academic years of 2019/2020 and 2020/2021, the data originated from a course that

introduced a variety of challenges to two classes of around 20 students, including “Trash FOL”, “Classroom

FOL”, “Trash RL”, “Classroom RL”, “Graphs”, ”LTS”, “Production Line v1”, and “CV”. In contrast, during

the academic years 2021/2022 and 2022/2023, the data resulted from a different course that exposed

two classes of around 210 students to new challenges, namely “Production Line v2/v3”, “Train Station”,

“Courses”, and “Social Network”. Despite the population size in the latter years being nearly 11 times

larger than in the former years, the number of submissions was only the double, because in the latter

course Alloy was taught for a short period only. One noteworthy aspect of the exercises is that it that they

are publicly available. Therefore, it is possible that a small number of submissions could have also come

from external users. This could potentially explain the data we have for older exercises, with submissions

beyond their original class time-frames. The distribution of submissions can be observed in Figure 30.

Figure 30: Number of syntactically correct submissions in each exercise

We focused on randomly splitting the user attempts, i.e. the direct sub-trees of the root of each

derivation tree, based on the number of valid submissions each one can contribute to each submission
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graph. The partitioning process begins by calculating the number of valid submissions per challenge in

each sub-tree of an exercise. Then, it randomly selects sub-trees for the smallest partition (in our case,

the testing data-set), continuing this selection process until the sum of its valid submissions surpasses the

predefined split ratio. In our implementation, we designated 70% of data for training and 30% for testing.

Because each sample is inherently random, we believe that our results will be less biased and can be

generalized.

6.2 Benchmarking

After establishing each partition, every challenge of the training data-set was put through our hint model

computation process. As a result, our system generated a hint model for every challenge defined across

each exercise. Subsequently, we individually tested each invalid submission within the testing data-set

against our hint generation technique and TAR, the previous hint generation system of Alloy4Fun. Each

result was stored separately in a database collection named “Test” described in Table 14. This collection

outlines specifications on each tested submission based on the type of test performed, which is described

by the respective tool (SpecAssistant, TAR), policy rules and potential augmentations, such as the incor-

poration of mutated formulas. The specifications themselves include a number of useful data points,

such as the test’s success, the elapsed time, the chosen state, among others. After the benchmarking

it accommodated more than 200000 distinct entries. This procedure to handle benchmark data gave us

flexibility in conducting the evaluation. From an execution standpoint, it allowed us to consistently validate

and possibly repeat tests without compromising the remaining data, and from an analytical standpoint, it

allows us to precisely tailor our data view to each research question without losses of information.

Field Format Optional Example Description

_id.model_id String NO uCFT6ci2br98QhWF7
Identification of the request’s
model

_id.type String NO "TED-SPEC" Type of benchmark preformed

data.success Boolean NO true
Whether the benchmark generated
a hint

data.time Double NO 0.2409658 Elapsed Time in seconds
data.match ObjectId Yes 64c14e91129a556f2555d0023 Reference for the matched state
data.next ObjectId Yes 64c14e91129a556f25558450 Reference for the next state

data.edge ObjectId Yes 64c14e91129a556f25551182

Reference for the corresponding
transition object between the
𝑚𝑎𝑡𝑐ℎ and 𝑛𝑒𝑥𝑡

graphId ObjectId Yes 65043b32364fce46dcb96123
The benchmark’s submission
model

Table 14: Dictionary of the collection Test

Each individual test was given a timeout of one minute. The rationale behind this decision was based

on the expectation that any hint generation technique exceeding this time would severely compromise the
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user experience, rendering the tool unusable. However, the ideal upper limit for the elapsed time before

experiencing any degradation in the quality of the user’s experience is 10 seconds, according to [20].

Every benchmark was ran on a virtualized Docker deployment using mongodb image version 6.0.51

and RedHat’s ubi8/openjdk-17 image version 1.162 on top of Docker Engine version 24.0.2. The
host of this virtualized setup integrated a minimalistic setup of Windows 11 Pro version 10.0.1928 on

top of a Intel Core i5-13600KF processor, 32 gigabytes of RAM and a 1𝑇𝐵 SSD with an approximate

Read/Write speed of 530𝑀𝐵/𝑠.
With our benchmark results we aimed at answering the above research questions.

RQ1 Is SpecAssistant viable for hint generation?

We will begin evaluating our system by analyzing its performance across each exercise. This can be

achieved by analyzing the elapsed times and success rates for each of them. A summary of these results

is presented in Table 15.

Exercise
Historical Hint

Misses Hits
Elapsed Time (𝑠)

Submissions Requests Avg. Std. Dev.

Courses 10431 2418 1606 (66%) 812 (34%) 0.014 0.005
Social Network 10428 2793 1528 (55%) 1265 (45%) 0.008 0.005
Train Station 4394 1331 802 (60%) 529 (40%) 0.015 0.006
Production Line 4156 1102 729 (66%) 373 (34%) 0.013 0.004

Trash LTL 2788 890 533 (60%) 357 (40%) 0.011 0.003
Classroom FOL 2702 663 332 (50%) 331 (50%) 0.010 0.003
Classroom RL 2474 687 448 (65%) 239 (35%) 0.016 0.006
Trash RL 1530 347 152 (44%) 195 (56%) 0.016 0.004
TrashFOL 1425 194 94 (48%) 100 (52%) 0.018 0.006
Graphs 1281 370 208 (56%) 162 (44%) 0.019 0.008
LTS 995 393 319 (81%) 74 (19%) 0.016 0.006
CV 596 218 174 (80%) 44 (20%) 0.012 0.004
Production Line v1 424 120 85 (71%) 35 (29%) 0.017 0.008

Table 15: Performance summary across each exercise

Our system excels in the performance aspect, by consistently providing hints within milliseconds after

each request and consequently negating any waiting times from the user requests. On the other hand,

we can also see that for most possible cases at least a third of all requests had an hint, and overall our

system has an average availability of 38%. In a full deployment, as the hint graph accumulates more

submissions from multiple academic years, we anticipate a consistent improvement in these results.

Another very important factor in the system’s performance is also the effectiveness of each hint in

guiding the student. Although the quality of each hint is subjective to each individual, a quantifiable factor

we can use to evaluate each policy rule is the number of steps that the system expects an “ideal” user (one

1hub.docker.com/_/mongo
2catalog.redhat.com/.../ubi8/openjdk-17
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that always guesses the next state implied by the provided hints) would take to reach a correct solution on

each incorrect submission. This metric changes in accordance with the underlying policy rules, providing

an insight into their quality. In Figure 31, we present for each policy of Section 5.1.4 the distribution of

incorrect submissions of the testing data-set based on the number of steps the systems expects of its

users.

Figure 31: Distribution of incorrect submissions by expected steps across multiple policies

Overall, despite variations in the rules, our policies consistently needed a maximum of two hints to fix

70% of invalid submissions. These findings enable us to infer that, in general, our system will be efficient

in providing hints to the user. This imposes a baseline level of quality on hints, since the reduced number

of steps, and consequently hints, will help the user understand and solve the exercise faster. However,

it is worth noting that we have some difference between policies. Notably, the “Popularity”, “MaxiMin

Frequency”, and “One” policies tend to provide more hints than the other policies, since they generally

prefer using two steps over one.

RQ2 Is it viable to frequently update the submission graphs of SpecAssistant?

In order to update a hint model we must recompute it. This process demands a significant amount of

resources, and despite being an offline operation that can run concurrently with the other functionalities,

it is significantly impeded by the number of models to update and the duration of the training process of

each.

71



CHAPTER 6. EVALUATION

As detailed in Section 5.2.4, our hint model computation process comprises three distinct phases:

Model Ingestion, Attribute Computation, and Policy Computation. The Attribute Computation procedure

exhibits near-instant execution times. In contrast, the number of iterations of the other two stages grow

significantly with the number of inputs. Notably, the Model Ingestion’s performance is tied to the size of the

derivation trees, while Policy Computation’s performance depends on the size of the submission graph.

However, the format of the derivation trees allows our implementation of the Model Ingestion process to

be parallelized, being capable of simultaneously parsing as many models as there are available workers.

On the other hand, the Policy Computation employs a semi-parallel computing approach, where it will

process as many graph nodes as it is permitted, as a result of the existing variable dependencies between

its iterations. As a result, to perform a thorough evaluation we imposed limits on our CPU scheduler and

tested the performance of each procedure under three distinct resource scenarios: one with 18 available

concurrent threads, a second with 12, and finally, one using only 6 concurrent threads. The average

results are presented in Table 16.

Exercise
Number of Number of Model Ingestion (𝑠) Policy Computation (𝑠)
Submissions States 6 THD 12 THD 18 THD 6 THD 12 THD 18 THD

Courses 10431 4104 312.9 274.6 215.3 1.271 1.009 0.883
Social Network 10428 3605 218.8 180.6 165.5 2.262 0.91 0.99
Train Station 4394 1874 95 88.7 69.8 1.14 1.198 0.953
Production Line 4156 1862 138.6 125.1 113.6 1.279 1.154 0.542

Trash LTL 2788 1219 68.8 58.8 52.2 0.517 0.392 0.403
Classroom FOL 2702 903 60.9 53.2 45.2 0.5 0.402 0.431
Classroom RL 2474 985 66.7 55.5 46.7 0.475 0.493 0.391
Trash RL 1530 446 43.4 37 31.5 0.43 0.41 0.27
Trash FOL 1425 343 38.4 31.1 28.6 0.263 0.277 0.214
Graphs 1281 599 35.1 32.7 27.7 0.649 0.364 0.522
LTS 995 489 33.1 25.5 22.8 0.373 0.707 0.61
CV 596 324 13 12.4 11.7 0.24 0.318 0.403
Production Line v1 424 176 10.3 8.6 7.7 0.412 0.327 0.291

Table 16: Hint Model computation performance

The Model Ingestion process demonstrates a noticeable improvement as the number of processor

units increases. However, accurately predicting its behavior with a speedup formula, such as Amdahl’s

Law [16], is challenging. This challenge arises from the fact that although the algorithm excels at schedul-

ing each model for parsing, the inconsistent performance of the employed SAT solver, along with the

file system calls wait times, introduces a significant degree of randomness and uncertainty into the total

execution time of the parsing task. The Policy Computation time also exhibits a slight improvement in

certain cases, but generally seems to be unaffected by the different number of threads. Nevertheless,

considering its reduced execution time when compared to the entire process, it can be concluded that its

performance impact is negligible.

As we can see, even in our worst resource case scenario the hint model computation processes took

around 19 minutes for the 13 exercises with a total of 43000 submissions, which means we could possibly
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update this daily if the number of newly added submissions justified the process.

RQ3 To what extent does the incorporation of mutated formulas affects the performance?

As visible in Table 17, our mutation technique undeniably delivers a significant boost to our system’s

availability. It provides a 55% average increase in the amount of hints in the older exercises and a 45%

average increase in the newer ones, resulting in an overall 50% average increase in the availability. Re-

grettably, this enhancement comes at the expense of a slightly prolonged execution time, being nearly one

hundred times slower than the technique without the mutations. Despite this, it still provides its answers

within a fraction of a second, a period which is well bellow our target quality threshold of 10 seconds.

Exercise
Hint No mutations With mutations

Gain
Elapsed Time (𝑠)

Requests Hint Rate Hint Rate Avg. Std. Dev.

Courses 2418 812 (34%) 1298 (54%) 486 (60%) 0.659 0.367
Social Network 2793 1265 (45%) 1740 (62%) 475 (38%) 0.666 0.344
Train Station 1331 529 (40%) 751 (56%) 222 (42%) 0.811 0.463
Production Line 1102 373 (34%) 525 (48%) 152 (41%) 0.720 0.401

Trash LTL 890 357 (40%) 569 (64%) 212 (59%) 0.416 0.141
Classroom FOL 663 331 (50%) 463 (70%) 132 (40%) 0.455 0.167
Classroom RL 687 239 (35%) 330 (48%) 91 (38%) 0.306 0.147
Graphs 370 162 (44%) 251 (68%) 89 (55%) 0.242 0.127
Trash RL 347 195 (56%) 260 (75%) 65 (33%) 0.205 0.114
TrashFOL 194 100 (52%) 154 (79%) 54 (54%) 0.348 0.191
LTS 393 74 (19%) 141 (36%) 67 (91%) 0.242 0.098
CV 218 44 (20%) 48 (22%) 4 (9%) 0.676 0.390
Production Line v1 120 35 (29%) 38 (32%) 3 (9%) 0.449 0.230

Table 17: Performance summary of the mutation technique across each exercise

RQ4 How does SpecAssistant performance stacks up against other alternatives?

Our primary emphasis was on comparing our system with TAR. This choice stemmed from the fact

that it is the only Alloy hint generation systems that currently supports Alloy version 6, besides being the

only developed specifically for Alloy4Fun. Table 18 compares the results of running the benchmarks on

TAR and our system. It shows the percentage of hints provided by each tool, as well as the percentage

of submissions for which they can both provide hints. It also displays the execution times of TAR. As we

can see, there is a significant performance gap between the two techniques. As previously seen, our

system excels in delivering rapid responses, while TAR semantic equivalence checks hinder its execution

time. The average response time of TAR is approximately 30 seconds, with a standard deviation of 20

seconds. This average is well above the threshold of 10 seconds, and thus it could make some users

start to disregard the tool. Additionally, the exceptionally high standard deviation is indicative that for a

significant number of cases the performance could be much worse.
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Exercise
Hint SpecAssistant TAR Duplicate Elapsed Time (𝑠)

Requests Hint Rate Hint Rate Rate Avg. Std. Dev.

Courses 2418 812 (34%) 502 (21%) 30 (5%) 38.564 26.041
Social Network 2793 1265 (45%) 539 (19%) 20 (2%) 44.615 23.290
Train Station 1331 529 (40%) 320 (24%) 9 (2%) 38.203 26.533
Production Line 1102 373 (34%) 297 (27%) 15 (4%) 38.544 25.146

Trash LTL 890 357 (40%) 771 (87%) 23 (4%) 29.504 20.198
Classroom FOL 663 331 (50%) 182 (27%) 13 (5%) 26.748 22.974
Classroom RL 687 239 (35%) 159 (23%) 7 (4%) 35.898 23.803
Graphs 370 162 (44%) 175 (47%) 0 (0%) 20.998 21.882
Trash RL 347 195 (56%) 237 (68%) 3 (1%) 20.915 22.424
TrashFOL 194 100 (52%) 167 (86%) 5 (4%) 20.950 21.806
LTS 393 74 (19%) 37 (9%) 0 (0%) 18.226 19.195
CV 218 44 (20%) 61 (28%) 2 (4%) 48.209 16.811
Production Line v1 120 35 (29%) 106 (88%) 0 (0%) 20.091 20.211

Table 18: Performance summary of TAR across each exercise

Concerning availability, both TAR, which has the potential to offer hints to any submission, and our

system, which can only yield results for submissions it has seen before (without the mutations), exhibit

similar outcomes by providing hints to approximately 40% of the requests, on average. What is particularly

intriguing is the low overlap between both techniques – when we compare the number of requests for which

both tools provided hints, we can see that it is rather small. As a result we can conclude that both tools

complement each other, and thus it is expected that a system that combines both could significantly

enhance the overall availability, possibly increasing the availability to around 80%.
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7.1 Conclusions

In contemporary software development it is imperative to ensure the proper functioning of software ap-

plications. Among other techniques, this can be achieved by building robust models during the early

development phases. The most effective models are formal specifications which rely on mathematical

concepts to remove ambiguities. However, these require a high proficiency from the developers. Our the-

sis aimed at easing the learning of the Alloy formal modeling language, hopefully making it more accessible

to any developer.

To be more precise, our goal was to conceive a new hint generation system that could improve the

Alloy learning experience, intended to be deployed on the Alloy4Fun online platform. There were already

some existing Alloy automated repair and hint generating techniques, such as TAR [10], BeAFix [8] and

FLACK [50], which mainly rely on semantic comparison techniques to produce outputs. These techniques

suffered from poor performance, which rendered them unusable in a platform such as Alloy4Fun where

users expect near instant feedback. In light of this, we have decided to explore the application of data-driven

techniques, which have been relatively underexplored within the context of Alloy, and that could potentially

solve the performance problem, by mining solution patterns from a pool of historical submissions which

could then be translated into hints.

The developed system, known as SpecAssistant, compiles the historical submission data into a “Sub-

mission Graph”. This structure enables SpecAssistant to compute “Hint Models”, which can be used to

guide users towards valid answers to the specification challenges. When presented with an invalid Alloy

formula, the system processes it and then uses the computed policy to suggest the next action. The

hints are delivered as code highlights and textual explanations. To evaluate SpecAssistant, we primarily

focused on quantifying its availability and performance. This process involved partitioning a historical

submission data-set [22] into training and testing data-sets, which were subsequently used to run some

benchmarks and compare our system with TAR, the hint system previously developed for Alloy4Fun. As

anticipated, SpecAssistant consistently provides hints within milliseconds, effectively eradicating any user

waiting times. Our findings also indicate that hint availability is still good, since it can provide hints for at
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least 33% of invalid submissions in the testing data-set, a ratio that can be improved to 50% through the

integration of formula mutation techniques into the process.

In conclusion, we believe SpecAssistant has fulfilled the objectives for this thesis. We leveraged

data-driven methods to create a hint generation system that is capable of instantly and effectively offer

assistance to users by leveraging data collected from peers in the past.

This development of SpecAssistant was challenging, mostly because of the nature of the available

historical data. The primary objective of a hint system is to offer suggestions that indeed help users reach

valid solutions and have a positive impact on learning. However, there is no guaranty that historical peer

data is the best source of hints for that. We attempted to mitigate this by allowing challenge developers

to customize the policy selection rules, however the problem may still persist. On a more technical

perspective, Alloy’s Analyzer also proved difficult to work with, as its compiler and AST formats are not

specially suited for our normalization and parsing procedures.

7.2 Future Work

We have identified three aspects in which our work can be improved: the evaluation process, the imple-

mentation, and the hint computation and delivery technique.

In order to improve our evaluation, it is essential that we undertake user studies in the future. While

these studies were not included in the thesis plan, they can offer invaluable insights into user behaviors

when exposed to our hints. This information is essential for a comprehensive assessment of the hints’

quality, i.e. their ability to aid users in solving challenges and improve their learning.

To improve SpecAssistant’s implementation, we should start by improving the underlying AST struc-

tures. As mentioned earlier, the use of Alloy Analyzer has presented us with a series of problems during

the normalization process, particularly in dealing with invalid AST nodes, which led to some undesirable

workarounds. A redevelopment of this structure could remove all these issues, consequently enhanc-

ing the outcomes of our AST normalization and differencing algorithms. It would also streamline other

needed system improvements, such as the implementation of an Alloy parser suited for our model parsing

procedures.

Another possible improvement would be enhancing the way the system computes and delivers hints.

Improving hint computation requires improving our current data-models. This can be achieved by either

adding new attributes to be used in policy rules or by shifting from our state-based data-model to a session-

based one (i.e. a model that generate hints from the full array submissions of a session). Improving hint

deliver, requires improving the text messages that are provided with the hints. To do this we could improve

our text generation technique using the rapidly evolving deep learning language models.

76



Bibliography

[1] Anne Adam and Jean-Pierre H. Laurent. “LAURA, A System to Debug Student Programs”. In: Artif.

Intell. 15.1-2 (1980), pp. 75–122 (cit. on p. 36).

[2] Elena N. Akimova, Alexander Yu. Bersenev, Artem A. Deikov, Konstantin S. Kobylkin, Anton V.

Konygin, Ilya P. Mezentsev, and Vladimir E. Misilov. “A survey on software defect prediction using

deep learning”. In: Mathematics 9.11 (2021), p. 1180 (cit. on p. 34).

[3] Frances E. Allen. “Control flow analysis”. In: Symposium on Compiler Optimization, Urbana- Cham-

paign, Illinois, USA, July 27-28, 1970. Ed. by Robert S. Northcote. ACM, 1970, pp. 1–19 (cit. on

p. 48).

[4] Paolo Antonucci, H.-Christian Estler, Durica Nikolic, Marco Piccioni, and Bertrand Meyer. “An Incre-

mental Hint System For Automated Programming Assignments”. In: ACM Conference on Innovation

and Technology in Computer Science Education. Ed. by Valentina Dagiene, Carsten Schulte, and

Tatjana Jevsikova. ACM, 2015, pp. 320–325 (cit. on p. 38).

[5] Tiffany Barnes and John C. Stamper. “Toward Automatic Hint Generation for Logic Proof Tutoring

Using Historical Student Data”. In: Intelligent Tutoring Systems, 9th International Conference. Ed.

by Beverly Park Woolf, Esma Aı�meur, Roger Nkambou, and Susanne P. Lajoie. Vol. 5091. Lecture

Notes in Computer Science. Springer, 2008, pp. 373–382 (cit. on p. 39).

[6] Sahil Bhatia and Rishabh Singh. “Automated Correction for Syntax Errors in Programming Assign-

ments using Recurrent Neural Networks”. In: CoRR (2016) (cit. on p. 42).

[7] Simón Gutiérrez Brida, Germán Regis, Guolong Zheng, Hamid Bagheri, ThanhVu Nguyen, Nazareno

Aguirre, and Marcelo F. Frias. “BeAFix: An Automated Repair Tool for Faulty Alloy Models”. In: 36th

IEEE/ACM International Conference on Automated Software Engineering. IEEE, 2021, pp. 1213–

1217 (cit. on p. 36).

[8] Simón Gutiérrez Brida, Germán Regis, Guolong Zheng, Hamid Bagheri, ThanhVu Nguyen, Nazareno

Aguirre, and Marcelo F. Frias. “Bounded Exhaustive Search of Alloy Specification Repairs”. In: 43rd

77



BIBLIOGRAPHY

IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30

May 2021. IEEE, 2021, pp. 1135–1147 (cit. on pp. 36, 75).

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-

Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. “Language Models are Few-Shot Learners”. In: Advances in Neural Information Processing

Systems 33. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and

Hsuan-Tien Lin. 2020 (cit. on p. 43).

[10] Jorge Cerqueira, Alcino Cunha, and Nuno Macedo. “Timely Specification Repair for Alloy 6”.

In: Software Engineering and Formal Methods - 20th International Conference. Ed. by Bernd-

Holger Schlingloff and Ming Chai. Vol. 13550. Lecture Notes in Computer Science. Springer, 2022,

pp. 288–303 (cit. on pp. 2, 3, 36, 38, 51, 75).

[11] Rui Couto, José Creissac Campos, Nuno Macedo, and Alcino Cunha. “Improving the Visualization

of Alloy Instances”. In: 4th Workshop on Formal Integrated Development Environment. Ed. by Paolo

Masci, Rosemary Monahan, and Virgile Prevosto. Vol. 284. EPTCS. 2018, pp. 37–52 (cit. on p. 17).

[12] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen. “Ask-Elle: an Adapt-

able Programming Tutor for Haskell Giving Automated Feedback”. In: Int. J. Artif. Intell. Educ. 27.1

(2017), pp. 65–100 (cit. on p. 38).

[13] Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. “Using strategies for assessment of program-

ming exercises”. In: 41st ACM technical symposium on Computer science education. Ed. by Gary

Lewandowski, Steven A. Wolfman, Thomas J. Cortina, and Ellen Lowenfeld Walker. ACM, 2010,

pp. 441–445 (cit. on p. 38).

[14] Rahul Gupta, Aditya Kanade, and Shirish K. Shevade. “Deep Reinforcement Learning for Program-

ming Language Correction”. In: CoRR (2018) (cit. on p. 42).

[15] Andrew Head, Elena L. Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo, Loris D’Antoni,

and Björn Hartmann. “Writing Reusable Code Feedback at Scale with Mixed-Initiative Program

Synthesis”. In: 4th ACM Conference on Learning @ Scale. Ed. by Claudia Urrea, Justin Reich, and

Candace Thille. ACM, 2017, pp. 89–98 (cit. on p. 38).

[16] Mark D. Hill and Michael R. Marty. “Retrospective on Amdahl’s Law in the Multicore Era”. In:

Computer 50.6 (2017), pp. 12–14 (cit. on p. 72).

[17] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press, 2012 (cit. on

pp. 1, 2, 5).

78



BIBLIOGRAPHY

[32] Finn V. Jensen and Thomas D. Nielsen. “Bayesian Networks and Decision Graphs”. In: Knowl. Eng.

Rev. 23.4 (2008), p. 413 (cit. on p. 48).

[18] W. Lewis Johnson and Elliot Soloway. “PROUST: Knowledge-Based Program Understanding”. In:

IEEE Trans. Software Eng. 11.3 (1985), pp. 267–275 (cit. on p. 36).

[19] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. “Semi-supervised ver-

ified feedback generation”. In: 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. Ed. by Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su. ACM,

2016, pp. 739–750 (cit. on p. 38).

[20] Chao Liu, Ryen W. White, and Susan T. Dumais. “Understanding web browsing behaviors through

Weibull analysis of dwell time”. In: 33rd International ACM SIGIR Conference on Research and

Development in Information Retrieval. Ed. by Fabio Crestani, Stéphane Marchand-Maillet, Hsin-Hsi

Chen, Efthimis N. Efthimiadis, and Jacques Savoy. ACM, 2010, pp. 379–386 (cit. on p. 70).

[21] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg. “Lightweight

specification and analysis of dynamic systems with rich configurations”. In: 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. Ed. by Thomas Zimmermann,

Jane Cleland-Huang, and Zhendong Su. ACM, 2016, pp. 373–383 (cit. on p. 17).

[22] Nuno Macedo, Alcino Cunha, and Ana C. R. Paiva. Alloy4Fun Dataset for 2022/23. Version EM

2022/23. Zenodo, 2023-07 (cit. on pp. 2, 3, 32, 68, 75).

[23] Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva, Ana C. R. Paiva, Miguel

Sozinho Ramalho, and Daniel Castro Silva. “Experiences on teaching Alloy with an automated

assessment platform”. In: Sci. Comput. Program. 211 (2021), p. 102690 (cit. on pp. 2, 25).

[24] Mehak Maniktala, Christa Cody, Amy Isvik, Nicholas Lytle, Min Chi, and Tiffany Barnes. “Extending

the Hint Factory for the assistance dilemma: A novel, data-driven HelpNeed Predictor for proactive

problem-solving help”. In: CoRR (2020) (cit. on p. 40).

[25] Michael L. Mauldin. “Semantic Rule Based Text Generation”. In: 10th International Conference on

Computational Linguistics and 22nd Annual Meeting of the Association for Computational Linguis-

tics. Ed. by Yorick Wilks. ACL, 1984, pp. 376–380 (cit. on p. 43).

[26] Jessica McBroom, Irena Koprinska, and Kalina Yacef. “A Survey of Automated Programming Hint

Generation: The HINTS Framework”. In: ACM Comput. Surv. 54.8 (2022), 172:1–172:27 (cit. on

pp. 3, 34).

[27] Martin Monperrus. “Automatic Software Repair: A Bibliography”. In: ACM Comput. Surv. 51.1

(2018), 17:1–17:24 (cit. on pp. 2, 34).

[28] H. Hernan Moraldo. “An Approach for Text Steganography Based on Markov Chains”. In: CoRR

(2014) (cit. on p. 43).

79



BIBLIOGRAPHY

[29] Weili Nie, Nina Narodytska, and Ankit Patel. “RelGAN: Relational Generative Adversarial Networks

for Text Generation”. In: 7th International Conference on Learning Representations. OpenReview.net,

2019 (cit. on p. 43).

[30] Andy Oram and Greg Wilson, eds. Making Software - What Really Works, and Why We Believe It.

Theory in practice. O’Reilly, 2011 (cit. on p. 1).

[31] Benjamin Paaßen, Barbara Hammer, Thomas William Price, Tiffany Barnes, Sebastian Gross, and

Niels Pinkwart. “The Continuous Hint Factory - Providing Hints in Vast and Sparsely Populated Edit

Distance Spaces”. In: CoRR (2017) (cit. on p. 40).

[33] Mateusz Pawlik and Nikolaus Augsten. “Efficient Computation of the Tree Edit Distance”. In: ACM

Trans. Database Syst. 40.1 (2015), 3:1–3:40 (cit. on pp. 60, 62).

[34] Mateusz Pawlik and Nikolaus Augsten. “Tree edit distance: Robust and memory-efficient”. In: Inf.

Syst. 56 (2016), pp. 157–173 (cit. on pp. 53, 60, 62).

[35] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas J. Guibas. “Autonomously Generating

Hints by Inferring Problem Solving Policies”. In: 2nd Second ACM Conference on Learning @ Scale.

Ed. by Gregor Kiczales, Daniel M. Russell, and Beverly P. Woolf. ACM, 2015, pp. 195–204 (cit. on

p. 39).

[36] Thomas W. Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veronica Cateté, and

Tiffany Barnes. “A Comparison of the Quality of Data-Driven Programming Hint Generation Algo-

rithms”. In: Int. J. Artif. Intell. Educ. 29.3 (2019), pp. 368–395 (cit. on p. 2).

[37] Thomas W. Price, Rui Zhi, and Tiffany Barnes. “Hint Generation Under Uncertainty: The Effect of

Hint Quality on Help-Seeking Behavior”. In: Artificial Intelligence in Education - 18th International

Conference. Ed. by Elisabeth André, Ryan S. Baker, Xiangen Hu, Ma. Mercedes T. Rodrigo, and

Benedict du Boulay. Vol. 10331. Lecture Notes in Computer Science. Springer, 2017, pp. 311–322

(cit. on p. 39).

[38] Kelly Rivers and Kenneth R. Koedinger. “Data-Driven Hint Generation in Vast Solution Spaces: a

Self-Improving Python Programming Tutor”. In: Int. J. Artif. Intell. Educ. 27.1 (2017), pp. 37–64

(cit. on pp. 2, 40).

[39] Higor Amario de Souza, Marcos Lordello Chaim, and Fabio Kon. “Spectrum-based Software Fault

Localization: A Survey of Techniques, Advances, and Challenges”. In: CoRR (2016) (cit. on p. 36).

[40] John Stamper, Tiffany Barnes, Lorrie Lehmann, and Marvin Croy. “The hint factory: Automatic

generation of contextualized help for existing computer aided instruction”. In: 9th International

Conference on Intelligent Tutoring Systems Young Researchers Track. 2008, pp. 71–78 (cit. on

pp. 39, 44).

80



BIBLIOGRAPHY

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. “Attention is All you Need”. In: Advances in Neural Information Pro-

cessing Systems 30. Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,

Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett. 2017, pp. 5998–6008 (cit. on p. 43).

[42] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. “Automated model repair for Alloy”. In:

33rd ACM/IEEE International Conference on Automated Software Engineering. Ed. by Marianne

Huchard, Christian Kästner, and Gordon Fraser. ACM, 2018, pp. 577–588 (cit. on p. 36).

[43] Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. “Fault Localization for Declar-

ative Models in Alloy”. In: 31st IEEE International Symposium on Software Reliability Engineering.

Ed. by Marco Vieira, Henrique Madeira, Nuno Antunes, and Zheng Zheng. IEEE, 2020, pp. 391–

402 (cit. on p. 37).

[44] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. “Automatic program

repair with evolutionary computation”. In: Commun. ACM 53.5 (2010), pp. 109–116 (cit. on p. 2).

[45] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. “A Survey on Software Fault

Localization”. In: IEEE Trans. Software Eng. 42.8 (2016), pp. 707–740 (cit. on p. 36).

[46] W. Eric Wong and J. Jenny Li. “An Integrated Solution for Testing and Analyzing Java Applications

in an Industrial Setting”. In: 12th Asia-Pacific Software Engineering Conference. IEEE Computer

Society, 2005, pp. 576–583 (cit. on p. 36).

[47] Franz Wotawa. “Fault Localization Based on Dynamic Slicing and Hitting-Set Computation”. In:

10th International Conference on Quality Software. Ed. by Ji Wang, W. K. Chan, and Fei-Ching Kuo.

IEEE Computer Society, 2010, pp. 161–170 (cit. on p. 36).

[48] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. “A brief survey of program

slicing”. In: ACM SIGSOFT Softw. Eng. Notes 30.2 (2005), pp. 1–36 (cit. on p. 36).

[49] Michihiro Yasunaga and Percy Liang. “Break-It-Fix-It: Unsupervised Learning for Program Repair”.

In: 38th International Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang.

Vol. 139. Machine Learning Research. PMLR, 2021, pp. 11941–11952 (cit. on p. 42).

[50] Guolong Zheng, ThanhVu Nguyen, Simón Gutiérrez Brida, Germán Regis, Marcelo F. Frias, Nazareno

Aguirre, and Hamid Bagheri. “FLACK: Counterexample-Guided Fault Localization for Alloy Models”.

In: 43rd IEEE/ACM International Conference on Software Engineering. IEEE, 2021, pp. 637–648

(cit. on pp. 37, 75).

[51] Wanrong Zhu, Zhiting Hu, and Eric P. Xing. “Text Infilling”. In: CoRR (2019) (cit. on p. 43).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.5) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] (Cit. on p. 81).

81

https://github.com/joaomlourenco/novathesis






U
M
in
ho
|2

02
3

H
en

riq
ue

N
et
o

M
in
in
g
hi
nt
s
fo
r
fix

in
g
fo
rm

al
sp
ec
ifi
ca

tio
ns


	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Statement
	Quote
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Contextualization
	1.2 Problem
	1.3 Objective
	1.4 Alloy Specification Assistant
	1.5 Document Structure

	2 Alloy
	2.1 Static Modeling
	2.1.1 A Basic Model
	2.1.2 Instance Representation
	2.1.3 Model Constraints
	2.1.4 Subtyping
	2.1.5 Other Declarations

	2.2 Structural Model Analysis
	2.2.1 Analysis Commands
	2.2.2 Visualization Types
	2.2.3 Themes
	2.2.4 Evaluator
	2.2.5 Model Validation

	2.3 Dynamic Modeling
	2.3.1 Behavior Specification
	2.3.2 Temporal Logic
	2.3.3 Liveness Constraints

	2.4 Dynamic Model Analysis
	2.4.1 Model Validation
	2.4.2 Model Verification


	3 Alloy4Fun
	3.1 Interface
	3.2 Usage
	3.2.1 Exercises

	3.3 Architecture

	4 State of the Art
	4.1 The HINTS Framework
	4.2 Fault Localization Hint Generation
	4.3 Synthesis-Based Hint Generation
	4.4 Curated Hint Generation
	4.5 Data-Driven Hint Generation
	4.5.1 Hint Factory
	4.5.2 Intelligent Teaching Assistant for Programming
	4.5.3 Hint Generation with Deep Learning

	4.6 Text Generation in Hint Systems
	4.6.1 Heuristic Techniques
	4.6.2 Machine Learning Techniques


	5 Alloy Specification Assistant
	5.1 Core techniques
	5.1.1 Formula Comparison
	5.1.2 Submission Graph
	5.1.3 Hint Model
	5.1.4 Policy Algorithm
	5.1.5 Policy Execution
	5.1.6 Hint Generation

	5.2 Alloy4Fun Implementation
	5.2.1 Framework Migration
	5.2.2 Data Model Management
	5.2.3 Alloy Model Processing
	5.2.4 Hint Model Computation
	5.2.5 Updated Database Schema


	6 Evaluation
	6.1 Data-set Partitioning
	6.2 Benchmarking

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Back Matter
	Back Cover


		2024-01-04T18:11:46+0000




