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Abstract

Software verification using formal methods is a growing area. It is vital for code deemed critical
by their owners, as it provides a rigorous indication that they follow the provided specification.
These two aspects of code have different purposes, the specification is only used to explain what
the implementation, which is the real program to be deployed, should do.

Programmers make mistakes, and that is why it is so important to be able to give feedback and
help them find those. Plenty of research deals with code repair, focusing on fixing implementations
assuming the specifications are correct, but what if it is the opposite? We need more research on
providing alternative specifications that fix details missing during contract definition, considering
that the implementation is proper.

In this thesis, we will provide a tool that receives Dafny files that fail to verify and suggests
corrections to their specifications so that they can be compiled, exploring proposed specification
repair techniques. This program can automatically offer changes to the contracts, dialogizing with
Dafny, and be considered adequate by programmers. We also expect it to be able to fix relevant
examples and use those to verify if the approach is effective and efficient.

A program like this can be valuable for programmers working on Dafny and make software
verification easier to learn and implement, which could result in more significant adoption of
those techniques in industry. When paired with implementation repair, these techniques make the
computer aid the programmers in errors that may occur on every part of the code.

We have developed a prototype tool for analysing and repairing Dafny programs. And evalu-
ated it, taking its limitations into consideration. Our evaluation demonstrates reasonable runtimes
and effectiveness, represented by a good coverage of programs that can be fixed.

Keywords: Contract Repair, Contract Programming, Software Repair, Dafny, Formal Meth-
ods
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“If debugging is the process of removing software bugs,
then programming must be the process of putting them in.”

Edsger W. Dijkstra
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Chapter 1

Introduction

1.1 Context

It is no secret that bugs can cause highly negative consequences [96]. They happen when the

program implementation does not follow our expectations, leading to incorrect behaviour. That is

one of the essential practical motivations for creating tools that help their prevention.

Contract programming, also known as design by contract or DbC, is a way of programming

based on the idea of providing formal specifications (also known as contracts because they cor-

respond to obligations and guarantees) to software components. Created with reliability in mind

[63], it aids programmers in trying to achieve correct and robust software.

Contracts provide ways to tell what obligations and guarantees are provided by a function cal

or method procedure — usually stateful. The relevant languages provide verifiers responsible for

checking if the contracts are followed by the implementation, forcing the programmer to match

them. It is possible to trust one of the two parts, assuming we trust the other. For example, if

a person trusts the specifications and the verifier approves their code, they know they can trust

the implementation. However, getting the specification right can be particularly tricky [52], even

though it is often way more complicated to get the implementation right, as an abstract specifica-

tion is usually much more succinct and readable.

Dafny is an imperative language based on contract programming, including elements desirable

for a programmer coming from that background, like mutable state, references, and objects, which

makes it possible to get verification without losing performance. It is also very accessible [56]

because it combines key features of formal methods in a programming language, which makes it

a vital tool that any programmer or student interested in the area can use.

1.2 Problem

Most studies focus on fixing implementations, assuming the specification is correct. We try to

improve the research in the other direction by assuming the specification needs fixes and the im-

plementation does not.

1



Introduction 2

Even though specifications are generally shorter and more straightforward, they can be misde-

scribed. Also, the implementation and specification have different formats and goals, thus, needing

different techniques for automatic repair. These inaccurate descriptions can sometimes happen, so

researching techniques to fix contracts could be valuable. A good example is when programmers

have a reference implementation of an algorithm and are still analysing their contract options. So,

when the programmers trust the implementation to be correct, suggestions to change the contracts

based on it can be useful.

There is a minimal amount of research in the topic of repairing contracts. Just one tool has

been developed for contract repair assuming implementations to be correct [75]. Furthermore, as

far as we are aware, no tool has been proposed for any kind of automatic software repair for Dafny.

1.3 Goals

This project aims to create a tool that helps programmers fix faulty Dafny programs when the

specifications are wrong. The program should automatically provide relevant contract fixes that

match the implementation, making the program verifiable, and it should be able to work with

Dafny source code as input.

A straightforward example can be done with a method for subtraction on natural numbers:

1 method sub(a: nat, b: nat) returns (d: nat) {

2 d := a - b;

3 }

This method looks very simple, but it cannot be verified by Dafny. The result can fall outside

the nat range because it can be a negative number. There are two different ways of fixing this:

1. Changing the specification to require a to be greater than or equal to b:

1 method sub(a: nat, b: nat) returns (d: nat)

2 requires a >= b

3 {

4 d := a - b;

5 }

6

2. Changing the implementation, so the return type of sub is int:

1 method sub(a: nat, b: nat) returns (d: int) {

2 d := a - b;

3 }

4

Both solutions are valid and depend on the programmer’s preference and the method’s usage.

Solutions to fix this automatically can help people to write code quicker and without errors.
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We can also note what parts of the program belong to the specification, in Dafny, they always

follow one keyword, so we can easily split the code in two. But, the specification includes infor-

mation necessary only to the verification process, being completely ignored by the compilation

phase, which uses all information from the implementation part. Types can look like they belong

to the specification, specially when the language only uses type annotations, like Python. But they

influence the memory used by the variables and influence the source code, thus, they are part of

the implementation. Even if the language has dynamic typing, it still has to define the low-level

representation of the data.

1.4 Plan

For that purpose, we studied the state of the art, selected relevant approaches, adapted one to

our context, and implemented a tool. With a prototype done, we evaluated it, verifying if it has

reasonable performance, provides the desired results, and how relevant its repairs are.

Although we have yet to achieve the goal of making our proposed tool part of a plug-in, the

tool is ready to be integrated into one. Also, the current program depends on user-provided tests.

The proposed program can significantly improve coverage of fix suggestions, by handling the

specification fixes, it can be paired with a tool that suggests fixes to the implementation, increasing

the domain of possible fix suggestions. The result is more programmer support for the construction

of correct software.

The work presented here was also accepted for publication in the 5th International Workshop

on Automated and Verifiable Software System Development [1].

1.5 Document Structure

Chapter 2 explains the current state-of-the-art of the topic and how the proposed approaches can

or cannot be used when creating this program. Chapter 3 discusses the language used and its

platform, including analysing its essential parts for implementing a plug-in. Chapters 4 and 5

describe the design of our solution and how it was implemented. Chapter 6 analyses and discusses

the results of our experimental evaluation. Finally, Chapter 7 concludes the document and gives

some final remarks about the possibilities of future work.



Chapter 2

Literature Review

In this chapter, we start by summarizing and explaining some important areas and concepts that are

used in our work, and give an overview of their current state. In Section 2.1, we introduce contract

programming, the basis of contract generation, Dafny, and one of the approaches for software

verification. It goes on to explain the difference between static and dynamic analysis (Section

2.2), a main concept for all the subsequent sections, which give an overview of the current state-

of-art of: Software repair (Section 2.3), focused on fixing implementations, which provide the first

studies on repairing code, which is the basis of the contract repair research as well; Test generation

(Section 2.4), a fundamental topic when dealing with some kinds of dynamic analysis of programs;

Contract repair (Subsection 2.5.1), our main area of interest; Contract inference (Subsection 2.5.2),

similar area capable of providing interesting techniques that could be applied to contract repair;

and invariant detection (Section 2.6), an important area when dealing with some approaches to fix

generation, including the one we follow. Where invariants are assertions that can happen at any

program point, but contracts specify the interface of functions or methods.

For each one of those areas we explain their main concepts, give a few examples of some of

their tools or algorithms, being more descriptive for the ones that are actually used in our work,

and explain some challenges and properties of different approaches.

2.1 Contract Programming

Contract programming [65] [63] is a way of programming that prescribes the use of precise and

formal specifications of the expected program behaviour, taking place as assertions, also known as

contracts, which indicate obligations and guarantees that are provided by the software components.

Centered around reliability, contract programming aids programmers in writing correct and robust

software.

One of the initial concepts that led to contract programming was the notion of defensive pro-

gramming, based on the realization that programs will have bugs, so we can try to develop proac-

tive actions to try to fix them as soon as possible and with less effort [87].

4



2.1 Contract Programming 5

With programmers focusing on software reliability, the idea of verifying code started to be-

come increasingly more appealing. Developing techniques to verify if code was “correct” would

make software development more efficient and reliable [70]. But they also imply effort in the cre-

ation of formal specifications of the program behaviour, so one could verify the concrete behaviour

follows these specifications. This is a point of discussion between proponents and objectors of

software verification, as it is hard to measure the trade-off from projects [93], which are combined

with different preferences of programmers. Another important point is that checking whether an

implementation satisfies its specification is a problem that has no fully general solution, so there

will always be cases where a specific tool cannot verify a program, even if it is correct and follows

its contract [88].

So, contract programming was born, and it was specially relevant for object-oriented program-

ming [63], as: it incentivizes the reuse of code, which means an unexpected behaviour in a small

function can have huge consequences more frequently, even though this could happen nonetheless;

one of the main selling points of object orientation is the perceived improvement, by some people,

of software quality, and reliability is a good property to be included in those quality parameters;

its framework is a specially good environment for the discussion of reliability, coming from the

theory of abstract data types, also relevant to functional programming, which can be of special

interest when dealing with this type of property [40].

The formal specification language and the programming language can be distinct, and the

verifier and compiler can be different programs that do not interact with each other. In spite of

that, some languages, like Eiffel [64] and Dafny [55], provide a way to specify the code using the

same language as their implementation, or a functional subset of it, and verify the code during

compilation. Thus, forcing the programmer to make code that follows the defined contracts.

Formal verification has also been tested in industry, and it is used by some big companies like

Amazon Web Services [72], using, for example, TLA+ [71] and Dafny [81] to write contracts and

model-checking techniques for verification; and Facebook [14], which uses tools like the static

analyser INFER for software verification, and has experienced the integration of fast iteration-

based development and formal methods. This industry adoption is a good sign for the practicality

of formal methods, to the point of them spending more resources to improve it and create useful

tools.

It must be noted that formal methods come with effort and learning curve that is not justifiable

for every project, but its reliability and maintenance cost reduction are worth for other cases,

including when the stakeholders consider failures to be critical (having possibility of human injury,

equipment failure, reputation loss, major financial consequences, among others). The bigger effort

in formal methods is often discussed, but most projects do not provide data about timescales and

costs [93].

A challenge of the area is that most programmers are not used to writing those specifications,

so they need to be careful to design them to capture the important aspects of the system [72].

The specification is arguably harder to write in some cases, as the implementation can be very

succinct, making stakeholders ponder about the effort and results of such an approach to software
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development.

2.2 Dynamic and Static Analysis

In the following sections, we discuss techniques that include some sort of testing or analysis of a

program’s behaviour. These are mainly divided in two types: dynamic and static, with some tools

using both techniques in different aspects or steps.

Their names give a good intuition about how they work. Dynamic analysis is based on the

verification of program results to understand its behaviour [6], which means that it tries to get

information about the program by running it. Static analysis, however, tries to analyse the program

just from the source-code itself, deriving information from it without running the program itself

[24].

We can find that both techniques are somewhat complementary. Each one has their pros and

cons, as expected, and this synergy is used by many researchers and developers by employing

them together [25]. We discuss some of their differences now.

As dynamic analysis tries to generalize the behaviour of a program by running it a limited

amount of times, this may not be fully representative of the code behaviour as it is based on

particular executions. Static techniques, on the other hand, analyse the code in a way that does not

need to generalize the behaviour from particular observations, as it tries to encompass all possible

executions of the code.

Also, by requiring the program to be executed with real arguments, dynamic analysis depends

on the generation of program arguments, or the usage of fixed inputs. While the opposite is true

for static analysis, because it does not rely on concrete values for parameters nor code execution.

This independence may be desirable, as it avoids some overhead of code execution, which may

be substantial in some cases. But, in other situations, one may want to take into consideration the

frequency of different arguments in practice, which is only available by using dynamic techniques

[66], as this is useful if they want to give more weight to common values. This is not useful in our

specific problem, as we try to validate code, and the errors may precisely be caused by odd and

rare arguments.

On the other hand, the current trends of development and deployment of code, which include

using dynamically linked libraries or even Java bytecode, make static analysis less powerful, be-

cause it depends on large parts of the program being available for it to analyse [66]. Also, because

this type of technique analyses the entirety of a program, it may generate analyses that are too

complex to be easily understandable or appliable.

It is also important to note that static analysis is undecidable [53], so even with infinite re-

sources we would still have to make compromises and approximations. This means that this kind

of analysis cannot always take all the program information into consideration, but it tries to analyse

to the greatest degree achievable.
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2.3 Software Repair

Programming errors happen, and programmers spend a lot of time trying to find out what is their

cause while debugging [92]. That is why different techniques were developed to deal with bugs,

including automatic software repair, for which a lot of research has been made since its initial

proposal. Indeed, a large body of knowledge addressing the automatic repair of programs exists

(as opposed to the repair of their contracts or formal specifications) [37][34].

The need to describe accurately what bugs are and their cause, which is so fundamental for

this area of study, led to some concept definitions that are commonly used in the field [68]:

• A failure is an observance of unexpected behaviour;

• An error is an incorrect program state that is generated by the program, and generates a

failure following the continuation of the code execution if it becomes observable to the

user;

• A fault is an incorrectly written code that leads to an error.

One of the approaches to automatic software repair is focused on fixing programs with faults

by locating the problem in the code and changing it. This is desirable because it helps programmers

to write code with fewer faults, relieving them of the effort and time that would otherwise be spent

looking for their root. The usage of the term software repair for techniques that eliminate faults

became the standard.

There are other approaches that do not eliminate the fault, but try to recover from them at

runtime. One of such techniques is runtime repair [68], which is more concerned with runtime

errors and how to make software survive them [79]. They use different techniques to allow the

program to heal itself or to continue without being killed by an internal error and minimizing their

consequences.

We can realize a program is faulty when the implementation of the code creates a program

that deviates from the expected behaviour. So, automatic software repair depends implicitly on

knowing the intended behaviour of a program, so it can be corrected in case the program is detected

as faulty. This is achieved by the use of an oracle [68], which is consulted to verify what is correct

behaviour and if an action was expected.

Trying to understand whether a program conforms to the expected behaviour and the root

cause for a failure is a complex task. There are two main analysis modes for software, that use

different oracle types:

• Dynamic techniques depend on tests, which are usually used as oracles; by running the

program with concrete arguments and verifying if the tests pass or fail, we determine if the

program is correct. There are other alternatives, like the one used in property-based testing

[31] where properties are used as the oracle, while still depending on tests;



Literature Review 8

• Static techniques try to understand if the code is correct or where the error is by analysing

the source-code itself. Even though dynamic tools are more common, some tools use the

formal specifications as oracles, falling into the static category. Examples include AutoFix

[76], which fixes Eiffel code, and uses their own contracts as oracle; the work developed by

Gophinat et al. [36], which uses the Alloy tool to describe the behaviour of Java programs;

and HINTS [61], focused on providing hints to students on exercises, by using a correct

solution as oracle.

Test suites are common practice in programming. They can easily show failures, but, as seen

before, alone, tests demand a lot from the programmer when something breaks. The steps to

manually fix code after a failure are:

1. Find out what error causes the failure, which can also be achieved with the help of a debug-

ger;

2. Understand which is the fault that leads to the error and failure;

3. Analyse the test and related code to ponder about possible fixes;

4. Check if a fix is valid by changing the faulty code and verifying if the program passes the

tests;

5. Choose a fix to apply to the source-code.

Even though in this project we are focused on repair of software with contracts, research

has also been done for automatic implementation repair tools for code with no annotations. For

example, Chen et al. [17] presents a tool that can fix some errors by analysing the states of the

program at different points and using dynamic and static techniques to locate and fix them.

Most methods of automatic software repair fall under the following categories [37]:

• Heuristic: tools of this type try to localize the fault, generate possible fixes for it [47], and

validate them to find possible solutions;

• Constraint-based: this method starts by using symbolic execution, or other approaches, to

construct a repair constraint, an expression that should be satisfied by the code. It then gen-

erates solutions for that constraint, by using techniques such as contract solving. Examples

include Semfix [73] and Angelix [62];

• Learning-based: this technique makes use of machine learning algorithms, which can be

used in different ways, like ranking candidate fixes by using a model trained on a corpus

of correct code [60], inferring fixes with a model trained using successful patches from the

source-code history [59] [11], and using models to predict the fixed code from the faulty

one [39];
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Moreover, another similar study area is the inference of contracts (see Section 2.5.2). This

approach can not be used alone to fix programs without contracts by first inferring them and

then applying techniques for contract programs, because the contracts will be derived from the

implementation, creating a loop that makes the oracle (the contracts) not detect the code as faulty.

2.4 Tests Generation

We can create tests to verify the behaviour of the program, which can be done dynamically, by

running the program and analysing its results, or statically, by analysing the code.

Test suits are sets of test cases, and a case contains pre-conditions, inputs and expected results

[32]. They are partial in the sense that they cannot realistically test every possible input in most

cases, which means important tests can always be unconsidered and that we cannot fully test a

program dynamically [46]. This is something to take into consideration, because tests cannot

provide all the information we may want. Although, static techniques like symbolic execution

may provide a way to fully test a program [5].

Their generation is one of the most demanding aspects of software, and one of the most impor-

tant, as their impact ranges over the entire program effectiveness and efficiency [3]. So, automated

generation of tests is appealing, because it uses the computer’s help to remove some of this burden

from programmers.

Barr et al. [8] describe many crucial characteristics of tests generation in their survey. Also

noting that the generation of tests is a complex problem that needs to be studied more when

compared to other aspects of testing. Types of test oracles include:

• Implicit: implies using previous knowledge to find problematic sections of code, relying on

no knowledge of the program behaviour, instead, focusing on behaviours that are, in almost

all cases, considered incorrect, like buffer overflows or segmentation faults. Some tools of

this type [13] [85] use program crashes as a way to classify tests;

• Derived: uses information derived from different sources like documentation, and system

executions, among others;

• Specified: uses formal specification (like contracts) to provide tests. This type of oracle can

take advantage of DbC languages like Dafny, which, by providing a source of knowledge

to determine whether a test passed or not, using its components’ post-conditions, can help

make tests less dependent on human interaction. This happens because the tests do not need

further indications about their expected outputs, instead, using the contracts to classify them

as passing or failing, resulting in tests relying only on the initial state for a function call.

Different tools can also verify the path of the execution [35] to try to automatically generate

tests that make all, or most, possible paths be executed. This improves the coverage of the test

cases, which can improve their usefulness. This can also be used to statically generate tests, and

many tools that do this are available, e.g. CUTE and jCUTE [84] developed for C and Java,
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respectively, use concrete and symbolic execution to avoid redundancy in test cases, a technique

called concolic testing; Klee [12] uses symbolic execution focusing on test coverage; S2E [18]

uses complex analysis techniques achieving the investigation of multiple execution paths at once

and being able to analyse binaries, which means it works on proprietary software.

Many other, more specific, techniques to generate or improve tests were presented as well.

Regression testing can be used to select the tests from a suite to get more effective, and time and

space efficient ones to re-test a new version of a software [78].

An example of such a tool that generates tests is AutoTest [19]. To generate input data for

tests, the tool creates random objects of the needed classes, it does this by first calling a random

constructor, followed by a call to a random routine with side effects, with the goal of adding some

variation to the pool of objects of that class. This strategy was design as a temporary solution, but,

according to Ilinca Ciupa and Andreas Leitner, it provided “surprisingly good results” [19], not

necessarily expected because of the simplistic nature of the strategy, being designed as an ad-hoc

solution.

Dafny also includes a module that generates tests, named DafnyTestGeneration, which will

be explained in Section 3.4.2. This module is specially focused on finding counter-examples to

components that fail to verify.

2.5 Contract Generation

Different areas dealing with contract analysis have been studied, some of them deal with gener-

ation of contracts, for example, by repairing faulty ones or inferring them from the code. This

section discusses these two approaches.

2.5.1 Contract Repair

The research on contract repair is valuable, for example, in scenarios where the verification fails,

but we can assume the implementation is correct, so, suggestions to repair the contracts based on

the implementation would be helpful. Examples of these use cases include: programmers having

a reference implementation for an algorithm and still analysing its contract options; precisely

documenting the guarantees of the environment where the software will be deployed by suggesting

appropriate specifications; helping in the educational context, where it is common for students to

have an implemented program and be asked to provide a specification, being able to use some

help in the form of hints. This is specially relevant because students are known to struggle when

writing formal specifications [52].

By verifying their software, programmers can be sure that it follows the specification. But,

when a program fails to verify, it either means the verifier was not smart enough to prove the con-

tract is followed, or that there is a mismatch between specification and implementation, indicating

that at least one of them is not correct. Even though most software repair research assumes the im-

plementation has a problem, the specifications can be the problem and the false sense of security

can cause issues [57].
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The only tool already proposed for contract repair, SpeciFix, was made for Eiffel [75], but its

fix generation techniques can be applied to other languages. One of the main limitations of its

algorithm is that the generalization of particular executions depends a lot on the quality of the

generated tests. It suggests changes to specifications so that every contract is not violated by the

implementation, which is used only for the generation of tests, applying the following steps:

• Automatic generation of test cases using AutoTest [19] (some tests are used only for valida-

tion purposes to avoid overfitting);

• Use weakening and strengthening techniques to provide fixes for all the trace routines;

• Validate fixes by verifying if the fix passes all the tests or at least does not break a previously

passing test;

• Rank the fixes; the least restrictive ones are preferred.

Another work has focused on repairing formal specifications but without considering imple-

mentations as oracles, including for repairing OCL constraints given inconsistent information

bases [20] and for repairing faulty Alloy specifications using test cases [89] and reference specifi-

cations [10][95][16]. As far as we are aware, no work has focused on the repair of Dafny, either

program implementations or their contracts.

Because, as of now, only one tool has been developed for contract repair using implementa-

tions as oracle, more research in this area needs to be conducted, which may result in the devel-

oping of more techniques. Relevant applications from different problems may exist, e.g. proof

automation is very similar in some aspects to program repair [80], so, tools made for one purpose

may have applications in the other context.

2.5.2 Contract Inference

Instead of fixing contracts that already exist, we can also generate them ex nihilo. This may

be harder to do, but it can provide similar outcomes when compared to contract repair, namely,

helping programmers to get better contracts for their use cases [82].

Inferring contracts from code has practical consequences, as most software is created without

them. That is the reason for the development of tools like AutoInfer [90], which can infer contracts

from programs written in Eiffel. AutoInfer works roughly by doing the following:

• Automatically generates tests using AutoTest [19];

• Analyses the changes in variables, to create change profiles;

• Using machine learning techniques, it extracts correlations between variables;

• Collects all the generated contracts and returns them.
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Other techniques include the use of genetic algorithms to detect invariants, like the one de-

veloped for EvoSpex [67]. This tool uses mutation to generate pairs of expressions that may

indicate incorrect behaviour of the program (called invalid pairs), the values to be mutated are

valid behaviours of the program detected dynamically (called valid pairs). This approach has

some drawbacks, like the effectiveness of the generation of the invalid pairs, which the authors try

to mitigate using other strategies, like making the valid pairs as encompassing as possible.

However, there are still many challenges in the area. One of the most critical problems is

finding the sufficient and necessary pre-conditions to prove the post-conditions of a method [22].

This has a clear consequence of automatically generating pre-conditions given a function and its

post-condition, which saves valuable time from programmers working with contracts.

2.5.3 A Fundamental Problem

Another problem that we need to take into consideration is the The Assertion Inference Paradox,

described by Furia & Meyer [33], which can be summarized in the following points:

• The goal of validation is to verify the correctness of programs;

• We verify the correctness of programs by comparing their implementation to the specifica-

tions created by the programmers;

• We can infer a specification from the implementation;

• We can use those generated specifications to verify the system.

This creates a vicious cycle: we have a specification being checked for an implementation that

was responsible for the specification in the first place, which means the verification will succeed.

This problem may not be observable when inferring intermediate annotations necessary for auto-

mated verification, as there is a defined goal, to help the verifier prove the post-condition follows

from the pre-condition and the implementation.

We can then ask ourselves what was the point of having this specification in the first place. We

can justify our goal to repair specifications with the following assumptions:

• Sometimes programmers make mistakes on the specification, and the generation of fixes can

be used to remove those mistakes — this is specially useful for students. But this depends

on the user checking the fixes and analysing if any of them matches what the program is

supposed to do;

• Other times, errors happen at the program implementation, and specification fixes can be

used as a clue for more advanced programmers to realize they have an implementation prob-

lem. For example, a programmer could understand that the fix to the contract is explaining

to them what their implementation is doing, and finally realize what is wrong with it.

As it is possible to see, our work has a fundamental assumption that the generated contracts

are made to and will be analysed by programmers.
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2.6 Invariant Detection

One of the approaches to repair contracts, including the one used by SpeciFix [75], is to generate

expressions to weaken and strengthen contracts. Those are expressions that should be part of

the contract but are not. One way to search for them is by detecting invariants in entry and exit

points of functions, as they would provide information that could be contained in the pre- and

post-condition of the function, respectively. That is why we introduce invariant detection in this

section.

2.6.1 Definition

An invariant, in the context of a program, is a valid expression that always evaluates to true at a

particular program point. Loop invariants are one of the most used types of invariants, representing

recurring assertions that can be always observed during each beginning and end of loop iterations.

Examples of places where we can find those are assert statements and contract specifications [28].

This information is very useful for software verification, repair, and fault localization [2]. They

are very used when creating formal specifications [28], e.g. pre- and post-conditions are invariants

that need to be followed by the component they describe.

Most programs do not include this kind of information, and, instead of expecting programmers

to annotate their programs with invariants, different techniques of automatically detecting them

were developed [28]. Invariant detection tools and algorithms using static and dynamic techniques

have been proposed.

The accuracy of dynamic detection is dependent on the coverage and quality of the tests [8]

and it can be a somewhat computationally expensive process. This is also why combining dynamic

invariant detection with static verification of those detected expressions may be desirable [74], that

way we can really be sure the invariants are accurate.

Challenges of this area include, for example, the complexity of programs or structures (e.g.

detection of invariants for sequences) [51], which can make the invariants more complex as well,

causing them to be harder for tools to detect. The limited data used to detect them may be a

problem for dynamic detection if the user does not choose representative values for the tests.

An interesting problem is the inference of loop invariants, which are statements that evaluate

to true at each execution step of a specific loop, i.e. it needs to hold on entry and exit points

of every iteration of the loop. Their automatic generation is one of the biggest challenges for

full-automation of proofs [33] using the Floyd-Hoare approach.

The invariant needs to be a weakened form of the post-condition of the method the loop is

inserted on, and this observation leads to possible implementations to take advantage of that [33].

But even without taking this observation into account, many approaches were developed for this

specific problem.

Even though this is on a lower level part of the program when compared to our main goal (i.e.

loops, instead of methods and functions), it can give us important results. As a matter of fact, tools

like Daikon can provide invariants for any point in a program, including loops, as explained below.
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2.6.2 The Daikon System

A well-known example of an invariant detection program, Daikon [27], receives as input some-

thing similar to an execution trace and generates a set of invariants that are likely to be followed

using statistical analysis. It detects properties that can be observed in different points of the pro-

gram, following its execution.

Some front-ends are available for some languages like C, C#, Java, and Eiffel. They provide a

way to generate the input trace from the code, even though the arguments must still be manually

supplied by the user, the generation of the file is done automatically and passed to the Daikon

program. This is achieved by changing the source-code to log the values of function calls to a

file. To get traces for Dafny, users would have to generate the input by themselves, as no Daikon

front-end is available for this programming language.

Daikon has a list of basic invariants, which were deemed relevant by its authors, and it works

by testing them against the points provided [4]. This list of invariants can also be expanded by

programmers, by explaining to Daikon how to test for them. The following is a list of invariants

included in the tool [28], where x,y are variables and a,b,c are computed constants:

• The value of a variable x is uninitialized;

• Constant: x = c;

• Small set of values: x ∈ {a,b,c};

• Range: a ≤ x ≤ b, a ≤ x, x ≤ b;

• Non-zero : x ̸= 0;

• Modulus: x ≡ c (mod a), x ̸≡ c (mod a) (this is reported if all the other values but c are

verified);

• Any of the above invariants over x+ y;

• Any of the above invariants over x− y;

• Linear relationship: y = a× x+b, z = a× x+b× y+ c;

• Comparison: x = y, x < y, x ≤ y, x > y, x ≥ y, x ̸= y;

• Unary function: y = f (x), and f is absolute value, negation or bitwise complement;

• Binary function: z = f (x,y), and f is min, max, multiplication, and, or, gcd, a comparison,

exponentiation, rounding, division, modulus, left or right shift;

• Lexicographic order for sequences: a ≤ x ≤ b, a ≤ x, x ≤ b;

• Non-decreasing, non-increasing or equal values for a sequence;

• Invariants that evaluate to true for all elements of a sequence;
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• Linear element-wise relationship over two sequences;

• Comparison element-wise over two sequences;

• Subsequence: y is a subsequence of x;

• Reverse: y = rev(x);

• Membership: y ∈ x.

Daikon also creates more variables, e.g. size(s), min(s), max(s), s[i] for a sequence s and a

numeric value i. These can be used in the expressions above to create invariants like size(s)> 2.

These invariants are reported if they are deemed statistically relevant by the tool, which ob-

serves the number of samples and confidence level — each invariant has different implementa-

tions of its own way to calculate this level. Daikon also takes into consideration the redundancy,

so it provides more relevant invariants, by not reporting unnecessary ones.

One of the challenges of the tool is that it is not reasonable to test all the invariants for every

element of a sequence, which can be solved, for example, by sampling it [4].

The simplistic nature of Daikon’s algorithm means that it can only detect some types of in-

variants. Even though we can add more types of patterns, the tool is the same, and the number of

patterns is very influential on its detection of invariants, which may be undesirable when dealing

with completely generic code. Another point of configuration is that Daikon allows users to spec-

ify a Boolean variable that can be used to produce two different sets of invariants, according to

their concrete evaluation (see Section 5.3).

Daikon has been one of the most used tools for the detection of invariants, some projects that

used it include: ESC/Java [74], where it is used to generate annotations for Java code to try to

verify the code cannot generate runtime errors; Harder et al. [43] use it to help generate, augment

and minimize test suites, the invariants are used to generate the code’s behaviour abstraction; Toh

Ne Win and Michael Ernst [69] use it to help with theorem-proving algorithms, by using the

runtime properties of the program to guide the solvers.

One property of Daikon is that it detects too many invariants, including many that are not

useful. Some approaches were suggested for trying to make them more relevant [26]. Some of

these techniques can also improve the time costs of invariance detection, which is an important

point.

Several tools make use of, and improve on, Daikon. For example, iDiscovery [94] uses sym-

bolic execution to improve the quality of invariants computed by Daikon by following a feedback

loop of instrumenting the generated invariants into the code, symbolically executing the code to

generate new tests, and feeding the new tests into Daikon to refine the results. Daikon has been

used and extended in many other contexts which include the detection of logic vulnerabilities in

web applications [30], invariants for relational databases [21], distributed systems [38], robotic

systems [45], and Ethereum smart contracts [58].
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2.6.3 Inference with DySy

Csallner et al. [23] focus on making a tool that provides fewer invariants than Daikon, by providing

less redundant invariants and more relevant ones. Their approach is based on a mix of static and

dynamic analysis, and symbolic execution, which is based on executing the program without real

input, but symbols representing them. The proposed tool, DySy, prefers a static-analysis overhead

in favour of the ability to summarize invariants, unlike Daikon, which outputs many invariants,

including redundant and irrelevant ones.

The tool works by doing the symbolic execution of methods to detect invariants, also detecting

which of those are class invariants in an effort to simplify the method’s invariants. It depends on

heuristics to deal with the paths, as they are based on the execution of the code and because of that

they can result in very complex symbolic execution. The authors compare it to Daikon, stating that

the tool can provide most of the expected invariants, slightly behind Daikon, but their invariants

are more relevant, as they achieve similar results using fewer sub-expressions.

2.6.4 The Aligator Package

Mathematica is a software that can be used for many types of mathematical computations and data

manipulation [91]. Aligator is a package for it that detects polynomial loop invariants [49] using

static techniques.

This package can detect invariants for P-solvable loops, which is a property of most programs

using numbers [50]. They are a subset of all the possible imperative loops, which follow the defi-

nition: “the value of each program variable can be expressed as a linear combination of algebraic

exponential terms in the loop counter with polynomial coefficients in the loop counter, with the

property that the exponentials are polynomially related.” (Kovács, 2007) [48].

Aligator shows a different side of the invariant detection world when compared to Daikon, by

showing the usefulness of mathematical concepts with computational logic to program verification

[91].

2.6.5 Other Examples

Another example is DIDUCE [42], which dynamically extracts invariants from program execu-

tions, starting with the strictest invariants and gradually relaxing them when it detects a violation

from continually checking the program’s behaviour against them. Also, in the context of hardware

design, IODINE [41] uses dynamic analysis to infer likely invariants based on design simulations.



Chapter 3

The Dafny Language

Dafny [55] is a high-level imperative programming language created for program verification.

The language has found usage in several companies that want to generate reliable software. For

example, Amazon Web Services uses it to write and prove a variety of security-critical libraries, like

encryption ones1. At Consensys, the leading Ethereum software company, the language is used in

several components, including the verification of smart contracts [15] and consensus protocols.

This chapter will not explain the complete grammar of the language, but it will try to explain

its essential aspects for this project.

3.1 Implementations

Dafny is an imperative language with functional and object-oriented programming (OOP) features.

Even though Dafny has non-functional features, the specifications must be defined in the functional

subset of the language, thus not having side effects and not being able to include methods, instead

allowing functions to be used. These specifications do not clutter the compiled code because they

are used only at the verification stage but dropped when compiling the program.

The language has a static program verifier responsible for its correct-by-construction ap-

proach, i.e. the components and contracts are verified at compile time, and the program is only

compiled if the verifier validates it. Hence, the language guarantees that the executable will al-

ways follow the defined specifications. The output can be code for different languages, like C#,

JavaScript, Java, C++, Go, and Python.

3.1.1 Functions and Methods

Dafny makes a clear distinction between functional and imperative code, as syntactically, there

are two different types of procedures: functions, written functionally without side effects, and

methods, written imperatively with the possibility of altering external state and including loops.

Functions can be declared using the keyword function, their body should be a single pure

mathematical expression that defines its return value, and they can read external state, even though

1https://github.com/aws/aws-encryption-sdk-dafny
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they cannot modify it. Another keyword is predicate, which is a way to indicate a function

that outputs a Boolean value. We can see examples in Listing 3.1, where we can also see that

predicates behave as functions but use an alternative syntax where we do not need to indicate their

return type.

1 function sign(x : int) : int

2 {

3 if x > 0 then 1

4 else if x < 0 then -1

5 else 0

6 }

7

8 predicate greater(x : int, y : int)

9 {

10 x > y

11 }

Listing 3.1: Example of a a function and a predicate in Dafny

Methods, on the other hand, are more similar to what we would expect coming from imperative

languages like C, C++ and Java. They are declared with the method keyword, and their body is

composed of statements that can alter and read objects’ fields and run computations using mutable

data.

We can see a method in Listing 3.2, that shows the creation of a variable using the keyword

var, update it in the method, and causing external side effects by printing something at the end.

The example also includes a while loop, with a syntax similar to other imperative languages.

1 method biggestOddDivisor(x : int)

2 requires x > 0

3 {

4 var current := x;

5 while current % 2 == 0

6 invariant current > 0

7 decreases current

8 {

9 current := current / 2;

10 }

11 print "The input is a multiple of ", current, "\n";

12 }

Listing 3.2: Example of a method in Dafny

Methods, functions, and fields can be declared ghosts with the keyword ghost. This property

indicates they can only be used for specifications and will not appear in non-ghost implementations

or the compiled program. They provide a way to make separated declarations for contracts without

cluttering the compiled code or allowing them to be used in the executable. In Listing 3.3, we can

see an example of that and a verification error detected by Dafny when a non-ghost implementation

calls ghost components.
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1 ghost function successor(x : int) : int

2 {

3 x + 1

4 }

5

6 method printUntil(n : int)

7 {

8 var i := 0;

9 while i < n

10 {

11 print i;

12 i := successor(i); // Error: a call to a ghost function is allowed only in

specification contexts (consider declaring the function without the ’ghost’

keyword)

13 }

14 }

Listing 3.3: Example of a ghost function in Dafny, indicating the error detected by the language

3.1.2 Classes

Classes are a way to define types in Dafny, following the OOP paradigm. They are ways to

structure code in components defined by their own attributes and actions, including concepts like

inheritance, encapsulation, and composition, which are ubiquitous in OOP.

They can have fields, where each field f has a type T. Variable fields cannot be initialized dur-

ing its declaration, which uses the var keyword, and need to be explicitly typed, as in var f :

T, while constant fields can be initialized, being declared using the keyword const instead. They

can also be declared ghost to only be used in specifications and be omitted from the compiled

program.

Classes can also have functions and methods, with a special notation for constructors using

the keyword constructor and being called using the keyword new. They may be declared as

static, like constant fields, if they can be accessed by the class and not from its objects, also not

having access to the instance state. We can see all those properties in Listing 3.4, where an object

of class Finite represents an integer between 0 and 10.

1 class Finite {

2 static ghost const max := 10

3 var value : int

4

5 constructor(n : int)

6 requires 0 <= n <= max

7 {

8 value := n;

9 }

10

11 ghost predicate isMax()

12 reads this
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13 {

14 value == max

15 }

16

17 function successor() : int

18 reads this

19 {

20 value + 1

21 }

22

23 method increment()

24 requires !isMax()

25 modifies this

26 {

27 value := successor();

28 }

29

30 static method zero() returns (f : Finite)

31 {

32 f := new Finite(0);

33 }

34 }

Listing 3.4: Example of a class in Dafny

3.2 Specifications

Dafny proves the program’s correctness by proving that small parts of a program are correct,

even in contexts with data abstraction and external variables using dynamic frames [44]. One can

achieve this by adding specifications for methods (using the keywords modifies and reads).

Those specifications are written in pre-conditions (using the keyword requires) and post-

conditions (using the keyword ensures), among others. It uses, following Eiffel [56], the same

syntax for expressions at statements and specifications, but only pure functional expressions can

be used on the second one, with additional support for quantifiers, exemplified by Listing 3.5.

1 ensures a.Length == old(a.Length)

2 && forall i :: 0 <= i < a.Length

3 ==> a[i] == old(a[i])

Listing 3.5: Example of a post-condition with quantifiers in Dafny

This assertion tells us that the variable a before the function call, represented as old(a), has

the same length as the same variable at the end. Moreover, the quantifier allows us to test for all

elements of the array (we need to check all values i ∈ [0,a.Length)), that the objects inside

old(a) and a are the same. This post-condition is valid only when we have an array old(a)

at the start, and the same variable at the end contains an array a with the same elements as the

starting one. It does not tell us that old(a) and a are the same object (which means they are the
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same reference) or that the values inside the arrays do not mutate; it just tells us that both arrays

have the same elements.

The functional subset of operators for Dafny includes:

• Logical operators: equivalence, implication, reverse implication, conjunction, disjunction,

and negation;

• Equality and inequality;

• Comparison operators: less than, at most, more than, at least;

• Bitwise operators: OR, AND, XOR and complement;

• Left-shift and right-shift;

• Collection membership and non-membership;

• Collection operators: disjointness;

• Arithmetic operators: addition, subtraction, multiplication, division, modulus, and unary

minus.

Nevertheless, beyond operators, we can also use any function in specifications, including user-

defined ones, lambda expressions, literal expressions, and identifier expressions.

3.2.1 Example Programs

One can create an example by implementing a method rem that takes a numerator n and a denom-

inator d and returns the least positive remainder r after their integer division q.

As we know that d cannot be 0 and r needs to satisfy, by the Euclidean definition [9], n =

q ·d + r and 0 ≤ r < |d|, it is possible to model the function specification. Such a function can be

seen in Listing 3.6, using the already-implemented remainder operator % for the implementation.

1 method rem(n : int, d : int) returns (r : int)

2 requires d != 0

3 ensures n == (n / d) * d + r

4 ensures 0 <= r < abs(d)

5 {

6 r := n % d;

7 }

Listing 3.6: Implementation of rem in Dafny, declared in an examples.dfy file with div

Dafny validates this specification because its remainder operator follows the same Euclidean

definition.

Another example could be an incorrect program presented in Listing 3.7. Let us make a similar

method, but for integer division, div, that divides two non-negative integers n and d and rounds

the result down, r. So, we can add the requirement that they are non-negative to the specification

and add some expressions the function will satisfy, like r ≥ 0 and n− r ·d ∈ [0,d).
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1 method div(n : int, d : int) returns (r : int)

2 requires n >= 0

3 requires d >= 0

4 ensures r >= 0

5 ensures 0 <= n - r * d < d

6 {

7 r := n / d;

8 }

Listing 3.7: Implementation of div in Dafny, declared in an examples.dfy file with rem

However, there is a problem with this, which will also be informed to the user by Dafny,

exemplified in Listing 3.8. We forgot that we need d ̸= 0, as divisions by 0 are not allowed. This

mistake means we must either fix the implementation, do another operation when d = 0, or change

the contract to require d > 0.

1 /path/to/program.dfy(7,9): Error: possible division by zero

2 Dafny program verifier finished with 0 verified, 1 error

Listing 3.8: Dafny’s output when trying to compile the div method

3.2.2 Mutable Objects

A Dafny method cannot alter the exterior state by default but is forced to declare which mem-

ory it can modify, as verification is easier when it knows exactly what each method can alter

in the exterior state. We can indicate variables that can be mutated inside the method using the

modifies keyword, which receives an argument representing an object that can be updated in its

implementation.

For example, imagine we have a class with an integer variable and a function that increments

it, like in Listing 3.9.

1 class Counter {

2 var count : int;

3

4 constructor () {

5 count := 0;

6 }

7

8 method increment()

9 ensures count == old(count) + 1

10 {

11 count := count + 1;

12 }

13 }

Listing 3.9: Implementation of a counter Counter class that does not verify in Dafny

This code does not verify because count is an attribute of this, which cannot be updated

by the method increment. We would have to add line 9 to increment’s specification to fix this

contract, like in Listing 3.10.
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1 class Counter {

2 var count : int;

3

4 constructor () {

5 count := 0;

6 }

7

8 method increment()

9 modifies this

10 ensures count == old(count) + 1

11 {

12 count := count + 1;

13 }

14 }

Listing 3.10: Fixed implementation of a counter Counter class in Dafny

3.2.3 By Methods

Programmers can be less expressive in functions’ post-conditions, unlike in methods, because

Dafny analyses their body expression when trying to verify the program, being able to infer some

assertions related to their output, and, usually, these assertions are enough for most purposes.

An example where declaring post-conditions may be convenient is recursive functions that have

assertions that need induction to be proved, like in Listing 3.11, where, to prove a factorial is

always a positive number, Dafny has to use inductive proofs, done implicitly in this case. We can

also see how to refer to the result of the function in a post-condition, which is designated by a

function call. We can also not that Dafny provides more complex ways to do proofs manually,

using lemmas and assertions.

1 function fact(n : int) : int

2 requires n >= 0

3 ensures fact(n) > 0

4 {

5 if n <= 1 then 1

6 else n * fact(n - 1)

7 }

Listing 3.11: Implementation of a factorial function in Dafny

Using that same factorial function, we can show how methods and functions can work syner-

getically. For that, we provide a method in Listing 3.12 that should provide the same results are

the implemented function.

1 method fact(n : int) returns (f : int)

2 requires n >= 0

3 ensures f == factf(n)

4 {

5 f := 1;

6 var i := 0;
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7 while i < n

8 invariant i <= n

9 invariant f == factf(i)

10 {

11 i := i + 1;

12 f := f * i;

13 }

14 }

Listing 3.12: Implementation of a factorial method in Dafny

We can see in the contracts of the method, specifically on the ensures clause, that we are

comparing the result of the method to the function we defined before, thus, taking advantage of all

the assertions inferred by Dafny for the function’s post-condition.

This is, indeed, a common strategy used by programmers. We can write a function and a

method and let Dafny verify their equivalence. The goal is to focus on the performance of meth-

ods and write functions that are easier to design, only focusing on them returning the correct

values. It is also advantageous when we want to write an optimized method for a function with a

straightforward definition but worse performance.

It is so common that Dafny also provides another syntax to do this, exemplified by Listing 3.13.

In this example, we can see that the method inherits the assertions from the function, and Dafny

automatically adds another assertion that indicates they must be equivalent. It is also important

to note that the by method cannot have side effects; we have to declare and explicitly return the

output variable f; and the function is automatically omitted during compilation, as it is only used

for the verification of the method, which will be compiled.

1 function fact(n : int) : int

2 requires n >= 0

3 ensures factf(n) > 0

4 {

5 ...

6 } by method {

7 var f := 1;

8 ...

9 return f;

10 }

Listing 3.13: Example of a by method in Dafny

3.2.4 Class Invariants

Dafny allows programmers to indicate invariants that must be valid for all class objects at all

times. As only methods can change the object’s state, the compiler has to verify if each method

guarantees a valid state for the object at its post-condition. On the other hand, we can assume the

methods are only going to operate on valid states so that the invariant can be assumed in the pre-

condition. In practice, this makes the class invariants be enforced for all pre- and post-conditions
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of all the class methods, and forces us to pay attention to all the objects that could be modified.

We can see it, for example, at Listing 3.14.

1 class {:autocontracts} CounterMod {

2 const mod : int;

3 var counter : int;

4

5 constructor (mod : int)

6 requires mod > 0

7 {

8 this.counter := 0;

9 this.mod := mod;

10 this.Repr := {};

11 }

12

13 predicate Valid {

14 0 <= counter < mod

15 }

16

17 method increment()

18 ensures counter == (old(counter) + 1) % mod

19 {

20 counter := counter + 1;

21 if (counter == mod) {

22 counter := 0;

23 }

24 }

25 }

Listing 3.14: Implementation of a counter CounterMod class in Dafny

Class invariants are generally paired with the autocontracts attribute to omit some boil-

erplate. This annotation adds the class invariant assertion (Valid) to each method’s pre- and

post-condition. In this example, we can see that increment assumes the object satisfies the in-

variant before the call and verifies that it preserves it at the end. Using modifies clauses is also

unnecessary for changes in the class fields because they are handled when the class is annotated

with autocontracts.

3.2.5 Recursive Definitions

Dafny’s verifier tries to prove the termination of all functions and methods. When we deal with

recursion, we can help it by providing an expression that decreases for each subsequent call using

the keyword decreases. The verifier can use these expressions to prove the function always

terminates.

A decreases specification indicates some strictly smaller expression for each recursive call

to a method. This order depends on the type of argument, e.g. for integers, it is the expected

operator; for sets, x < y if x is a proper subset of y; false is smaller than true.
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Dafny, by default, tries to identify decreasing expressions for methods and functions automat-

ically and, lots of times, succeeds in it, but sometimes we need to provide it explicitly. Listing

3.15 is an example where Dafny can automatically detect that decreases n is a valid contract.

1 function fib(n : int) : int

2 requires n >= 0

3 {

4 if n <= 1

5 then 1

6 else fib(n - 1) + fib(n - 2)

7 }

Listing 3.15: Recursive implementation of the Fibonacci function in Dafny

The code includes a valid decreases expression because each subsequent call to fib uses a

smaller argument than the previous. Nevertheless, on more complex programs, Dafny may not be

able to automatically detect a valid decreasing expression, like in the program provided in Listing

3.16, with two mutually recursive methods.

1 method A(x : nat)

2 {

3 B(x);

4 }

5

6 method B(x : nat)

7 {

8 if x != 0 {

9 A(x - 1);

10 }

11 }

Listing 3.16: Mutually recursive methods in Dafny without contracts

And, this is not as simple as putting decreases x on both methods, because the call inside

the method A uses the same argument, which is not smaller than itself. One possible solution for

this case (exemplified in Listing 3.17) is to add another element to the decreases expression,

making it a tuple.

1 method A(x : nat)

2 decreases x, 1

3 ...

4

5 method B(x : nat)

6 decreases x, 0

7 ...

Listing 3.17: Fixed mutually recursive methods in Dafny

This makes it so that a call to A with a value x evaluates the decreasing expression to (x,1),

then it calls B, where it is going to evaluate to (x,0), and, if a recursive call to A happens, it will

be evaluated to (x− 1,1). This sequence of evaluations is strictly decreasing, allowing Dafny to

prove the termination of this code.
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3.3 Development Support

Using verifiers for IDEs like Visual Studio Code and Emacs [55], programmers have real-time

feedback. The author will see an error in the text editor whenever Dafny cannot prove something

needed to verify the program. This automatic feedback can help minimize the effort and the

programmer’s expertise needed to use the verifier.

3.4 Dafny Architecture

Dafny has many modules. There is very limited documentation about the internal aspects of its

compiler and a limited amount of comments in some parts of the code, so most of our under-

standing of its design comes from reading the source code itself, with some help from articles and

forums. When we compile a program, the following happens:

• A thread is created to process all the compilation process on the DafnyDriver module;

• The program arguments are pre-processed, returning early if any problem happens;

• All source-code files are checked to verify if they can be parsed;

• The parsed program is translated to Boogie, an intermediate verification language [54] made

for object-oriented languages that use the .NET framework [7];

• The program is resolved, type checked, and has its variants inferred;

• The program is finally verified;

• The compiled code for the verified program is generated. By default the code is in C#;

• The language server is initiated, if applicable;

• The results are presented in the configured channel, e.g. stdout.

The program can also be called with other purposes that parse the code and perform an action

that is not the compilation, namely:

• Perform a dead code analysis, giving warnings when it is impossible for the program exe-

cution to arrive at a specific part of the code;

• Generate tests for the program (see Subsection 3.4.2);

• Format the code, currently only fixes indentation to better comply with what is considered

idiomatic for Dafny;
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3.4.1 Internal Dafny AST

Dafny’s abstract syntax tree (AST) is generated at the parsing stage and changed during resolution.

It contains information about the tokens that generated it and the symbols included in the program,

following their hierarchical structure.

The class that represents the AST is named Program. A program contains information about

its name and modules, a method to be used as an entry-point if the code is compiled, and the Dafny

built-ins that can be used.

Each module contains top-level declarations, which include classes, data types, and traces.

Each class, our main concern, contains a list of members, taking place as fields, functions, meth-

ods, constructors, among others. Following this structure, we can find a fully qualified member by

finding its module, class, and so on.

To standardize the program structure, Dafny automatically adds a module to every source file,

named module_, and a default class for every module, named _default. That way, for example,

we do not need any exceptional cases for members declared outside of classes. Because of this, if

we are searching for a component and cannot find it in the current context, we can try to find it in

one of those default elements if they exist.

In Dafny, each Method contains zero or more pre- and post-conditions. These are represented

by two lists of AttributedExpression in the AST generated by the verifier. We can then try

to run this expression with concrete values to verify if they are followed. However, we need to use

our own evaluator, as Dafny is a compiled language and does not include an interpreter.

The design for the Method class includes two lists, as presented in Listing 3.18.

1 public class Method {

2 public readonly List<AttributedExpression> Req;

3 public readonly List<AttributedExpression> Ens;

4 }

Listing 3.18: Selected attributes of the Method class

Declarations are accessible simply by reading the attributes of the program. For example, to

read the top-level declarations, we can just write:

input.Program.Modules().TopLevelDecls.

3.4.2 Test Generation

Dafny has a module that deals exclusively with test generation2. However, it has some limitations:

it works with all basic types except data types, arrays, and multisets. If the method has violations,

it finds inputs that materialize them; otherwise, it just instantiates arguments, trying to consider

every path or block. To do that, the tool generates one input for each path that can be taken by the

function or method, achieving coverage of all the component’s blocks.

2More information on the module’s README at Source/DafnyTestGeneration

https://github.com/dafny-lang/dafny/blob/1a9f7a02b06a7b417cd005ce0313b4459b10ce22/Source/DafnyTestGeneration/README.md
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We can exemplify this by using the rem and div (Listings 3.6 and 3.7) methods, defined in

an examples.dfy file. Using the file to run the command dafny /generateTestMode:Block

examples.dfy results in the generation of the test file presented in Listing 3.19

1 include "examples.dfy"

2

3 module examplesUnitTests {

4 method {:test} test0() {

5 var r0 := rem(7719, 1);

6 }

7

8 method {:test} test1() {

9 var r0 := div(8855, 0);

10 }

11 }

Listing 3.19: Example test file generated by Dafny

As we can see, we only get one test for rem, as it only has one block. Also, one test for div,

with arguments selected to invalidate our post-conditions, precisely as promised.

This functionality allows us to generate tests for a specific method using block or path cover-

age. It is valuable for the generation of fixes that depend on the generation of tests.
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Solution

In this chapter, we explain our tool, which, given a Dafny program that fails to verify, suggests

modifications to its contract with the goal of making it compatible with the implementation and

repair the fault, i.e. making the program pass Dafny’s verification. This is achieved by using tests

to perform a dynamic analysis of the program behaviour, trying to find the mismatch between that

behaviour and the specification.

In the subsequent sections, we formalize our problem, taking much inspiration from the for-

malization used by Pei et al. [75], which defines the algorithm used by us, and explain how their

techniques to generate fixes work, as we use them as the basis for our tool (see Section 4.3).

4.1 Overview

The tool applies dynamic analysis by using tests to determine which states are problematic, and

those findings will guide the fix generation stage, as the presence of failing tests is the problem

we need to solve. After that, the tool has two main phases: weakening, which tries to solve the

issue by allowing the problematic arguments to pass the pre-condition of the faulty routine, in

case the assertion is too restrictive; and strengthening, which, as a last resource, disallows the

problematic arguments to pass the pre-conditions of all the functions they pass through before the

faulty one. Figure 4.1 and Figure 4.2 give an overview of the weakening and the strengthening

phases, respectively. Both phases depend on a trace that has the needed information about the

execution of the tests (See Subsection 4.3.1), so the invariants can be detected using the Daikon

tool (See Subsection 4.3.3).

Our program takes as input:

• A Dafny program D;

• A function or method that has its contract broken rn;

• An indication of the place pos where the fault it located, either a pre- or post-condition;

30
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Figure 4.1: Overview of the weakening phase, receiving the Dafny program and the tests as input.
This process returns valid fixes and invalid candidates that will be strengthened in the next phase,
if possible.

Figure 4.2: Overview of the strengthening phase. This is executed for each invalid candidate
detected on the weakening phase, reusing the trace generated in that phase. This phase results in
valid fixes, to be aggregated to the ones found in the weakening phase.

• The name of a function or method r0 that is used as the outermost routine, i.e. all the tests

are defined as a call to this routine. This is different from rn because we would not get failing

tests otherwise, and the strengthening techniques need previous functions in the trace;

• A list of tuples representing the concrete arguments of r0 for each test.

Using the last two arguments we can also define An, the specific assertion that is faulty, by

taking either the pre- or post-condition of rn according to the value of pos.

To better explain and exemplify the stages of the tool, we provide the code in Listing 4.1 that

will be used as an example program argument, i.e. the algorithm will try to repair it. For this

program, we have r0 = rem, rn = divRem and pos = PRE:

1 function abs(n : int) : int

2 {

3 if n < 0 then -n else n

4 }

5

6 method divRem(d : int, n : int)

7 returns (q : int, r : int)

8 requires d >= 0

9 requires n > 0 // stronger than rem’s pre-condition

10 ensures r + q * n == d
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11 {

12 r := d;

13 var m := abs(n);

14 q := 0;

15 while r >= m

16 invariant r + q * m == d

17 invariant q >= 0

18 invariant m == abs(n)

19 {

20 q := q + 1;

21 r := r - m;

22 }

23 if n < 0 {

24 q := -q;

25 }

26 }

27

28 method rem(d : int, n : int)

29 returns (r : int)

30 requires d >= 0

31 requires n != 0 // weaker than divRem’s pre-condition

32 {

33 var s_;

34 s_, r := divRem(d, n);

35 }

Listing 4.1: Implementation of rem amd divRem in Dafny

This program has a method divRem that calculates the quotient and the rest of the division

from its two arguments, d and n, by applying an integer division algorithm. The method rem

calls divRem, but only returns the rest, ignoring the quotient. The contract problems arise from

the fact that the inner method has n > 0 as a pre-condition, while the outer method has a weaker

pre-condition of n ̸= 0, which means it allows negative numbers, while divRem does not. This

results in the Dafny verifier not being able to prove the contracts for the method call on line 34,

because some arguments can break it.

4.2 Test Definition

A test can be formally defined as a concrete function call for an object o : T , which has the form:

τ : o. f (a0,a1,a2, ...,an)

where a virtual or static method f of the class T has one implementation with n arguments,

and, more specifically for our problem, we want f = r0, because all tests should start as calls

to the outermost routine. Unlike standard tests, we do not have an expected output, as we are

interested in the contracts being followed, which already determines if the resulting output is

expected behaviour.
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It must be noted that the current implementation of the tool does not have support for objects,

so o needs to be a default class for a Dafny module. We can call static methods if o itself is a class.

The execution of a test builds a trace, a sequence of function calls. Imagine we have a state

s0 : S that is used by our initial call. Each subsequent call could have a new state, so a trace is

defined as a list of pairs (rn,sn), where sn : S is the state when the call to rn occurs, or the state

at the output of that call, so each call appears twice in the trace. We can also define functions

pre_state(rn) = sn and post_state(rn) = sn+1 to refer to the pre- and post-states of the nth routine

call.

A function or method f has a pre-condition Pf and a post-condition Q f , and we denote a state

following an assertion as s |= A, i.e. the assertion A evaluates to true for the state s. This is used

to classify a test t, with a trace ρt , into: valid if the initial state satisfies the pre-condition of the

outermost routine, or s0 |= Pr0 , and invalid otherwise. Valid tests can be subdivided even further,

into: passing if every call has its pre- and post-condition satisfied, which means no contract was

broken, or, for each call i from ρt : pre_state(ri) |=Pri ∧ post_state(ri) |=Qri , and failing otherwise,

which means it broke a contract at some point in its execution.

In our example, we would find: a test rem(1,1) to be passing, as no contract will be broken

during its execution; a test rem(1,0) to be invalid, as the call to the outermost routine does not

satisfy its pre-condition; and a test rem(1,−1) to be failing, as the call to divRem breaks its

pre-condition, which does not allow n to be negative. Invalid tests are ignored by the algorithm,

because they do not provide any useful information about the correctness of r0.

4.3 Design of the Repair Generation Tool

In this section, we explain the used algorithm to generate fixes, which was an adaptation to Dafny

of the approach used in SpeciFix [75] implemented for the Eiffel programming language. Using

dynamic analysis, it takes a program with faulty contracts and suggests fixes by altering them, and

it works for any language with contracts, making it an excellent reference.

This approach is the only one made for this purpose, even though alternative ones that could

provide ways to work around our problem exist, like contract inference. Creating a new technique

was not prioritized, but this could be a possibility in the future.

Standard software repair for contract programs assumes that the specifications are always cor-

rect, which allows the use of these as oracles or necessary verifiers of program behaviour. This

assumption is not valid for us, so those tools are not helpful to our problem, as trust in the contracts

is fundamental for them to work.

We will explore the different modules or stages that were developed for our tool, they include

the following modules:

1. Test generation;

2. Trace generation;

3. Expression evaluation;
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4. Invariant detection;

5. Weakening fixes generation;

6. Strengthening fixes generation;

7. Fix ranking;

The two different fix generation stages represent the two ways to try to fix the program:

• Strengthening makes the call invalid by disallowing the problematic arguments to pass the

contracts, restricting the pre-conditions of routines;

• Weakening tries to fix it by allowing the arguments to pass through functions; this is not

always possible, but it is preferred when compared to strengthening, as it makes the target

routine allow more arguments instead of less, which could break compatibility if any other

part of the program depends on the usage of the routine with any of the now-disallowed

arguments.

These techniques are combined by first applying weakening and then trying to apply strength-

ening on top of the weakening candidates that failed validation, i.e. still result in failing tests when

applied.

4.3.1 Tests and Trace Generation

Before the algorithm execution, we need to generate a trace of the program. To make the program

execution provide this information in the first place, we made an update to the Dafny compilation,

so that when we run the program we can also get its trace.

Whenever a Dafny program compiled with our changes is executed, a trace can be retrieved

from the interactive environment with information of function call entrance and exit points and

their respective inputs, outputs, and ID.

So, to generate the trace for a program, we can call each test and retrieve the trace from the

program. The trace includes entries with the following information:

• Name of function called;

• Unique identifier for the call, where each identifier appears twice in the trace, corresponding

to the entrance and exit points of a specific function call;

• List of arguments passed to the function;

• In case it is an exit point, the result of the execution.

Currently, the test generation is done manually, tests are provided by the programmer. This is

a point of future improvement, as the addition of an automated way to generate tests is appealing,

because it makes the solution more automated. As of now, Dafny’s test generation module is a

possible option, but more analysis need to be done to verify if we can get more tests to a method

or function, with the goal of creating a test suite.
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4.3.2 Expression Evaluation

Dafny is a compiled language, so there was no provided way to evaluate its expressions dynam-

ically. For that reason, we created a module to evaluate a subset of Dafny’s expressions with

contexts. This is used extensively in the following modules.

An evaluator should receive an expression e and a context Γ that maps variables and their

values, and, in our case, there are no side effects, because we are only interested in expressions

that can appear in a specification in Dafny. The evaluation of an expression needs to follow rules

like:

Γ ⊢ a1 −→ at
1,a2 −→ at

2, ...,an −→ at
n

Γ ⊢ f (a1,a2, ...,an)−→ f (at
1,a

t
2, ...,at

n)

Where f is a function or method that receives n arguments and Γ ⊢ x −→ xt means that x

evaluates to xt in the context Γ. A way to think about this formula is that if we are dealing with

functions without side effects, changing an expression e for an evaluation e′ of it should give the

same result, so we can evaluate each argument of a call to terminal expressions and use those

values as to evaluate the call to function f itself.

Similar rules apply to other types of expressions, like operator, quantifier and identifier expres-

sions, among others, which can be compared to a function in that they receive zero or more inputs

and return zero or more values. The difference lies in the grammar of the language, as those types

of expressions are treated differently from functions and methods by the compiler, because they

have their own notations.

These rules are characteristic of the eager evaluation strategy, which was chosen for practical

reasons, as both Dafny and C# also use this strategy, so it better represents the strategy of the

compiled code, and it matches the programming language we are using.

To implement an evaluator for a subset of the Dafny language, the representation of built-

in types and the evaluation of their operations need to be implemented, providing a module to

evaluate expressions that we may encounter in real code.

4.3.3 Invariant Detection

This module is responsible for detecting the invariants that are true for the passing tests and false

for the failing ones using the trace information and the contracts’ information.

First it generates I which is a list of all the invariants that can be detected in the program.

We use the filters passing(I ), f ailing(I ) and invalid(I ), as a notation for only keeping the

respective passing, failing and invalid invariants.

To split the tests into those three categories, we use the information from the contracts. How-

ever, these may not necessarily be the same contracts present in the original program D, as they

may have changes that were added in different stages of the algorithm, namely during the strength-

ening phase, where we build upon weakening candidates. That is the reason we receive the con-

tracts’ information as an argument.
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The output of this module is a set of expressions:

Ω = {ω|ω ∈ passing(I )∧¬ω ∈ f ailing(I )}

This set aims to define what makes tests pass or fail, by including invariants that are true for

passing tests and false for failing ones, ignoring the invalid ones.

In the rem example, we have that, using the original contracts, tests pass if n > 0 and fail

if n ≤ 0, and the same happens with n ̸= 0, which makes the tests pass. So, we should expect

{n ̸= 0,n > 0} ⊆ Ω.

4.3.4 Weakening Fixes Generation

The first way to fix the problem is to try to weaken An, by making it less restrictive, thus allowing

the problematic calls to continue.

This module starts by calling the detection of the invariants, producing the set Ω, and adding

to this set a dummy value False, which will be used later to create purely strengthening fixes, as

those are built upon weakening candidates. As invariants are detected for every single routine,

the invariants related to any routines but rn are removed, as we want to change An with relevant

invariants.

Each element ω of Ω creates a candidate weakening fix w, which is made by changing the

faulty assertion An for An ∨ω , which weakens the assertion by allowing contexts c for which

c ̸|=An∧c |=ω . This results in a list W of all the candidate weakening fixes for the program. In our

example, we should expect fixes that weaken An using one of the expressions {n ̸= 0,n> 0,False},

as the invariants n > 0 and n ̸= 0 were detected for rn, and the dummy value False is always

present.

The output of this module are two sets, passing(W ) and f ailing(W ), where a candidate is

declared as passing if it passes all tests defined in the previous module (Subsection 4.3.1), i.e. the

program breaks no contract.

In our example, one of the candidates f0 is a member of passing(W ), because, by changing

An to An ∨n ̸= 0, we fix the fault, as divRem does indeed work with n < 0, even though An does

not allow it to pass, so all previously failing tests turn into passing. But the other fixes do not

solve the problem, and, in fact, An ∨n > 0, An ∨False and An are all logically equivalent, so these

changes do not change the sets of passing and failing tests, and we expect to find their candidates

in f ailing(W ).

4.3.5 Strengthening Fixes Generation

The second generation phase tries to fix the failing weakening candidates by restricting some

contracts. To do that, the module receives the set of failing weakening fixes ( f ailing(W )) as input,

and for each element w of this set, it does the following process.

First, it detects the pre-condition invariants pre(Ii) that hold for each function ri that ap-

pears in the trace before a failure, so i ranges over 0...n−1, and adds them to a set Σi = {σ |σ ∈
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passing(pre(Ii))∧¬σ ∈ f ailing(pre(Ii))}. This is done so we can restrict the problematic ar-

guments from passing in each routine’s pre-condition until rn, so we do not get the failure if we

start in any of the routines ri.

Then, for each combination ⟨σ0, ...,σn−1⟩ ⊆ Σ0× ...×Σn−1, we can build a candidate strength-

ening fix s which corresponds to changing the pre-condition Prn of each routine rn with Prn ∧σn,

creating a list S of all the candidate strengthening fixes for the program.

The output of this module is the set passing(S) that represents the fixes that pass all tests

defined in the previous module that have not become invalid.

In our example, we would expect a strengthening fix that changes the pre-condition of rem

to d ≥ 0∧ n ̸= 0∧ n > 0, which, if simplified, gives us d ≥ 0∧ n > 0. This solves our problem,

because it disallows the negative values for n to appear in valid tests, making all previously failing

tests invalid.

4.3.6 Fix Ranking

This module ranks all the passing fixes, from both fix generation phases, represented by the set

Φ = passing(W )∪ passing(S). Currently, the fixes are ordered, with weakening fixes first and

strengthening fixes later. Furthermore, there are no established ranking criteria among the fixes

within each of these categories. A possible improvement is to rank the fixes from the same cat-

egory, by comparing how much they weaken or strengthen the contracts, prioritizing fixes that

invalidate the fewer amount of tests. Ideally, user studies should be conducted to better understand

how to rank the fixes according to their practical relevance, but this is out of scope for our work.

This preference for the lesser restrictive fixes can be explained by them being more prone

to breaking compatibly with other calls that may be implemented in other parts of the program

and because of overfitting, as strengthening could, in the limit, just invalidate each single test

until there are no failing tests, by disallowing each one of their respective arguments to pass the

pre-condition of the routines.

The output of this module is an ordered list of all the valid fixes encountered, which is also the

output of the entire program. These can then be presented to the end-user.
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Implementation

In this chapter, we discuss the implementation of the tool, which is added to the Dafny official

release source-code as a module, it gets information from the parsed and resolved data from the

AST of a Dafny program to apply the fix generation algorithm on. The tool, following Dafny’s

implementation, is developed in C#.

5.1 Trace Generation

To make it possible to get a trace of the program, we changed the Dafny compilation that gen-

erates Python code. This target language was used so we could interact better with the runtime

environment, being able to easily retrieve information from a trace variable, proceeding with the

use of this information in our C# code. Adding an annotation to all declared methods, that adds

entries to a list whenever a function is called or returns. The entries have the needed information

and the return value of the call on exit points, the wrapper uses integers sequentially as unique call

identifiers.

This is achieved by implementing the wrapper similarly to this:

1 @wraps(fn)

2 def wrapper(*args, **kwargs):

3 ...

4 trace.append((fn.__qualname__, unique_id, args))

5 try:

6 out = fn(*args, **kwargs)

7 except:

8 out = None

9 trace.append((fn.__qualname__, unique_id, args + (out,)))

10 return out

The exception verification is helpful when the code breaks, e.g. division by zero and infinite

recursion. This can happen, as we force the code to compile even if Dafny’s compiler verification

process did not validate the program, because we will use it to run the tests either way.

Also, to get Dafny to always produce the needed Python program, we had to change some

configurations, namely: make it compile the code even if there was an error detected during the
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verification step; and configuring it to compile to the Python language. Both can be achieved by

using command line arguments.

And the generation of the trace is done by running Python code from C# using a library made

for this purpose: Python.NET. The tests are sequentially run, and the trace can be retrieved at the

end from a Python variable that accumulates all logs from the execution. Each function entrance

and exit generates a log entry even if the code breaks, as we saw in the previous section.

5.2 Expression Evaluation

An evaluator was implemented using Dafny’s AST class Expression paired with a context,

which has a mapping of symbols to their corresponding values. It’s only focused on the functional

subset of valid Dafny expressions, because its goal is to evaluate contract pre- and post-conditions,

which are limited to that subset. The Python code does not include any type of mention to the

Dafny contracts the functions are supposed to follow, so we have to evaluate them from within the

Dafny compiler. The expressions come from the Dafny AST, available from our C# code. On the

other hand, the context comes from the Python environment, being retrieved using a library, so it

is accessible to our C# code.

Currently, the expression evaluation power is greater than what we can translate to Daikon. So

not every type that can be processed on the contracts can be processed as a Daikon variable. Some

expression types that can be handled by the evaluator are:

• Literal and variable expressions;

• Arithmetic expressions on numbers;

• Logical operations on Booleans;

• Collections (sequences, maps, and sets);

• Operations on collections;

• Collection update and selection;

• Function calls;

• If-then-else expressions.

First, the sub-expressions are evaluated recursively, and then those results are used to create

an object that represents the result of the expression evaluation. Those objects need to be one

of the classes that implement the interface IResult, which just contains the following abstract

methods:

• Equality and inequality (by default it is derived from the first) for objects of the same type;

• Two functions that convert the result to a string to be used by Daikon or Python.
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So any expression evaluation, when successful, will produce an object that represents a type

that implements this interface. Even though we are only interested in Boolean results that come

from contracts, the other classes are used for intermediate values that can be evaluated in sub-

expressions. The valid types that have a class representing them are:

• Boolean;

• Char;

• Integers and reals;

• Strings;

• Maps, multisets, sequences, and sets;

• Lambda functions.

Figure 5.1 presents the way those classes are structured hierarchically, according to their valid

operations.

Figure 5.1: Hierarchical structure of the different classes that implement the interface IResult.

5.3 Invariant Detection

We use Daikon [27] to detect invariants, the first step is to translate the trace generated by our

program to a valid Daikon input, that can be written to a file.

The generated Daikon input adds extra variables that indicate if the pre- and post-conditions

are followed at a function entry and exit points, they are respectively named pre_condition and

post_condition. It also adds a variable to the exit point that indicates if any contract was broken

by the trace generated by that call, named inner_condition. Using these Boolean variables, we can

incentivize Daikon to make splits using them, helping us to identify what is valid or not valid in

combinations of them.

We generate the Daikon input by processing each point reported to the Python logger, for each

one of them we generate the respective Daikon point. The Daikon input file is composed of header
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and trace, the header contains the definition of every point, and the trace contains the concrete

values we get for those points during the execution of the code.

We keep track of every function called and reported, so we know which functions we need to

add to the header of the Daikon file. For each method we add an enter point, with each parameter

and a variable representing the evaluation of the pre-condition, and an exit one, with all the en-

trance variables plus the outputs, a variable representing the evaluation of the post-condition and

a variable that reports if any of the calls generated by the method broke a contract (this may be

thought as an inner-condition).

In the headers we have point definitions, for each one, we have the point’s name, in the format

<class>.<method name>() with indications if it is an enter or exit point for the method. And

for each variable, information about its name, kind, type, representation in the Daikon input file,

and the comparability key, which tells the tool which variables are comparable to it.

While, in the trace, we have the point name, a unique identifier for the call, followed by the

variables names, values, and an indication if the variable was changed or not (this is always marked

as zero in our implementation, because Daikon can verify if the variable was changed or not by

itself).

The next example exemplifies this, and we can see the information needed for the headers and

the trace generated when the method rem(5, -3) is called.

1 ppt module_.default__.rem():::ENTER

2 ppt-type enter

3 variable d

4 var-kind variable

5 dec-type int

6 rep-type int

7 comparability 2

8 variable n

9 var-kind variable

10 dec-type int

11 rep-type int

12 comparability 2

13 variable pre_condition

14 var-kind variable

15 dec-type boolean

16 rep-type boolean

17 comparability 1

18

19 ...

20

21 module_.default__.rem():::ENTER

22 this_invocation_nonce

23 192

24 d

25 5

26 0

27 n
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28 -3

29 0

30 pre_condition

31 1

32 0

We can see that the variables for an enter point are its method’s parameters and a contract

variable representing its pre-condition. Exit points contain those same variables, plus each return

variable and two more contract variables: post_condition and inner_condition. For the

lack of a better descriptive kind, the contract variables are declared as variables in those files.

Then we also write files to tweak Daikon’s configuration and splitting approach according to

our needs. The configurations changed by us are:

• Lower the confidence level, so more invariants appear, even if Daikon is still not sure if they

are valid or not;

• Add a dummy invariant level, so the invariants in the spinfo file are part of the output when

no equivalent invariant can be found;

• Use pairwise implications, so more implications are verified by the tool;

• Enable the printing of all invariants detected, without filtering redundant ones;

• Use Simplify as the output language, this is so the parsing is easier, as the function names

precede their arguments inside a parenthesis, like the Lisp language, so there is no ambiguity

that needs to be solved by precedence;

• Make splits on the three artificially added contract variables: pre_condition, post_condition

and inner_condition. This is a way to tell Daikon to consider splitting specific boolean

variables depending on their value.

With these three files written, we can pass them as arguments to Daikon and get its output.

The parsing is done for each line without any kind of filtering at first, it creates a list of tuples with

the routine name, an indicator if the invariant happens at pre- or post-condition, and the invariant

expression itself.

The expressions are translated from Symplify to the class used to represent expressions in the

Dafny compiler, so they can be processed by our evaluator. The generated Symplify expressions

use arithmetic, logical and comparison operators, which can be easily translated to valid Dafny’s

expressions using only built-in operators.

5.3.1 Filtering of Invariants

Not all invariants detected by Daikon are useful for us, so a process of filtering was implemented.

The properties used for filtering are as follows:
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1. We want invariants for passing and failing tests, so we filter invariants that do not refer to

any contract variable (pre-condition, post-condition or inner-conditions);

2. We filter out the invariants that are not in the format

(contract_variable = boolean_value) ⇐⇒ expression

because, according to the solution algorithm, we need invariants that satisfy

passing → expression∧¬passing →¬expression

3. To create a single list of invariants, we extract the expressions from the previous item, but

negate the ones detected for failing tests. This may not be needed, as we could not find a

situation where we gain information from the invariants detected for the failing tests when

using a single Daikon run to detect all invariants;

4. We also remove invariants that relate only contract variables, because they cannot be used

in the contracts;

5. We filter out invariants that are structurally equivalent;

6. In case we are trying to get invariants to weaken a pre-condition or to strengthen a contract,

we filter the ones that have references to any output variables, as they cannot be used in

those places;

7. In the weakening phase we also filter out any invariants detected for methods other than our

faulty method.

5.4 Fix Generation

The fix generation implementation tries to be a translation of the process explained in the solution

at Subsection 4.3.5 and Subsection 4.3.4.

To represent the two types of relevant contracts, pre- and post-condition, the ContractType

enum was created, it has two values, one for each of those types. To represent fixes, a class

ContractManager was created, it includes information about every contract that is modified by

that specific fix, and their new values. To represent invariants, a pair of type (ContractType,

Expression) is used.

The weakening stage receives the trace and starts by detecting the invariants for the received

trace, as explained in Section 5.3. It then uses the list o, of candidate assertions, where each

assertion is an invariant, to create a list of candidate weakening fixes fs, where each element

represents a fix that uses one of the elements in o to weaken the faulty contract.
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Now we validate those candidates, splitting them into two lists: phi, representing the valid

weakening fixes and w representing the others, which will be passed as arguments to the strength-

ening stage together with the trace.

The strengthening stage can be divided in two substages: the generation of candidates and

their validation. The first substage runs many times, one for each element in w plus a dummy fix

to generate pure-strengthening fixes, while the second one is executed once, at the end.

To generate the candidates for an invalid weakening fix a ∈ w, we start by detecting the invari-

ants assuming the contract has been weakened according to a, keeping track of the functions that

were called before the faulty routine during the execution. Then, we create a map to relate each

method with their detected invariants, create a list of every possible combination with exactly one

invariant per method and a list of candidate fixes corresponding to each one of those combinations.

Now we can validate all the fixes, removing the ones that are invalid and returning the list of

fixes that passed the tests p. At the end of the fix generation, we can join the lists of valid fixes

phi∪p to create a list of all valid fixes.

The result of the program is printing of each one of those fixes, which are objects of the class

ContractManager, to standard output, and indicate which methods to change in the following

format: Change <place> of method <method> to <new contract>, where place

is a ContractType object, method is a string representing the name of the method and new

contract is an expression that represents the new pre- or post-condition of that method.

Ideally, this output could be presented to a user in a plugin so that it could select one of those

fixes to be automatically applied to their source code. But this is left as an improvement to be

implemented.
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Solution Evaluation

In this chapter, we explain our methodology to get results and discuss the resulting data after the

experiments and evaluation. The goal is to analyse the effectiveness and efficiency of the tool, as

well as a preliminary evaluation of the quality of the generated fixes.

6.1 Evaluation Setup

In this section, we compare the number of example programs that could be fixed by our tool, and

the measurement of relevancy by programmers could also be considered. The gathered informa-

tion for each example, besides the average runtime for different parts of the program, is presented

in the next list. The results are split between weakening and strengthening, because the strength-

ening process is executed more than once in some cases, and analysing their values separately can

be useful.

• Tests #: the number of tests that were generated and executed;

• Invariants detected # at the weakening process: the number of invariants present in the full

Daikon output;

• Relevant invariants # at the weakening process: the total number of the previous detected

invariants that passed the filtering process;

• Unique relevant invariants # at the weakening phase: the number of invariants if we count

any group of logically equivalent invariants as one;

• Valid fixes # at the weakening phase: the number of valid pure-weakening fixes;

• Unique valid fixes # at the weakening phase: the number of unique fixes from those de-

clared above;

• Times run #: the number of times the strengthening candidate generation algorithm was

run, this is equal to the number of invalid weakening fixes plus one (a dummy one, used to
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create pure-strengthening fixes), as the algorithm needs to be executed once for each one of

those invalid fixes;

• Invariants detected # at strengthening phase: the number of invariants detected by Daikon

for the strengthening process. In case the algorithm is run more than once, the average of

the times is used;

• Relevant invariants # at the strengthening phase;

• Unique relevant invariants # at the strengthening phase;

• Candidate combinations #: the number of combination of candidates, with the average

being used when running more than once;

• Candidate fixes #: the aggregated number of candidates from all runs of the strengthening

generation phase;

• Valid fixes # at the strengthening phase: the number of valid fixes that use strengthening;

• Unique valid fixes # at the strengthening phase: the number of unique fixes from the ones

above;

• Valid fixes # for all phases: sum of the number of pure-weakening fixes plus the ones that

use strengthening;

• Unique valid fixes # for all phases: the number of unique fixes from the ones above.

Benchmarking against SpeciFix is unfortunately not possible, as we found no way to get its

source code or access to the program, despite our efforts to contact the authors, who did not have

it any more. The runtime of the different stages of the algorithm can be used to indicate that the

solution is viable on its own. To proceed with the analysis of the runtime, we created six small

faulty examples, namely:

• DivRem, composed by divRem running example that receives two integers and calculates

their integer division and respective remainder, which is called by rem that discards the

quotient and returns the remainder only;

• Catalan numbers, composed by a single recursive method that calculates the nth Catalan

number. This code was adapted from exercises provided in classes at the University of

Porto;

• Harmonic Sum, composed by HarmonicSum, a method that calculates the sum of the nth

and (n+1)th harmonic terms, which are obtained by a call to NthHarmonic, a method that

requires a positive number, wrongly disallowing its argument to be 0. This example was

created by us;
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• Inverse Sign, having a method Enter that receives an integer n and calls div which calcu-

lates 1/sgn(n) using a method inverse for the calculation of this division. This example

was created by us;

• Opaque Keyword, having a single empty method with a post-condition that is only valid

when its argument is in the interval [0,100). This example was adapted from Dafny’s repos-

itory tests;

• Two Requires, having a method Enter that calls an empty method with a strict pre-

condition, allowing it to only be called with 0 as an argument. This example was adapted

from Dafny’s repository tests.

Each example was executed 20 times on an EndeavourOS 2022.06.23 machine with 12 GiB of

memory and a 2.1 GHz AMD Ryzen 5 4-core CPU. Each execution of the same example had the

same arguments, which means there is no randomness, so all the runs generate the same values,

but take different times to run.

6.2 Evaluation Results

All the information is displayed in Table 6.1, that includes the average runtime (in ms) for different

stages of the program and some statistics related to the number of values generated by them.

As indicated in the table, the initial stage of the strengthening phase is executed multiple times,

once per invalid weakening candidate, but the final stage is executed once, using the aggregation

and combination of the different strengthening assertions generated in the previous one. All the

runtime data is averaged from the results of 20 runs, but the performance information about the part

that is executed multiple times can be the average of more than 20 values, as the value represented
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is the average of every single instance of the indicated step.

Table 6.1: Tool runtime and results statistics

divRem catalanNumber harmonicSum inverseSign opaqueKeyword twoRequires

Trace Generation

Test execution 1407.30 1559.50 1088.00 1327.60 1453.00 1347.40
Tests # 225 15 15 15 300 15

Weakening

Daikon input generation 22.10 64.25 5.95 4.60 16.45 3.45
Daikon execution 3988 3329 3034 3172 2925 2510
Daikon weakening % 98.2% 93.9% 99.4% 99.4% 98.8% 99.6%
Daikon output parsing 3.70 2.65 3.05 5.45 1.40 1.80
Invariants detected # 151 72 89 205 30 64
Invariant filtering 1.85 1.80 2.85 3.00 2.65 2.80
Relevant invariants # 3 3 3 3 1 1
Unique relevant invariants # 2 2 2 3 1 1
Candidate fix creation 0.50 0.40 0.45 0.45 0.40 0.45
Fix validation 43.80 147.55 6.50 6.80 15.45 1.90
Valid fixes # 3 0 3 0 1 1
Unique valid fixes # 2 0 2 0 1 1
Weakening generation 4059 3546 3053 3191 2960 2520

Strengthening (Multiple times per run, averaged)

Times run # 1 4 1 4 1 1
Daikon input generation 23.55 73.83 2.85 1.88 13.65 2.00
Daikon execution 4033.85 3397.18 3027.95 3175.56 2935.45 2564.75
Daikon strengthening % 97.44% 96.56% 99.67% 99.60% 99.25% 99.82%
Daikon output parsing 4.05 1.84 2.05 3.94 0.65 1.00
Invariants detected # 163 72 94 175.75 30 57
Invariant filtering 0.05 0.01 0.05 0.01 0.05 0.20
Relevant invariants # 7 3 5 5.5 1 3
Unique relevant invariants # 4 2 3 3.75 1 2
Candidate fix creation 0.45 0.15 0.45 0.14 0.40 0.45
Candidate combinations # 7 3 5 7.5 1 3

Strengthening (Once per run)

Candidate fixes # 7 12 5 30 1 3
Fix validation 77.90 180.75 4.70 26.60 7.30 1.05
Valid fixes # 2 8 2 18 0 2
Unique valid fixes # 1 1 1 3 0 1
Strengthening generation 4140 14073 3038 12753 2958 2569

All Phases

Total runtime 9100 18681 6836 16980 7626 7431
Valid fixes # 5 8 5 18 1 3
Unique valid fixes # 3 1 3 3 1 2
Test Values [-5,10]2 [-5,10] [-5,10] [-5,10] [-100,200) [-5,10]

As noted in the table, the first stages of the strengthening algorithm can be executed more than

once, which is indicated by the Times Run # row, as those stages need to be executed once for

each invalid weakening candidate and for a dummy candidate. The times indicated under those



6.3 Solutions Generated 49

stages are averaged per execution, so to get the average time for each example we need to multiply

the times by the number of Times Run #, which is taken into consideration when calculating the

Strengthening generation.

All the calculations of the number of effectively unique invariants or fixes were done manually

by comparing them, removing the repeated ones, i.e. the ones that had another invariant or fix as

logically equivalent, and counting the remaining ones. These were added to the table to indicate

the level of equivalence in those types of values.

The arguments that were used to generate the tests are indicated in the table, as Test Values.

Ideally, they would be automatically generated, but this was not done, although it is something to

be done in future work. We tried to get different sources, but the creation of a dataset of faulty

programs is an important step, because it is critical for the evaluation of our tool and other tools

that may need the same kind of programs.

The total runtimes to generate the fixes range from 6 to 19 seconds, which is an acceptable

amount for this kind of tool, although the used examples are very simple and do not include some

very common structures like classes. The majority of this time, perhaps as expected, is spent

detecting invariants by running Daikon, which is followed by a wide margin by the time it takes

to initially run the program to get the trace. So, it is reasonable to consider this a possible focus

point in the future work, which can be improved by tweaking Daikon configurations or looking

for alternative tools or ways to get the invariants.

6.3 Solutions Generated

In this section, we discuss the solutions that were generated by the tool, with the goal of having

a first idea about their quality. But, to seriously evaluate the results, we would need a deeper

analysis, taking place with, for example, more tests and, possibly, an investigation about how

users would classify them.

The algorithm was able to generate a solution for each example, except the Opaque Keyword

program, which depended on Daikon generating an invariant in the format 0 ≤ x < 100, but it only

generated 0 ≤ x despite our efforts in tweaking the configuration or changing test arguments. For

the divRem, Harmonic Sum and Two Requires programs, we got the expected result of finding both

weakening and strengthening results, and we also got the expected weakening results on the other

examples.

A notable result can be found in the repair of the divRem program, where the found strength-

ening fix was stricter than what was expected and needed. Daikon was able to infer n > d instead

of n > 0, the expected one, for the pre-condition of the rem method, which paired with another

inferred invariant, d ≥ 0, is stronger than what was expected, and disallows valid calls for this

method that do not result in any contract being broken, e.g. d = 9∧n = 3.

The non-unique solutions are generated because of the equivalent expressions that are gener-

ated by the invariant detection tool. The existence of those expressions means extra time is spent
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with fixes that are not needed in the first place, because an equivalent one has already been gen-

erated, and the algorithm runs some stages of the strengthening part once per invalid weakening

solution, even if an equivalent one has already been processed. This also generates equivalent

solutions, which are not good for the end user, as the selected ones to be shown can not be as

representative of the possible solutions for a problem. So, another area that can be improved is the

verification if we have equivalent invariants before these phases.
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Conclusion

This thesis presents a prototype tool that can generate contract fixes for faulty Dafny programs,

assuming the correctness of the respective implementation.

We were inspired by a technique [75] previously proposed for Eiffel, another contract pro-

gramming language, and currently rely on a third-party tool for dynamic invariant inference [27].

Our preliminary evaluation shows that the procedure is feasible in Dafny for our simple exam-

ples. It also shows that the steps performed by our tool take reasonable time to execute, but the

overall process suffers from some efficacy and performance issues that stem from the invariant de-

tection phase performed by Daikon. Although some fine-tuning of Daikon’s input parameters may

improve its performance, scaling the procedure for more complex programs will likely require

further research on this topic.

There is still substantial work to be done before the tool can be deployed in the development

of Dafny programs. For example, language features such as mutable elements and classes have

not yet been addressed. Also, the evaluation must be expanded to consider more complex and

realistic programs. In addition, user-studies must be carried out to explore how helpful users find

the generated fixes and if these fixes do contribute positively to produce a program that verifies.

We did not encounter any false positives, i.e. fixes that would pass our dynamic verification

but be invalidated by Dafny’s validation. But techniques for preventing them may be considered

when the tool becomes more complete, or may be desirable, as a configurable option, for users

that can afford the computational cost of integrating our tool with Dafny’s verification, to statically

check only the suggestions deemed more relevant before presenting them to the user.

Although previous work suggests that inferred contracts are important to complement con-

tracts written by programmers [77], work on human factors that affect the use of inferred contracts

is lacking. Further work in this area should be carried out, for example, to support programmers

with determining the relevance and validity of the inferred invariants, as previous studies have

shown that users have difficulty deciding if the invariants inferred by Daikon are true [83].

Moreover, techniques for automated test generation should be employed to create the test

cases, and there is some work on this topic for Dafny [86][29]. To be useful for the community,

such a repair technique should integrate the Dafny IDE, namely its plug-in for VS Code. Lastly,
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as part of our future work, we aim to build a large dataset of faulty Dafny programs that will be

made available to the community to foster further research in the area of Dafny program repair.
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Appendix A

Example Source-Codes

A.1 Programs Used for the Evaluation

The outermost routine is named Enter, unless expressly stated otherwise.

A.1.1 divRem

The outermost routine is rem.

1 function abs(n : int) : int {

2 if n < 0 then -n else n

3 }

4 method divRem(d : int, n : int)

5 returns (q : int, r : int)

6 requires d >= 0

7 requires n > 0

8 ensures r + q * n == d

9 {

10 if n == 0 {

11 return 1 / 0, 0;

12 }

13 r := d;

14 var m := abs(n);

15 q := 0;

16 while r >= m

17 invariant r + q * m == d

18 invariant q >= 0

19 invariant m == abs(n)

20 {

21 q := q + 1;

22 r := r - m;

23 }

24 if n < 0 {

25 q := -q;

26 }

27 }
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28 method rem(d : int, n : int)

29 returns (r : int)

30 requires d >= 0

31 requires n != 0

32 {

33 var s_;

34 s_, r := divRem(d, n);

35 }

And, just as an example, it is possible to see the output generated by the tool for this example

at Listing A.1.

1 Weakening

2

3 Change PRE_CONDITION of divRem to (true && d >= 0 && n > 0) || true

4

5 Change PRE_CONDITION of divRem to (true && d >= 0 && n > 0) || n != 0

6

7 Change PRE_CONDITION of divRem to (true && d >= 0 && n > 0) || !(n == 0)

8

9 Strengthening

10

11 Change PRE_CONDITION of divRem to (true && d >= 0 && n > 0) || false

12 Change PRE_CONDITION of rem to true && d >= 0 && n != 0 && d < n

13

14 Change PRE_CONDITION of divRem to (true && d >= 0 && n > 0) || false

15 Change PRE_CONDITION of rem to true && d >= 0 && n != 0 && !(d >= n)

Listing A.1: Output generated by the tool when running the divRem example.

A.1.2 Catalan Number

Translated from an Eiffel implementation of the same algorithm 1. The outermost routine is

NthCatalanNumber.

1 method NthCatalanNumber(n : int) returns (r : real)

2 // requires n >= 0

3 {

4 if n == 0 {

5 r := 1.0;

6 } else {

7 var t := (4 * n - 2) as real;

8 var s := (n + 1) as real;

9 var p := NthCatalanNumber(n - 1);

10 r := t / s * p;

11 }

12 }

1https://rosettacode.org/wiki/Catalan_numbers#Eiffel
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A.1.3 Harmonic Sum

1 method NthHarmonicTerm(x : int) returns (c : int)

2 // Calculates the nth harmonic term, equivalent

3 // to the reciprocal of 1 / (x + 1)

4 requires x >= 1

5 {

6 if x < 0 {

7 return 1 / 0;

8 }

9 return 1 / (x + 1);

10 }

11

12 method Enter(n : int) returns (sum : int)

13 requires n >= 0

14 {

15 var i := 0;

16 sum := 0;

17 while i < n {

18 var ith := NthHarmonicTerm(i);

19 sum := sum + ith;

20 i := i + 1;

21 }

22 }

A.1.4 Inverse Sign

1 method inverse(x : int) returns (i : int)

2 requires x != 0

3 {

4 i := 1 / x;

5 }

6

7 function sign(x : int) : int

8 {

9 if x == 0

10 then 0

11 else if x > 0

12 then 1

13 else -1

14 }

15

16 method div(x : int, y : int) returns (d : int)

17 // requires y != 0

18 {

19 var s := sign(y);

20 var inv := inverse(s);

21 d := x * inv;

22 }
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23

24 method Enter(x : int)

25 {

26 var r := div(1, x);

27 }

A.1.5 Opaque Keyword

Adapted from the Dafny repository tests 2

1 ghost predicate {:opaque} F(n: int)

2 {

3 0 <= n < 100

4 }

5 method Enter(x : int)

6 ensures F(x)

7 {

8 }

A.1.6 Two Requires

Adapted from the Dafny repository tests 3.

1 method A(x: int)

2 requires x >= 0

3 requires x <= 0

4 ensures true

5 {}

6

7 method Enter(x: int) {

8 A(x);

9 }

A.2 Other Examples

A.2.1 Circular List

1 type T = int

2

3 class {:autocontracts} Circular {

4 var list: array<T>;

5 var count: int;

6 var cursor: int;

7

2https://github.com/dafny-lang/dafny/blob/edb901dbb6d984601ba6a3dc657e932995b33f48/Test/
dafny0/OpaqueFunctions.dfy#L173

3https://github.com/dafny-lang/dafny/blob/edb901dbb6d984601ba6a3dc657e932995b33f48/Test/
dafny0/one-message-per-failed-precondition.dfy#L7
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8 constructor (size: int)

9 requires size >= 1

10 ensures list.Length == size

11 {

12 list := new T[size];

13 count := 0;

14 cursor := 0;

15 }

16

17 predicate Valid {

18 && 0 <= count <= list.Length

19 && 0 <= cursor <= count

20 }

21

22 method Duplicate(n: int) returns (result: Circular)

23 {

24 var i := 0;

25 var size := Math.Min(n, count);

26 result := new Circular(count);

27 while i < size

28 modifies result.list

29 {

30 var index := (cursor + i) % count;

31 result.list[i] := list[index];

32 i := i + 1;

33 }

34 result.count := size;

35 }

36 }

A.2.2 Hanoi Tower

1 method move(n: int, from: int, dest: int, via: int)

2 decreases n

3 // requires n > 0

4 {

5 if n != 1 {

6 move(n - 1, from, via, dest);

7 move(1, from, dest, via);

8 move(n - 1, via, dest, from);

9 }

10 }
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