
Schema-guided Testing of Message-Oriented Systems

André Santos1,2 a, Alcino Cunha2 b and Nuno Macedo3 c

1VORTEX CoLab, Vila Nova de Gaia, Portugal
2High-Assurance Software Laboratory, INESC TEC and University of Minho, Braga, Portugal
3High-Assurance Software Laboratory, INESC TEC and University of Porto, Porto, Portugal

andre.santos@vortex-colab.com, alcino@di.uminho.pt, nmacedo@fe.up.pt

Keywords: Software Testing, Formal Specifications, Specification-based Testing, Property-based Testing.

Abstract: Effective testing of message-oriented software requires describing the expected behaviour of the system and
the causality relations between messages. This is often achieved with formal specifications based on temporal
logics that require both first-order and metric temporal constructs – to specify constraints over data and real time.
This paper proposes a technique to automatically generate tests for metric first-order temporal specifications
that match well-understood specification patterns. Our approach takes in properties in a high-level specification
language and identifies test schemas (strategies) that are likely to falsify the property. Schemas correspond to
abstract classes of execution traces, that can be refined by introducing assumptions about the system. At the
low level, concrete traces are successively produced for each schema using property-based testing principles.
We instantiate this approach for a popular robotic middleware, ROS, and evaluate it on two systems, showing
that schema-based test generation is effective for message-oriented software.

1 INTRODUCTION

As the complexity of software systems increases, so
does the necessity to properly verify that safe be-
haviour will be observed. Testing is an essential, and
often the only, strategy deployed for that purpose, but
the complexity of modern systems renders the manual
encoding of test cases impractical. As a consequence,
several automated approaches to test generation have
emerged, such as model-based (MBT), property-based
(PBT), and specification-based testing (SBT).

These challenges are exacerbated when targeting
distributed systems where components communicate
asynchronously through message-passing, such as
those complying to the OMG’s DDS standard (OMG,
2015). These systems are typically heterogeneous and
built from third-party components, so system-level
testing should act at the message-passing level, treat-
ing components as black-boxes. In this context, the
behaviour to be analysed is of a dynamic nature, and
testing procedures must take into consideration full
traces of messages as inputs and outputs. This limits
the feasibility of using unit tests beyond specific cor-

a https://orcid.org/0000-0002-1985-8264
b https://orcid.org/0000-0002-2714-8027
c https://orcid.org/0000-0002-4817-948X

ner cases. PBT approaches are also ill-suited since
they either focus on execution safety properties (such
as null references or buffer overflows) or require the
expected behaviour to be specified operationally. MBT
approaches require modelling the system behaviour,
which is often infeasible in systems of this nature.

SBT approaches can be used to tackle these issues.
Here, the user is only expected to provide a single
artefact, a high-level declarative specification of the
expected behaviour of the system. In a dynamic con-
text, these take the shape of temporal specifications,
allowing the encoding of functional safety properties.
Relevant trace inputs are automatically generated by
inspecting the specifications, while validity is auto-
matically tested by evaluating the specification against
the output traces. However, previously proposed tech-
niques of this nature are still affected by some issues.
First, they are often based on logics with abstract time,
such as linear temporal logic (LTL) (Tan et al., 2004;
Michlmayr et al., 2006; Arcaini et al., 2013; Bloem
et al., 2019; Narizzano et al., 2020), but most sys-
tems are expected to be tested for some timing con-
straints. Moreover, they often fail to provide a proper
high-level interface that spares the developer from hav-
ing to understand the underlying formalisms. Lastly,
due to the extent of the search-space for timed trace
test cases, such techniques must provide some kind

Figure 1: Overview of the proposed approach.

of mechanisms to guide the input generation. Some
techniques have been proposed in PBT, such as target-
oriented (Löscher and Sagonas, 2017) and coverage-
guided (Padhye et al., 2019) approaches, but they are
ill-suited for heterogeneous and distributed systems.

In this paper we propose a novel SBT approach, de-
picted in Figure 1, based on trace schemas for message-
oriented systems whose expected behaviour is speci-
fied in a high-level specification language. The users
are only required to specify the architecture and the
expected behaviour of the system under test (SUT),
from which the input generator and the property moni-
tors are derived. The language is based on well-known
specification patterns (Dwyer et al., 1999), so that
knowledge about the underlying formalisms or the im-
plementation details of the SUT is not required. A
trace schema is a sequence of message-passing con-
ditions that are expanded by the trace generators into
concrete message traces, which are automatically de-
rived from the specified properties based on the used
pattern. To restrict the search-space of the trace gen-
erator, the developer can specify additional properties
over the communication channels using the same spec-
ification language, which the testing procedure uses to
refine the schemas derived from the specification.

We evaluated our technique by implementing it
over the most popular robotic middleware, the Robot
Operating System (ROS) (Quigley et al., 2009). ROS
provides a communication layer that allows robotic
systems to be built from components communicating
through a publisher-subscriber paradigm. This instan-
tiation comprised the implementation of the specifica-
tion language for ROS messages, a test generator for
trace schemas, and the deployment of runtime mon-
itors. It was integrated into HAROS (Santos et al.,
2016; Santos et al., 2021), a framework for the devel-
opment of high-assurance ROS software, which auto-
mates several tasks required for analysis and reporting.
Evaluation shows that schemas automatically derived
from specifications are effective in finding bugs related
to message interleaving, and that providing additional
assumptions further improves the results.

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview of the proposed approach.
Section 3 presents the proposed property specifica-

Figure 2: ROS system with open subscribers.

tion language, followed by the formalization of trace
schemas, their derivation and associated trace genera-
tor in Section 4. Section 5 and Section 6 present the
instantiation of the approach for ROS and the evalua-
tion results. Section 7 presents and discusses related
work. Lastly, Section 8 concludes the paper.

2 SCHEMA-GUIDED TESTING

To provide an overview of the proposed framework,
consider its instantiation for ROS (Section 5), used for
evaluation in Section 6. ROS is a collection of libraries,
tools and components for the development of robotic
applications. In ROS, software is organised in pack-
ages, the basic build and release units. A large number
of packages is open source and over 4 000 are indexed
in official collections, called distributions. At runtime,
a ROS system is typically distributed, with various
independent nodes consuming, processing and pro-
ducing data. Nodes often communicate via structured
messages sent through topics – typed message-passing
channels implementing a publisher-subscriber model.

Consider the system in Figure 2 as an example.
It contains two nodes: /planner, which subscribes
/position messages and publishes /plan messages,
and /control, which given /plan and /laser, pub-
lishes velocity messages at /vel with some degree of
safety. Let us say that we want to check whether a
simple safety property holds in this system: that when
the laser detects an obstacle closer than 40cm, a zero
velocity message will be published within a certain
threshold (say, 500ms), so that the robot avoids hit-
ting the obstacle. Using the proposed specification
language (Section 3), this could be easily specified as

1 globally: /laser {dist < 40} causes
2 /vel {linear.x = 0} within 500ms

How can such a property be tested? Since nodes
are considered to be black boxes, one must act at the
message-passing level, publishing and listening to mes-
sages being passed by the middleware. However, not
all available channels should be exercised by the test-
ing procedure: we must identify the channels that
represent the inputs of the system under test. An open

subscribed channel is any channel that the system sub-
scribes but for which there are no publishers. They
are the intended interfaces to integrate the system with
the environment, since there is no other purpose for
subscribers that lack their respective publishers. In
the example, /position and /laser are open subscrip-
tions. Even though closed channels are technically
usable by external components, we treat them as inter-
nal communication channels and do not tamper with
them by publishing additional messages, because the
system is likely not designed to expect the additional
publishers. To test specific portions of the system, our
approach also allows the testing of a projection of the
architecture. For instance, in the example the user
could wish to focus on testing the /control node, in
which case /plan would become an open subscribed
channel and /position rendered irrelevant.

Once the input channels are selected, the testing
procedure must decide the channels, order and delay
between the messages that will be published. Our
approach is based on PBT and SBT principles. We use
the former to automatically explore the input space and
test the SUT with a variety of valid inputs. We use the
latter to convert formal properties into specialized test
strategies, in order to nudge the input generators in a
direction that is more likely to reveal counterexamples.

We call these test strategies input trace schemas,
an abstraction for a certain category of input traces.
They describe a general sequence of events using ab-
stract messages and durations, annotated with their
respective constraints. For instance, for the property
just presented, only input traces that publish /laser
messages with values below 40cm are relevant, other-
wise the property will never be falsified. This could be
specified with the following simple trace schema.

1 forbid /laser {dist < 40}
2 +0..: publish /laser {dist < 40}

Our system derives automatically an input trace
schema for each property (Section 4.2). The nota-
tion is simple: a schema is interpreted line by line,
each statement representing general constraints over
channels (forbid) or mandatory events of interest
(publish). The syntax follows the one used in our
specification language, i.e., it expects a channel name,
followed by predicates over the message’s fields. The
forbid statement imposes restrictions over the (zero
or more) random messages an input trace is allowed
to instantiate within a segment of the trace, applied
from the instant immediately following the previous
mandatory event (or the start of the trace) until (but not
including) the next mandatory event (or until the end
of the trace). In the example, the first line states that
there should be no /laser detecting obstacles until it
is forced to be published later in the trace. There is no

restriction on /position, so any number of /position
messages – regardless of their content – and /laser
messages with value ≥ 40 may be published in this
interval. A publish statement is composed of an in-
terval and of constraints over a channel. It denotes a
single mandatory message whose timestamp must be
contained in the specified interval, relative to the pre-
vious event. In the example the derived schema does
not impose any time interval, so the interval is left
unbounded (0 or more milliseconds after the initial in-
stant). After forced publication no further constraints
are imposed, so any arbitrary /position and /laser
messages may be published until the end of the trace.

An input trace is a finite sequence of messages
with concrete values in data fields, annotated with
timestamps generated from the schemas, that the test
driver should replay on open subscribed channels to
stimulate the SUT. Input traces are, thus, instances of
a schema. Note that this is distinct from the observed
trace, the actual sequence of events that makes a par-
ticular run of the SUT, including messages published
by the nodes under test. For instance, the following
input trace is an instance of the previous schema.

1 @40ms /laser {dist: 50.0}
2 @50ms /position {x: 0.0, y: 0.0}
3 @60ms /laser {dist: 30.0}
4 @70ms /position {x: 2.5, y: 0.5}
5 @80ms /laser {dist: -20.0}
6 @90ms /position {x: 3.0, y: 1.0}

We can see how this trace is an instance of the
previous schema: a /laser message with value < 40
is published after 60 milliseconds and there is no such
message before it. Besides the restrictions imposed by
the schema statements, the trace generator will gener-
ate arbitrary messages to build a complete input trace.
However, we should also notice that it is allowing mes-
sages that are invalid in a real environment: sensors do
not publish negative /laser messages.

To address this, the user can introduce additional
assumptions following the same specification lan-
guage. For the example, this could specified as:

1 globally: no /laser {dist < 0}

Properties that only refer to open subscriptions,
called axioms, are considered global constraints over
the input trace schemas and are used to refine them.
They are used to ignore tests whose actual input traces
are nonconforming. Our example schema, now refined,
would be:

1 forbid /laser {dist < 40}
2 +0..: publish /laser {0 <= dist < 40}
3 forbid /laser {dist < 0}

The previously shown (invalid) input trace would no
longer be generated from this schema.

Bugs often occur from specific message combina-
tions, so the tighter the allowed message values, the
higher the probability relevant input traces are gen-
erated. For instance, bugs may be triggered by the
rapid publication of /laser messages near the 40cm
boundary value. By being able to generate any positive
float it would still be very unlikely to generate such a
trace. Guided by specific knowledge of the SUT, the
developer may introduce additional, finer axioms to
force the trace generator to focus on particular classes
of input traces. In our example, the developer could
have imposed a very specific of range of /laser values,
knowing that – in principle – the system would not
behave differently for other values:

1 globally: no /laser {dist < 0 or
dist > 100}

Such axioms should be used with care: they rule
out test cases that are theoretically valid, even though
they might be unexpected for a particular application.

3 SPECIFICATION LANGUAGE

The property specification language we propose is
based solely on the messages that components ex-
change with one another in a message-oriented system.
The SUT is treated as a black box, as is custom in SBT.

The language is built on top of the well-known
property specification patterns proposed by (Dwyer
et al., 1999). We focus on the Absence (a certain type
of message, a behaviour, must not be observed), Exis-
tence (a certain type of message, a behaviour, must be
observed at least once), Precedence (observing a cer-
tain type of message, a behaviour, implies that another
type of message, a stimulus, must have been observed
prior) and Response (observing a certain type of mes-
sage, a stimulus, implies that another type of message,
a behaviour, must be observed in the future) patterns.
We also add a new Prevention pattern (a certain type
of message, a stimulus, implies that another type of
message, a behaviour, must not be observed in the
future). In addition, properties specify a scope, delim-
iting the times during which the pattern must hold. A
scope may be Global (the pattern should always hold),
After (the pattern should hold indefinitely, after a cer-
tain message, the activator, is observed for the first
time), Until (the pattern should hold up to the point
when a certain message, the terminator, is observed
for the first time), or After-until (the pattern should
hold after a certain message, the activator, is observed,
up to the point when another message, the terminator,
is observed), the last being possibly re-entrant.

3.1 Syntax

The following grammar defines the language’s syntax.

〈property〉 ::= 〈scope〉 ‘:’ 〈pattern〉
〈scope〉 ::= ‘globally’ | 〈after-until〉 | 〈until〉
〈after-until〉 ::= ‘after’ 〈event〉 [〈until〉]
〈until〉 ::= ‘until’ 〈event〉
〈pattern〉 ::= ‘no’ 〈event〉 [〈time-bound〉]

| ‘some’ 〈event〉 [〈time-bound〉]
| 〈event〉 ‘requires’ 〈event〉 [〈time-bound〉]
| 〈event〉 ‘causes’ 〈event〉 [〈time-bound〉]
| 〈event〉 ‘forbids’ 〈event〉 [〈time-bound〉]
〈time-bound〉 ::= ‘within’ 〈time〉
〈time〉 ::= 〈natural-zero〉 ‘ms’
〈event〉 ::= 〈ros-name〉 [〈alias〉] [〈predicate〉]
〈alias〉 ::= ‘as’ 〈id〉
〈predicate〉 ::= ‘{’ 〈condition〉 ‘}’
〈condition〉 ::= 〈value〉 〈binary-rel-operator〉 〈value〉

| ‘(’ 〈condition〉 ‘)’
| ‘not’ 〈condition〉
| ‘forall’ 〈id〉 ‘in’ 〈msg-field〉 ‘:’ 〈condition〉
| 〈condition〉 〈binary-connective〉 〈condition〉
〈binary-rel-operator〉 ::= ‘=’ | ‘<’
〈binary-connective〉 ::= ‘or’ | ‘and’
〈value〉 ::= 〈boolean〉 | 〈numeric-expr〉 | 〈string〉
〈variable〉 ::= ‘$’ 〈id〉
〈msg-field〉 ::= 〈field-name〉 {‘.’ 〈field-name〉}

| 〈alias-ref 〉 ‘.’ 〈field-name〉 {‘.’ 〈field-name〉}
〈alias-ref 〉 ::= ‘@’ (〈natural-zero〉 | 〈id〉)
〈field-name〉 ::= 〈id〉 [〈index〉]
〈index〉 ::= ‘[’ (〈natural-zero〉 | 〈variable〉) ‘]’

We present only a small set of logical connectives
and relational operators, but we can assume common
syntactic sugar such as the relational operator ‘>’.

The forall quantifier provides a basic means
of iterating over all valid indices of array fields.
The syntax ‘forall i in array’ is roughly equiv-
alent to the Python ‘for i in range(len(array))’.
The grammar also captures references to quantified
variables (‘$var’) and to message fields. Message
fields can be: (i) simple identifiers (‘field’) to re-
fer to a field of the message; (ii) multiple identi-
fiers separated by dots (‘parent.child’) to refer to
nested fields of composed messages; or (iii) indexed
(‘parent.array[1]’) to access array positions.

Every message in a property has an implicit as-
sociated index, to enable cross-references with ‘@’.
Messages are numbered, starting at 1 with the acti-
vator event, if any, and then following up with the
pattern events. Since numeric references can become
confusing, we introduce event aliases to allow human-
readable names instead. For instance, a predicate

can refer to fields of an activator ‘/bumper as Bumper’
as ‘@Bumper.field’ rather than ‘@1.field’. Cross-
references are only possible if the referenced message
(unambiguously) happens before the current message;
e.g., pattern events can refer to the scope activator.

3.2 Semantics

The original specification patterns (Dwyer et al., 1999)
are intended for propositional temporal logics, such
as LTL, but our specification language adds first-order
predicates over data and real-time constraints. Thus,
we use Metric First-Order Temporal Logic (Chomicki,
1995) (MFOTL), whose syntax and semantics are sim-
ilar to other commonplace logics, such as LTL, except
that temporal operators in MFOTL can be annotated
with metric time intervals. A temporal formula is only
satisfied if it is satisfied within the bounds given by the
time interval of the temporal operator, which is always
relative to a timestamp.

Let ∆ be the set of non-empty intervals over N0,
such that an interval δ ∈ ∆ is written [δ1,δ2) with δ1 ∈
N0, δ2 ∈N∪{∞}, and δ1 < δ2. A signature S is a tuple
(C,P,a), where C is a finite set of constant symbols,
P is a finite set of predicates disjoint from C, and the
function a : P 7→N provides the arity of each predicate.
Also, let V denote a countably infinite set of variables,
where we assume that V∩ (C∪P) = /0.
Definition 1. The formulae over S are inductively
defined: (i) For x,y∈V∪C, x= y is a formula. (ii) For
p ∈ P, n = a(p) and x1, . . . ,xn ∈ V∪C, p(x1, . . . ,xn)
is a formula. (iii) For x ∈ V, if ϕ and ψ are formulae,
then (¬ϕ), (ϕ∧ψ) and (∃x : ϕ) are formulae. (iv) For
δ ∈ ∆, if ϕ and ψ are formulae, then (tδϕ), (dδϕ),
(ϕSδ ψ), and (ϕUδ ψ) are formulae.

Here t is read previous, d next, S since and U
until. Other common operators can be defined in terms
of the core set, namely � (historically), � (globally),
� (once), ♦ (finally), W (weak-until), B (back-to) and
Z (weak-previous).

A first-order structure D over S consists of a
domain |D| 6= /0 and interpretations cD ∈ |D| and
pD ⊆ |D|a(p), for each c ∈ C and p ∈ P. A tempo-
ral first-order structure over S is a pair (D,τ), where
D = (D0,D1, . . .) is a sequence of structures over S
and τ = (τ0,τ1, . . .) is a sequence of natural numbers
(timestamps), where τ is monotonically increasing
(∀i≥ 0 : τi ≤ τi+1) and makes progress (∃ j > i : τ j >
τi); D has constant domains (∀i ≥ 0 : |Di| = |Di+1|);
and each constant symbol c ∈ C has a rigid interpreta-
tion (∀i≥ 0 : cDi = cDi+1). A valuation is a mapping
v : V 7→ |D|. We abuse notation by applying valuations
also to constant symbols c ∈ C, with v(c) = cD. Ad-
ditionally, we denote v[x 7→ d] as the valuation where

(D,τ,v, i) � x = y iff v(x) = v(y)
(D,τ,v, i) � x < y iff v(x)< v(y)
(D,τ,v, i) � p(x1, . . . ,xa(p))

iff (v(x1), . . . ,v(xa(p))) ∈ pDi

(D,τ,v, i) � (¬ϕ) iff (D,τ,v, i) 2 ϕ

(D,τ,v, i) � (ϕ∧ψ) iff (D,τ,v, i) � ϕ

and (D,τ,v, i) � ψ

(D,τ,v, i) � (∃x : ϕ) iff (D,τ,v[x 7→ d], i) � ϕ,
for some d ∈ |D|

(D,τ,v, i) � (tδϕ) iff i > 0,τi− τi−1 ∈ δ

and (D,τ,v, i−1) � ϕ

(D,τ,v, i) � (dδϕ) iff τi+1− τi ∈ δ

and (D,τ,v, i+1) � ϕ

(D,τ,v, i) � (ϕ Sδ ψ) iff (D,τ,v, j) � ψ

and (D,τ,v,k) � ϕ

for some j ≤ i, τi− τ j ∈ δ and all k ∈ [j+1, i]
(D,τ,v, i) � (ϕ Uδ ψ) iff (D,τ,v, j) � ψ

and (D,τ,v,k) � ϕ

for some j ≥ i, τ j− τi ∈ δ and all k ∈ [i, j)
Figure 3: Metric First-Order Temporal Logic semantics.

every mapping is unaltered, when compared to v, save
for x ∈ V, which should map to d ∈ |D|.
Definition 2. Let (D,τ) be a temporal structure over
S, with D = (D0,D1, . . .) and τ = (τ0,τ1, . . .), ϕ and ψ

formulae over S, v a valuation, and i ∈N0. The tempo-
ral structure satisfies a formula ϕ, written (D,τ) � ϕ,
if and only if (D,τ,v,0) � ϕ, as shown in Figure 3.

In the interpretation of the proposed language, the
first-order structures Di over S consist of a domain |D|
containing all numbers, Boolean values, strings, and
messages (consisting of a unique identifier). Also, for
all message channels /ch there is a predicate ch ∈ P
such that ch(m) is true if and only if a message m
can be observed on /ch. The relation of messages
to data fields is given by predicates field(m,x) ∈ P
such that field(m,x) holds if and only if a message
m carries the value (or message) x in a field named
field. To simplify quantification over the indices of
an array, we redefine field(m,k) to hold for all indices
of the array rather than values. That is, for k ∈ N0,
field(m,k) holds if k is an index of an array named
field. In addition, we define a predicate fieldk(m,x)
that holds if the field field[k] carries the value x,
i.e., if field(m,k) holds and the array contains x at
index k. We address composed messages, f.g, with
the composition of predicates f and g, such that

g◦ f (m,x)≡ (∃m′ : f (m,m′)∧g(m′,x))

Definition 3. Let (D,τ) be a temporal structure over
S, with D = (D0,D1, . . .) and τ = (τ0,τ1, . . .). Let v
be a valuation, i ∈ N0 and Φ a property over S. We
define JΦK, the interpretation of Φ, as a function that
translates Φ to its equivalent MFOTL formula. Thus,

Scopes
Jglobally: ΨK , JΨK /0

⊥
Juntil q: ΨK , JΨK /0

q

Jafter p: ΨK , �(∀x : (JpKx∧Z (�(@y : JpKy)))→ JΨKx
⊥)

Jafter p until q: ΨK , �(∀x : (JpKx∧ (@y : JqKy)∧Z((@y : JpKy) B (∃y : JqKy)))→ JΨKx
q)

Patterns
Jno b within t msKx

q , (@y : JbKx,y) W[0,t) (∃y : JqKy)

Jsome b within t msKx
q , (@y : JqKy) U[0,t) ((∃y : JbKx,y)∧ (@y : JqKy))

Ja causes b within t msKx
q , (∀y : JaKx,y→ Jsome b within t msKx,y

q) W (∃y : JqKy)

Ja forbids b within t msKx
q , (∀y : JaKx,y→ Jno b within t msKx,y

q) W (∃y : JqKy)

Jb requires a within t msKx
q , ∀y : (¬JbKx,y W (∃z : JaKx,y,z∨ JqKz))

∧((JbKx,y→ �[0,t)(∃z : JaKx,y,z)) W (∃z : JqKz))

Events
J/chKx , J/ch {>}Kx

J/ch {ϕ}Kx1,...,xn , ch(xn)∧ JϕKx1,...,xn
/0

Predicates
J>Kx

γ , >
J⊥Kx

γ , ⊥
J(ϕ)Kx

γ , (JϕKx
γ)

Jnot ϕKx
γ , ¬JϕKx

γ

Jϕ and ψKx
γ , JϕKx

γ ∧ JψKx
γ

Jϕ or ψKx
γ , JϕKx

γ ∨ JψKx
γ

Ja∼ bKx
γ , ∃y,z : yJaKx

γ ∧ zJbKx
γ ∧ y∼ z

for ∼∈ {=,<,≤,>,≥}

Jforallvarin f: ϕKx
γ , ∀y : yJ f Kx

γ → JϕKx
γ[var7→y]

Jforallvarin @k. f: ϕKx
γ , ∀y : yJ@k. f Kx

γ → JϕKx
γ[var 7→y]

Values and Expressions

yJcKx
γ , y = c for c constant

yJ$varKx
γ , y = γ(var)

yJ f Kx1,...,xn
γ , J f Kγ(xn,y)

yJ@k. f Kx1,...,xn
γ , J f Kγ(xk,y) if 1≤ k ≤ n

yJ(a)Kx
γ , (yJaKx

γ)

yJa⊕bKx
γ , ∃z,w : zJaKx

γ ∧wJbKx
γ ∧ y = (z⊕w)

for ⊕ ∈ {+,−,×,÷}

Field Predicates
JfieldKγ , field
Jfield[k]Kγ , fieldk

Jfield[$var]Kγ , fieldγ(var)

J f1. f2 Kγ , J f2Kγ ◦ J f1Kγ

Figure 4: Specification language semantics.

we define (D,τ,v, i) �Φ as (D,τ,v, i) � JΦK, and JΦK
is defined as shown in Figure 4.

To shorten some formulae and improve readability,
we assume that all interpreted properties Φ are type-
checked prior to their semantic interpretation JΦK.

Scopes. globally and until start, by definition,
at the initial instant of the trace and, thus, require the
inner formula to hold at that instant. On the other hand,
after and after-until start when an activator is
been observed – hence the �(activator→Ψ) type of
formula. The translation of a pattern Ψ is denoted by
JΨKx

q and is passed a vector of quantified messages
x = x1, . . . ,xn – initially the activator, if any – and the
terminator event q, if any.

Patterns. We present only the timed variants
of each pattern, since untimed variants are particular
cases where δ = ∞. Unary patterns, no and some,
are already close to a MFOTL formula, requiring the

translation of event predicates, denoted by JaKx for an
event a given quantified messages x. The binary pat-
terns causes and forbids are translated via compo-
sition with the unary ones. The most complex pattern,
requires, is defined with two conjuncts: behaviour
b should not happen before its stimulus a or the scope
terminator q; and if b happens before q, then a must
have happened within the previous δ time instants.

Predicates. The translation of a predicate ϕ is
mostly direct to logic values or connectives, and is de-
noted by JϕKx

γ for quantified messages x and a mapping
γ for syntactic replacements arising from quantifica-
tions (given a variable name as written in the property,
its occurrences are replaced with a quantified variable
in |D|). When translating an expression a, yJaKx

γ de-
notes a predicate that tests whether the value of the
variable y is one of the values for the expression a.

Values and Expressions. Message fields translate

to their homonymous predicates, and field composi-
tion to predicate composition, as previously explained.
References to other messages, e.g., @k. f , convert the
human-readable aliases to the message index, referring
to the k-th message of the superscript vector, xk, rather
than the current message, xn. Lastly, arithmetic expres-
sions bind quantified variables to domain values.

4 TRACE SCHEMAS

This section formalizes the core notion of the proposed
approach, that of input trace schemas. Then it shows
how they integrate the approach by presenting how
schemas are derived from patterns, and then concrete
input traces generated from schemas.

4.1 Formalization

A trace schema is a sequence of restrictions on a se-
quence of messages, forcing messages with certain
properties to be published and forbidding certain other
kinds of messages between such publications.

Definition 4. An input trace schema Γ is a set of for-
mulae over a signature S, written as a sequence of
statements according to the following grammar.

〈schema〉 ::= 〈statement〉*
〈statement〉 ::= ‘forbid’ 〈event〉

| 〈bounds〉 ‘:’ ‘publish’ 〈event〉
〈bounds〉 ::= ‘+’ 〈natural-zero〉 ‘..’ [〈natural-zero〉]

To convert schemas into MFOTL formulae, let us
start by defining an atomic variable e0 for the initial
instant of the trace and atomic variables ei for each of
the k publish events in a schema. Each atomic vari-
able ei is true only at the instant when the ith publish
event happens. Given statements of the form

+mi..ni: publish /ch {ϕi}

for all i ∈ N, we have that: �(ei → d(�¬ei)), i.e.,
once ei happens, it will not happen again; and also
�(ei → (∃x : ch(x)∧ϕi)), i.e., at the instant ei hap-
pens, there is a message on /ch such that ϕi. Then,
we must schedule all mandatory events. For all i≤ k
we must observe �(ei−1→ ♦[mi,ni)ei). Then, the con-
straints given by forbid statements must be consid-
ered. Given a statement forbid /ch {ϕ} placed be-
tween events ei and ei+1, it follows that: �(ei →d((¬∃x : ch(x)∧ϕ) W ei+1)). The d and W oper-
ators ensure that the constraints do not apply at the
logical instants ei and ei+1. If the schema ends with
a forbid statement, the W operator will impose the
constraints indefinitely, as ek+1 ≡⊥.

〈globally: Ψ〉 , 〈Ψ〉
〈until q: Ψ〉 , 〈Ψ〉

〈after p: Ψ〉
〈after p until q: Ψ〉 ,

forbid p
+0..: publish p
〈Ψ〉

〈no b within t ms〉 , ε

〈some b within t ms〉 , ε

〈b requires a within t ms〉 , ε

〈a causes b within t ms〉
〈a forbids b within t ms〉 ,

forbid a
+0..: publish a

Figure 5: Translation from specifications to schemas.

4.2 Generating Input Traces

From Patterns to Schemas. For each pattern of the
property language we specify how a base schema is
derived. These schemas represent a set of traces with
minimal constraints such that every counterexample
to the property is necessarily in them (i.e., they are
complete). These schemas essentially take into con-
sideration the activators and stimuli of the properties,
without which no counterexample can be found.

This translation between properties and base
schemas is shown in Figure 5, and is mostly self-
explanatory, denoted by 〈Φ〉 for a property Φ. For
example, consider the base schema for a causes b:
a stimulus is forced to be published, otherwise the
property cannot be falsified.

Refining Schemas. Axioms play an important
role in establishing valid data and valid trace structure.
In some cases, they can be embedded into the base
schemas, so that generated traces are mostly correct
by construction. The refinement of a schema Γ by an
axiom Φ is denoted by bΓcΦ. We support refinements
for two types of properties, specifically:

1 globally: no /c {ϕ}
2 globally: /c forbids /c within t ms

If an axiom Φ is of the first shape, constraints are
added to the data a message can carry. For /c 6= /d:

 Γ1
δ: publish /d {ψ}
Γ2


Φ

,

Γ1
forbid /c { ϕ}

δ: publish /d {ψ}
forbid /c { ϕ}

Γ2

Publish statements on the same channel /c also
have their predicates restricted:

 Γ1
δ: publish /c {ψ}
Γ2


Φ

,

Γ1
forbid /c { ϕ}

δ: publish /c
{ ψ and not φ}

forbid /c { ϕ}
Γ2

Axioms Φ of the second shape impose additional
temporal constraints. For two consecutive publish
statements on channel /c, we shift the lower-bound of
the second interval, if t< n:

Γ1
δ: publish /c {ψ}
Γ2
m..n:
publish /c {ψ′}

Γ3


Φ

,

Γ1
δ: publish /c {ψ}
Γ2
t..n:
publish /c {ψ′}

Γ3

If t≥ n, the specification is a contradiction.
From Schemas to Traces. The last step is to

generate traces that conform to the schemas.

Definition 5. Let S be a signature, v a valuation and
Γ an input trace schema over S. A temporal first-order
structure (D,τ) over S is said to be an instance of Γ if
and only if, for all ϕ ∈ Γ, it is true that (D,τ,v,0) � ϕ.

This definition determines whether a temporal first-
order structure (an infinite trace) is an instance of a
schema, but we can only generate finite input traces.
Thus, we need to validate finite traces against schemas.

Definition 6. An input trace of length k is a k-prefix of
a temporal structure over S, for some k ∈ N0.

Definition 7. Let S be a signature, v be a valuation
and Γ be an input trace schema over S. Let k ∈N0 and
(D[0,k),τ[0,k)) be a k-prefix of a temporal structure over
S. The k-prefix (D[0,k),τ[0,k)) is said to be an instance
of Γ if and only if, for all (D′,τ′) temporal structures
over S, (D[0,k),τ[0,k)) is a k-prefix of (D′,τ′), and it is
true that (D′,τ′,v,0) � ϕ, for all ϕ ∈ Γ.

The previous definition, in essence, states that, for
a finite trace to be an instance of a schema, any of its
possible (infinite) extensions must also be instances of
the same schema, as is standard in bounded temporal
semantics. With this, we are now equipped to produce
traces that comply with a set of constraints.

The algorithm for trace generation is simple. An
initial pass allocates all timestamps and messages as-
sociated with publish events. A second pass iterates
over all intervals before and after the mandatory events,
and, evaluating the applicable forbid statements for
each interval, builds a set of all usable channels. From
this set, it then produces a random number of mes-
sages, and intersperses the messages randomly along
the interval. The result is a sorted list of (timestamp,
channel, message) tuples; a finite trace.

5 TOOL SUPPORT FOR ROS

Given a system specification, composed of behavioural
properties following the syntax shown in Section 3
and a description of the inputs and outputs of the
SUT, the proposed schema-based testing approach au-
tomatically generates property-based tests that try to
falsify the specification. Our implementation is com-
positional, tackling one problem at a time, namely:
property parsing1, runtime monitor generation2 and
data generation for trace schemas3. To obtain the nec-
essary architecture model of the SUT, we implemented
the test generator as a plug-in for the HAROS frame-
work, which is already capable of extracting models
from source code (Santos et al., 2019). This eases
workflow automation, from model extraction to test
generation, execution and reporting.

From a high-level perspective, the tool starts by
filtering the provided properties. Each property is as-
signed one category of axiom, testable or non-testable.
Although in theory all properties can be tested, our
current implementation for ROS only considers a prop-
erty testable if we have complete control of its scope
and stimulus events. That is, its scope activator, scope
terminator and stimulus event (if applicable) must be
open subscribed topics (inputs), while its behaviour
event must be a published topic (output). Further-
more, predicates over input messages must not contain
arithmetic or quantified expressions. These limitations
help ensure that tests are feasible and reproducible.
Predicates over input messages are embedded into the
message generators on a best-effort basis, which still
requires a subsequent runtime validation step. Quanti-
fiers and arithmetic expressions make constraints over
data significantly more complex, meaning that more
input candidates have to generated until one is valid.
Limiting outputs only to behaviour events grants the
test driver control over the pace of the test; the input
trace schema dictates when scopes should start and
when behaviours should be triggered.

For each testable property, the tool identifies the
property’s pattern and produces the corresponding base
schemas, as presented in Section 4. Axioms are consid-
ered next, if applicable, to refine all starting schemas.
Refinement is a best-effort attempt at generating cor-
rect data by construction. Again, it does not capture
all given constraints and must be validated at runtime.

Following the schema generation and refinement
steps, the tool applies meta-programming Jinja4 tem-
plates for all properties, to produce source code blocks

1https://github.com/git-afsantos/hpl-specs
2https://github.com/git-afsantos/hpl-rv-gen
3https://github.com/git-afsantos/haros-plugin-pbt-gen
4https://palletsprojects.com/p/jinja/

https://github.com/git-afsantos/hpl-specs
https://github.com/git-afsantos/hpl-rv-gen
https://github.com/git-afsantos/haros-plugin-pbt-gen
https://palletsprojects.com/p/jinja/

for the runtime monitors, trace generators and the over-
all test case structure. Each property pattern has its
corresponding code template, meaning that we can
produce optimized monitors and data generators for
our limited catalogue of options. The trace genera-
tors are implemented as data generators for Hypoth-
esis (MacIver et al., 2019), a well-established PBT
library. At the end, all pieces are weaved into a single
test script, which is responsible for successively pro-
ducing traces using Hypothesis, according to a given
schema, launching the SUT using tools of the ROS
infrastructure, deploying runtime monitors, replaying
the input trace and then observing the results. The test
script is itself a ROS node, allowing runtime monitors
to subscribe directly to all topics in the system, and,
thus, observe messages as they are published.

6 EVALUATION

The ROS-based implementation of the proposed
schema-based approach for PBT has been applied to
two concrete robotics applications. Note that the SUT
are treated as black boxes with a publisher-subscriber
interface, which makes the actual number of ROS
nodes in the network irrelevant. Thus, for both case
studies, we tested both individual nodes and fully inte-
grated systems. We present now our case studies, the
methodology behind our evaluation of the approach
and, lastly, the observed results.

6.1 Case Studies

The iClebo Kobuki5 is our first test subject and one
of the most iconic ROS robots. It is a low-cost, per-
sonal robot kit with open-source software whose main
purpose is to provide an entry-level platform for roboti-
cists to build applications with. Kobuki provides for an
interesting case study, since its source code has been
relatively well maintained and there is online docu-
mentation easily available – which makes it easier to
understand the expected behaviour of the system.

AgRob V166 is a modular robotic platform for
hillside agriculture, adapted to steep slope vineyards.
There are a few appealing factors in AgRob V16 as a
case study, namely that it is an industrial robot, more
complex than Kobuki, and that a large part of its soft-
ware comes from integrated third-party packages.

For this evaluation, and for both robots, we con-
sider a configuration with three components: a Trajec-
tory Controller node, that provides velocity commands

5http://kobuki.yujinrobot.com/about2/
6http://agrob.inesctec.pt/

to the robot; a Safety Controller node, responsible for
reacting to dangerous sensor readings; and a Supervi-
sor node, that selects which commands to pass down
to the hardware, based on the current safety state and
the priority of the command source.

6.2 Methodology

One of the characteristics of PBT is that it can only
find discrepancies between implementation and speci-
fication (Hughes, 2016). Whether such discrepancies
are an error in the system or in the specification is left
to the user to decide. We have spent months studying
the implementations of our target systems. Judging
from the available documentation, we assume that they
are relatively stable, with correct functional behaviour
for the most part. This is a crucial assumption, as we
write specifications mostly based on the actual (and
expected) behaviour of the implementation. Given that
PBT focuses on discrepancies, our evaluation process
involves two types of testing:
Positive Testing is the act of testing properties that

we know to be true. The goal is to confirm that the
tool does not introduce false positives – i.e., that it
does not report an error if there is none to report.

Negative Testing is the act of testing properties that
we know to be false. The tool should be able to
find at least one counterexample, athough this may
require tuning how many examples are tested.
We follow a systematic method to write specifica-

tions that include both true and false properties. We
start by writing a catalogue of true properties and ax-
ioms for each system. Then, we apply specification
mutation (Budd and Gopal, 1985; Ammann and Black,
1999; Black et al., 2000; Trab et al., 2012) to construct
mutants (i.e., variants) of the initial set. Mutations are
often small changes, such as changing a single opera-
tor or a variable. If the initial properties are as precise
as we can write them, any small mutation should end
up generating a false property. In practice, a validation
step is still required to discard duplicates, trivial prop-
erties and equivalent mutants (mutants that are still
true properties). Mutant validation is done manually,
since it is an undecidable problem (Trab et al., 2012).

The existing literature provides many operators to
mutate specifications. We adapt and reuse those that
are applicable to our specification language, such as:
replacing an operand in an expression with another
valid operand of the same type (e.g., 1 with 0); negat-
ing an expression; replacing a logical operator (e.g.,
and with or); replacing a relational operator (e.g.,
< with >); removing a predicate from an event (e.g.,
/p {ϕ} becomes /p); widening or shortening time con-
straints; replacing a message channel with another of

http://kobuki.yujinrobot.com/about2/
http://agrob.inesctec.pt/

the same type; widening the scope (e.g., after /p
{ϕ} becomes globally); and replacing the property’s
pattern (e.g., causes with forbids).

After building the final catalogue of property mu-
tants, we run the PBT tool on each mutated property
multiple times, with different parameters. With this,
we aim to answer the following research questions:
RQ1, how effective are the base schemas we intro-
duce in Section 4, when compared to a pure random
approach; RQ2, how effective is a specification with
stronger axioms; and RQ3, what efficiency gains can
we make from base schemas and stronger axioms.

To answer these questions, we ran the tool with
empty schemas (effectively turning tests into a naïve
PBT approach with random exploration); with the auto-
matically derived base schemas; and with both empty
and base schemas refined through stronger axioms.
To evaluate RQ1 and RQ2, we compare the resulting
specification coverage (Ammann and Black, 1999), a
metric that is, in essence, a mutation score, i.e., the
ratio of mutants that the testing suite kills. For RQ3,
for each property mutant we measured the number of
examples until a test fails for the first time; the number
of examples until the final test result (includes the PBT
shrinking phase); and the required time to run each
example (in full, including data generation, launching
the SUT, and replaying the example trace).

6.3 Results

The evaluation results we present here are an aggre-
gated overview of all SUTs and test runs (6 individual
nodes and 2 full systems). In total, our specification is
comprised of 153 axioms, 33 true properties and 318
mutants. Some axioms from testing single nodes are
replicated to the integrated system, making the total
number of unique axioms 82.

Effectiveness. Regarding the positive testing step,
no false positives have been observed in any of the
SUTs, resulting in a precision of 1. As for the negative
testing step, for the total of 318 mutants, and an initial
limit of 200 examples per property, our schema-based
approach achieved a mutant score (or recall) of 0.909
(29 surviving mutants), while the naïve approach only
achieved a score of 0.808 (62 survivors). All mutants
that survived the base schema also survived the empty
schema. Increasing the limit to 500 examples per prop-
erty did not make a difference for the empty schemas,
but dropped the survivors to 27 with the base schemas.
These surviving mutants are all very similar, belong-
ing to 5 properties of AgRob V16 (one of them being
the root of 13 false negatives). The expected coun-
terexamples for these mutants require sequences of 3
or more messages, with both timing and content con-

straints. Answering RQ1, the base schemas represent
an increase in recall of 13.24% (from 0.808 to 0.915).

Next, we reverted the testing limit to 200 examples
and strengthened 16 axioms affecting the surviving
mutants. The mutant score increased to 0.934 (21
surviving mutants) with our base schemas – a better
improvement than simply running more examples. The
empty schema also achieved an increased mutant score,
of 0.858 (45 survivors). Again, raising the testing
limit to 500 examples was not enough for the naïve
approach, leaving 35 survivors (score of 0.89). For
our base schemas, however, the increased limit was
sufficient to kill all mutants. Answering RQ2, stronger
axioms represented a boost in recall as high as 12.35%.

Efficiency. On average, each example takes about
8 seconds to set up and execute, including generat-
ing the trace, and starting and shutting down the SUT.
However, this number tends to decrease the less ex-
amples we run, as the PBT library requires less effort
to find new inputs. All properties and mutants com-
bined required a total of 43 029 examples until our
base schemas killed all mutants, which makes for a
total runtime of about 98 hours and 18 minutes. Con-
sidering only the cases for which the tool found a coun-
terexample within 200 examples, it took, on average, 6
examples (52 seconds) to find an initial counterexam-
ple and 27 examples to report the final counterexample
(226 seconds). This difference is due to the example
shrinking phase of PBT, which spanned nearly half of
the negative testing runtime (17 959 examples out of
36 429). While the average time per example is similar
for an empty schema, the total number of examples
tried for the whole test suite jumps up to 92 800, for
a total runtime of about 211 hours and 59 minutes. A
pure random approach takes longer not only to find
an initial counterexample (12 examples), but also to
shrink it and report the final counterexample (58 ex-
amples). Overall, and answering RQ3, we observe
that the schema-based approach is between 3 times
(median) and 7 times (average) faster than the random
approach in all measures, if there is a counterexample
to be found. In addition, for a limit of 500 examples,
stronger axioms killed an additional 27 mutants with
our approach, which amounts to sparing 5 697 exam-
ples, or about 12 hours and 40 minutes of runtime.

7 RELATED WORK

Specification-based Testing. Most of the existing
literature on SBT shares a few common traits. First,
regarding the tested specifications, there is a general
lack of high-level (possibly pattern-based) specifica-
tion languages. Properties are encoded directly in for-

mal logics, often in LTL, which makes our approach
more easily usable by non-experts. Second, the fo-
cus on LTL means that specifications cannot impose
constraints related to real-time performance, as we
can with MFOTL semantics. Third, few approaches
target publisher-subscriber architectures over (possi-
bly) distributed systems. A notable exception is the
work of Michlmayr et al., which does target publisher-
subscriber systems, although these are non-distributed
Java applications (Michlmayr et al., 2006).

Different strategies and techniques are used to ex-
plore relevant test cases from LTL specifications. In
the case of Michlmayr et al., it is unclear whether there
is a concrete strategy behind input generation. Tan et
al. convert the original formula into a finite set of
formulae characterizing non-trivial tests (Tan et al.,
2004); these are then fed to a model checker, whose
counterexamples are turned into concrete inputs. Ar-
caini et al., and later Narizzano et al., build online
monitors based on Büchi automata from LTL specifi-
cations over sequences of function calls (Arcaini et al.,
2013; Narizzano et al., 2020). The monitors serve both
as a test oracle and as an automaton whose states are
used to generate test cases, according to various cover-
age criteria. The former focuses on safety properties
only, while Narizzano et al. consider also bounded
liveness (co-safety) properties. Bloem et al. follow
a similar approach, but deem requirements to be too
abstract to fully predict the behaviour of a black-box
system (Bloem et al., 2019). Their online testing ap-
proach asks the user for a system specification and
a fault model defining coverage goals (rather than a
behaviour model), both specified in LTL. Test cases
are synthesized from an automata of the fault model.

Property-based Testing. Work on PBT often
acts at a much lower level of abstraction than we pro-
pose in this paper. The notion of system specification
is lacking; properties are encoded programmatically
and tend to focus on simpler assertions, rather than
temporal logic formulae. A partial exception to this
pattern is FlinkCheck (Espinosa et al., 2019), a PBT
tool for Apache Flink, a stream processing framework.
Properties over streams are defined programmatically,
but formalized in LTLss, a three-valued variant of LTL
with timeouts on operators.

One of the major problems tackled in PBT research
is input space exploration – how data is generated.
Pure random generation is generally considered inef-
ficient, which led to novel techniques to guide input
generators. ConFuzz (Padhiyar and Sivaramakrish-
nan, 2021) is a PBT technique for event-driven pro-
grams that uses a state-of-the-art grey-box fuzzer to
target concurrency bugs. It focuses on event callback
scheduling, not on the notion of traces of events. Tar-

geted PBT is an enhanced form of PBT where input
generation is guided by a search strategy and a util-
ity function (Löscher and Sagonas, 2017). The latter
attributes a score to each input-output pair that de-
termines how close an input was to falsify the prop-
erty, which should be maximized. Coverage-guided
PBT (Padhye et al., 2019) is another mechanism to
guide test generation, here using coverage information
provided by the execution of the previous tests. In our
case, it is the structure of the high-level specification
that enables us to guide input generation and discard a
large portion of irrelevant message traces.

Lastly, various authors have been researching the
potential of PBT and fuzzing in the context of ROS
systems (Santos et al., 2018; Woodlief et al., 2021;
Delgado et al., 2021). These works confirm the bug
detection effectiveness of these techniques in complex
robotic systems, but they lack high-level property spec-
ifications. They provide mostly message generators,
with limited degrees of input generation guidance.

8 CONCLUSION

Testing distributed message-passing systems is a com-
plex task, for there are many possible causes of failure,
such as message interleaving, message contents or
timing. In this paper we presented a novel schema-
guided testing approach for such systems that com-
bines principles from both Specification-based Testing
and Property-based Testing. With the former, we are
able to identify classes of relevant inputs for a given
temporal property, here called schemas. With the lat-
ter, we have an automated mechanism to instantiate
schemas into actual traces of messages to replay to
the system under test. Specifications are composed of
both assumptions and properties to be tested, formal-
ized with Metric First-Order Temporal Logic to sup-
port real-time constraints and constraints over complex
data structures. Contrary to most existing approaches,
however, specifications are written using a high-level,
pattern-based specification language, also presented in
this paper, to ease the learning curve.

We have applied the proposed approach to robotic
systems implemented with the popular Robot Operat-
ing System middleware. Our results show that schema-
guided testing is both more effective and more efficient
than a pure PBT approach, even when using minimal
schemas. Our first goal for future research is to ex-
plore whether we could further boost performance by
partitioning minimal schemas into several specialized
schemas that, as a whole, are equivalent to the current
schemas. Second, our approach to automatic schema
refinement via user-provided assumptions can be im-

proved. Many assumptions are only validated at run-
time in the current version, which wastes time in data
generation. Third, we will open up the implementation
to accept arbitrary, user-provided schemas, in addition
to properties. Finally, we also envision improvements
to the specification language, so as to support other
property patterns or full-blown state machines.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing support from the projects: ERDF - European Re-
gional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalisation
- COMPETE 2020 Programme; project PTDC/CCI-
INF/29583/2017 (POCI-01-0145-FEDER-029583) fi-
nanced by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e
a Tecnologia; “STEROID - Verification and Valida-
tion of ADAS Components for Intelligent Vehicles
of the Future” from the European Union Financial
Support (FEDER) under grant agreement No. 69989;
and “NORTE-06-3559-FSE-000046 - Emprego alta-
mente qualificado nas empresas – Contratação de Re-
cursos Humanos Altamente Qualificados (PME ou Co-
LAB)” financed by the Norte’s Regional Operational
Programme (NORTE 2020) through the European So-
cial Fund (ESF).

REFERENCES

Ammann, P. and Black, P. E. (1999). A specification-based
coverage metric to evaluate test sets. In HASE, pages
239–248. IEEE CS.

Arcaini, P., Gargantini, A., and Riccobene, E. (2013). On-
line testing of LTL properties for java code. In Haifa
Verification Conference, volume 8244 of LNCS, pages
95–111. Springer.

Black, P. E., Okun, V., and Yesha, Y. (2000). Mutation op-
erators for specifications. In ASE, pages 81–88. IEEE
CS.

Bloem, R., Fey, G., Greif, F., Könighofer, R., Pill, I., Riener,
H., and Röck, F. (2019). Synthesizing adaptive test
strategies from temporal logic specifications. Formal
Methods Syst. Des., 55(2):103–135.

Budd, T. A. and Gopal, A. S. (1985). Program test-
ing by specification mutation. Computer Languages,
10(1):63–73.

Chomicki, J. (1995). Efficient checking of temporal integrity
constraints using bounded history encoding. ACM
Trans. Database Syst., 20(2):149–186.

Delgado, R., Campusano, M., and Bergel, A. (2021). Fuzz
testing in behavior-based robotics. In ICRA, pages
9375–9381. IEEE.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999).
Patterns in property specifications for finite-state veri-
fication. In ICSE, pages 411–420. ACM.

Espinosa, C. V., Martin-Martin, E., Riesco, A., and
Rodríguez-Hortalá, J. (2019). FlinkCheck: Property-
based testing for Apache Flink. IEEE Access,
7:150369–150382.

Hughes, J. (2016). Experiences with QuickCheck: Testing
the hard stuff and staying sane. In A List of Successes
That Can Change the World, volume 9600 of LNCS,
pages 169–186. Springer.

Löscher, A. and Sagonas, K. (2017). Targeted property-
based testing. In ISSTA, pages 46–56. ACM.

MacIver, D., Hatfield-Dodds, Z., and Contributors, M.
(2019). Hypothesis: A new approach to property-based
testing. Journal of Open Source Software, 4(43):1891.

Michlmayr, A., Fenkam, P., and Dustdar, S. (2006).
Specification-based unit testing of publish/subscribe
applications. In ICDCS Workshops, page 34. IEEE CS.

Narizzano, M., Pulina, L., Tacchella, A., and Vuotto, S.
(2020). Automated requirements-based testing of
black-box reactive systems. In NFM, volume 12229 of
LNCS, pages 153–169. Springer.

OMG (2015). Data Distribution Service (DDS), Version 1.4.
Object Management Group (OMG).

Padhiyar, S. and Sivaramakrishnan, K. C. (2021). ConFuzz:
Coverage-guided property fuzzing for event-driven pro-
grams. In PADL, volume 12548 of LNCS, pages 127–
144. Springer.

Padhye, R., Lemieux, C., and Sen, K. (2019). JQF: coverage-
guided property-based testing in java. In ISSTA, pages
398–401. ACM.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS:
An open-source Robot Operating System. In ICRA
Workshop on Open Source Software.

Santos, A., Cunha, A., and Macedo, N. (2018). Property-
based testing for the robot operating system. In A-
TEST@ESEC/SIGSOFT FSE, pages 56–62. ACM.

Santos, A., Cunha, A., and Macedo, N. (2019). Static-time
extraction and analysis of the ROS computation graph.
In IRC, pages 62–69. IEEE.

Santos, A., Cunha, A., and Macedo, N. (2021). The high-
assurance ROS framework. In RoSE@ICSE, pages
37–40. IEEE.

Santos, A., Cunha, A., Macedo, N., and Lourenço, C. (2016).
A framework for quality assessment of ROS reposito-
ries. In IROS, pages 4491–4496. IEEE.

Tan, L., Sokolsky, O., and Lee, I. (2004). Specification-
based testing with linear temporal logic. In IRI, pages
493–498. IEEE SMCS.

Trab, M. S. A., Counsell, S., and Hierons, R. M. (2012).
Specification mutation analysis for validating timed
testing approaches based on timed automata. In COMP-
SAC, pages 660–669. IEEE CS.

Woodlief, T., Elbaum, S., and Sullivan, K. (2021). Fuzzing
mobile robot environments for fast automated crash
detection. In ICRA, pages 5417–5423. IEEE.

