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A B S T R A C T

In robotic applications, it is common to develop several variants of the same system (also known as a software
product line), for example, to support different configurations of a robot. ROS is the most popular framework for
developing robotic applications, where each application is implemented as a distributed system of computation
nodes that communicate through message passing. HAROS is a framework for static analysis of ROS-based
code. It can extract an abstract model of a ROS system’s architecture (called the computation graph) and perform
an analysis on that model. However, it can only analyse one configuration at a time.

In this thesis, we present three different approaches for encoding various ROS computation graphs in a single
variational data structure, which contains the information related to the whole system and not just a configura-
tion. Additionally, we also define a variational execution algorithm for each approach, along with a small query
language, so that we can query and perform some analysis on said data structures. Lastly, we evaluate these
algorithms and data structures so that we can reach some conclusions on which approaches work best, and in
what conditions.

K E Y W O R D S Variability, Variational Software, Variational Data Structures, Variational Query Languages,
Robotics, Software Product Lines
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R E S U M O

Nas aplicações robóticas, é comum desenvolver diversas variantes do mesmo sistema (também conhecido
como uma software product line) para, por exemplo, suportar diferentes configurações de um robot. O ROS
é a framework mais popular no que toca ao desenvolvimento de aplicações robóticas, onde cada aplicação é
implementada como um sistema distribuído de nós de computação que comunicam entre si através do envio
de mensagens. O HAROS é uma framework de análise estática de código ROS. Consegue extrair um modelo
abstrato de uma arquitetura de um sistema ROS (chamado grafo de computação) e executar nesse modelo uma
análise.

Nesta tese, apresentamos três diferentes abordagens para codificar vários grafos de computação ROS numa
única estrutura de dados variacional, que contém a informação relativa a todo o sistema e não apenas a uma
configuração. Adicionalmente, também definimos um algoritmo de execução variacional para cada abordagem,
juntamente com uma pequena linguagem de query, de forma a que possamos analisar e pesquisar nessas
estruturas de dados. Por fim, avaliámos estes algoritmos e estruturas de dados de modo a que possamos
chegar a algumas conclusões sobre que abordagens funcionam melhor, e em que situações.
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1

I N T R O D U C T I O N

Nowadays, robots are everywhere, as they are “intelligent” machines ultimately designed to help and assist
humans in their day-to-day lives. The design, construction and development of these robots are embedded in a
discipline called robotics.

Creating truly robust robot software is hard because there are many things to take account for and that vary
constantly. For this reason, the Robot Operating System (ROS) framework was created. ROS is the most popular
framework for developing robotic applications, providing a collection of tools, libraries and conventions that aim
to simplify this task. In ROS, a robotic application is implemented as a distributed system of computation nodes
that communicate through message passing following the publish-subscribe paradigm.

It is common to develop several variants of the same ROS system, for example, to support different configu-
rations of a robot. In ROS, these different configurations are typically managed ad-hoc through different launch
files. These files include the configuration of the system that will be executed, as well as which computation
nodes exist.

One of robotics’ major concerns is safety, as some robots are being used in safety-critical contexts. Currently,
this safety relies mainly on software, in particular when robots operate in unstructured environments requiring a
flexibility not possible with hardware based security. As a way to ensure it, the use of formal methods is essential,
as it allows for an appropriate mathematical analysis to be made, contributing to the overall reliability of the
system’s design.

High-assurance ROS (HAROS) is a framework for static analysis of ROS-based code. Static analysis consists
in extracting information from the source code without executing it. This allows an early detection of problems in
the software development life cycle, which would go unnoticed in later stages of the development. HAROS can
extract an abstract model of a ROS system’s architecture (called computation graph) from a launch file and from
the source code of the computation nodes referred to in that launch file. This ROS computation graph can have
architectural restrictions imposed by custom queries defined by the user through one of HAROS plugins.

Currently, this HAROS plugin for architectural queries only analyses one configuration at a time. However, a
robot can comprise hundreds of different configurations, making this approach unfeasible in practice. The overall
goal of this thesis is precisely to improve this HAROS plugin, so that it can analyse multiple configurations at the
same time. With this goal in mind, we will first define different possible techniques for encoding the various ROS
computation graphs in a single variational data structure. Then, we will define a minimal query language and
the respective variational execution algorithms, so that we can run analyses on such data structures, thus laying
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the foundations for a new implementation of the HAROS query plugin that will be able to efficiently analyse all
configurations of a robot at once.

This thesis is organized as follows.

• In Chapter 2, we create a running example of a robotic application, that will be used throughout the
entire thesis. We also implement this running example in ROS, showcasing the different features of the
framework, and we use HAROS to perform an analysis on the implemented application.

• In Chapter 3, we present the concepts of software product lines and variability. We discuss their origin
and importance, and give motivation for the need to perform analysis on them and with them.

• In Chapter 4 we present three different approaches for modeling variational data in a single data structure.

• In Chapter 5 we present the query language created for specifying properties, and also define the varia-
tional algorithms for executing these queries in variational data structures.

• In Chapter 6 we discuss how these data structures and algorithms where implemented in Python.

• In Chapter 7 we define a couple of techniques for generating synthetic variational databases, so that we
can then perform an evaluation of the time and space efficiency of the different algorithms.

• Finally, in Chapter 8, we conclude the work, making a brief summary of the results obtained and presenting
ideas for future work.
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D E V E L O P M E N T A N D A N A LY S I S O F A R O S A P P L I C AT I O N

In this chapter, we briefly describe how to develop a simple robotic application with the Robot Operating System
(ROS) (Quigley, 2009), nowadays the most popular middleware for developing robotic software. We also show
how to perform some static analyses of the developed code with HAROS, a plugin based tool for evaluating the
quality of ROS software (Santos et al., 2016, 2019). Note that this description is only focused on the functionalities
that are relevant to the theme of this thesis. For a more detailed description about these tools the reader should
check the above references.

2.1 R U N N I N G E X A M P L E

The running example to be implemented in this chapter is the Controlled Turtlesim (CT) system, a simulation
that contains a turtlebot1 whose movement can be controlled both manually and autonomously. The manual
control is made by the user through the keyboard, while the autonomous one is made by the turtlebot, randomly.
If both types of movement are enabled, the manual movement has always priority over the autonomous one, the
latter only being activated if the former has been inactive for a certain pre-defined time, and deactivated whenever
manual instructions are being received. Furthermore, the simulation’s space is limited, meaning it has borders.
In this system, the turtlebot can also be aware of its surroundings, having a safety protocol that prevents it from
hitting the border. Also, when moving, the turtle leaves a colored trail of the movement. When the safety protocol
is activated, the turtle’s pen color is changed.

As we can see, we do not want to implement a single application, but rather a family of applications, each with
its own configuration. The CT system has three possible features, that can be represented by the following set:

F = {CM, RM, SC}

where

• CM, Controlled Movement - The turtlebot movement is manually controlled by the user using the key-
board.

• RM, Random Movement - The turtlebot moves autonomously and randomly.

1 https://www.turtlebot.com
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2.2. Robot Operating System 6

• SC, Safety Controller - Prevents the turtlebot from hitting walls, and changes its pen color.

Since all features are optional, the set of all possible configurations for the CT system is represented by the
powerset of F:

C = P(F) = {∅, {CM}, {RM}, {SC}, {CM, RM}, {CM, SC}, {RM, SC}, {CM, RM, SC}}

However, there are two configurations that do not make much sense: the one with no features, because the
turtle is going to do nothing; and the one with only the SC feature enabled, because if the turtle can not move,
the safety protocol will never be activated.

So, that leaves a total of six configurations:

C = {{CM}, {RM}, {CM, RM}, {CM, SC}, {RM, SC}, {CM, RM, SC}} (1)

which can alternatively be represented by Table 1.

CM RM SC
Config. 1 X
Config. 2 X
Config. 3 X X
Config. 4 X X
Config. 5 X X
Config. 6 X X X

Table 1: CT system configurations table.

2.2 R O B O T O P E R AT I N G S Y S T E M

The Robot Operating System, also known as ROS, is a framework for writing robotic software. Introduced
by Quigley (2009), it is designed with open-source in mind, allowing its users to choose and use their own
configuration of standalone tools and libraries to interact with the core of the framework. Being standalone,
these libraries should hold no dependencies on ROS, and are encouraged to contain all the complexity of things
like algorithms or drivers. ROS can then be used to create small executables that expose library functionality.
This allows for not only easier code extraction and unit testing, but also for code reuse, which was one of the
main motivations for the development of the framework. Lastly, ROS also aims to be multi-lingual, and indeed it
supports various languages.
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2.2.1 Computation Graph

A ROS system is a set of processes, called nodes, connected in a peer-to-peer topology, called the computation
graph. The nodes communicate with each other through message passing, following the publish-subscribe2

paradigm, i.e. a node can send a message by publishing it to a topic, and the nodes subscribed to that topic will
receive that message. A topic is just a name used to identify the content of a message.

The use of graphs makes for an easier and much more intuitive understanding of a system. For example,
Figure 1 depicts a computation graph of a system in which some node A communicates via topic t with some
other node B.

A B
t

Figure 1: Example of a computation graph.

The graph in Figure 1 can also be represented with other notation, as it is shown in Figure 2. Depending on
the case, we may use one notation or the other, for the sake of simplicity.

A t B

Figure 2: Figure 1’s computation graph with a different notation.

Each configuration of a system has its own computation graph. Previously, in our running example, we repre-
sented each configuration as a set of features (see Table 1). However, we should represent it as a set of nodes
instead, as the node is the core mechanism to implement features in a ROS system.

N O D E S Nodes are processes that perform computation, and each one is responsible for some kind of
function in the system. For instance, in the CT example, we can have a node to handle the keyboard input for
the CM feature, a node to implement the RM feature, another to run the simulator, and so on. This idea of
isolating functionalities makes the system somewhat fault-tolerant, because crashes are local. It also reduces
code complexity, because it hides it inside each node, which in turn provides only a minimal API for the rest of
the graph to interact with.

So, each set of features has to map to a set of nodes, or more abstractly, a multiset of nodes, because we
can have more than one node of the same type. At first, it may seem that we only need to define four nodes:

2 https://en.wikipedia.org/wiki/Publish-subscribe_pattern

https://en.wikipedia.org/wiki/Publish-subscribe_pattern
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one to run the simulator (S), and three for each feature (CM, RM and SC), resulting in the following set of all
configurations of nodes:

CN = {{CM 7→ 1, S 7→ 1},

{RM 7→ 1, S 7→ 1},

{CM 7→ 1, RM 7→ 1, S 7→ 1},

{CM 7→ 1, SC 7→ 1, S 7→ 1},

{RM 7→ 1, SC 7→ 1, S 7→ 1},

{CM 7→ 1, RM 7→ 1, SC 7→ 1, S 7→ 1}}

However, as the reader may recall from the system’s description, the features are organized in a priority-based
hierarchy. The CM feature has priority over the RM feature, and the SC feature has priority over both of them.
As such, we need a fifth type of node, called multiplexer or MP, that handles the priority between two features.
This node subscribes two topics, one that represents high priority and other that represents low priority. It has a
timer that, while active, makes the node forward only the messages from the high priority topic. When the timer
finishes, it starts forwarding also the low priority messages, and it resets every time it receives an high priority
message. The duration of the timer is given as a parameter.

Figure 3 depicts the interface of the MP node, where T denotes the timer duration parameter.

MP

T
low

high

out

Figure 3: Graph representation of the multiplexer.

With this, we can easily implement the priority between two nodes, like the CM and the RM nodes, for
example. All we have to do is to make sure that the high priority topic is the advertised topic of the CM node,
and the low priority topic is the one from the RM node. To handle the priority between more than two nodes, we
can use multiple multiplexers, by “cascading” them, i.e, one multiplexer handles two nodes, and its output will be
subscribed by other multiplexer, and so on. In fact, we can handle the priority between n nodes by using n− 1
multiplexers.
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Vector3 linear
Vector3 angular

Listing (2.1) Twist message.

float64 x
float64 y
float64 z

Listing (2.2) Vector3 message.

With this, the set of all configurations of nodes becomes:

CN = {{CM 7→ 1, S 7→ 1},

{RM 7→ 1, S 7→ 1},

{CM 7→ 1, RM 7→ 1, MP 7→ 1, S 7→ 1},

{CM 7→ 1, SC 7→ 1, MP 7→ 1, S 7→ 1},

{RM 7→ 1, SC 7→ 1, MP 7→ 1, S 7→ 1},

{CM 7→ 1, RM 7→ 1, SC 7→ 1, MP 7→ 2, S 7→ 1}}

and it can also be represented by a table. Table 2 shows the configuration table of features and the respective
configuration table of nodes.

Features Nodes
CM RM SC CM RM SC MP S

Config. 1 X 1 1
Config. 2 X 1 1
Config. 3 X X 1 1 1 1
Config. 4 X X 1 1 1 1
Config. 5 X X 1 1 1 1
Config. 6 X X X 1 1 1 2 1

Table 2: Configurations’ table.

M E S S AG E S , T O P I C S A N D S E RV I C E S As aforementioned, nodes communicate with each other
through message passing. A message is a simple typed data structure that supports several primitive types,
arrays of primitive types, other messages, and arrays of other messages. They are defined in files with the
“.msg” extension.

One of the messages used in our running example is the Twist message, which expresses velocity in free
space broken into its linear and angular parts. Listing 2.1 shows the specification for this type of message.

Generally, in a publish-subscribe paradigm, nodes are not aware of who they are communicating with. A node
sends a message by publishing it to a topic, and receives messages by subscribing to topics. A topic is just a
name, that must be unique, and each one can have multiple subscribers and publishers. A topic is also typed by
the message that was used to publish on it.
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This type of communication is unidirectional, which does not allow for request/reply communication, although
these synchronous transactions are often required in a distributed system. As a way to support this, ROS has
services. A service is defined by a string name, like a topic, and a pair of message types: one for the request,
and the other for the reply.

With all this components defined, we can now create the computation graph for each configuration of our
system. Figure 5 shows an abstract computation graph of the maximal CT system, i.e. Config. 6. In there, we
can see the six different nodes of the configuration, along with some topics and a service. The vel topic, is an
abstract representation of a topic with the Twist type. As it was mentioned before, each topic should (and must)
be unique, so this identifier is not the topic name but an indication of its type. The pose topic is used for the safety
node to know the position of the turtle on the map. And lastly, the set_pen service is responsible for changing
the color of the turtle’s pen.

RM

CM

SC

MP

MP S

T1

T2
vel

vel vel

vel
vel

pose

set_pen

Figure 5: CT system’s computation graph.

RO S M A S T E R The publish-subscribe paradigm normally has a message broker that serves has an inter-
mediary in the communication between nodes. Its function consists in receiving messages with a given topic
from publishers and routing them to the subscribers of that respective topic. But this is a peer-to-peer system, or
in other words, a “brokerless” system. How does ROS establish the connection between the nodes then?

The ROS Master is a node that is present in all ROS systems, and is responsible for giving the nodes of the
system the capability of locating each other, through naming and registration services. As an example, we will
now present a possible sequence of events that could establish the computation graph depicted in Figure 1.

A

M

B

advertise(t)

(a)

A

M

B
t

subscribe(t)

(b)

A

M

B
t

(c)

Figure 6: Example of the establishment of a connection between two nodes.
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When a node wants to publish messages in a topic, it first has to notify the Master node. This is called
advertising the topic and it is what is happening in figure 6a. From the moment that the Master node is notified,
the publisher node can start publishing the messages in the respective topic. If no nodes have yet subscribed
to that topic, the publisher does not send any data. To subscribe to a topic, a node also needs to notify the
Master node. In figure 6b, node A is already publishing, and node B is notifying the Master node that it wants
to subscribe to the topic. Finally when a topic has both a publisher and a subscriber, the Master node notifies
both nodes about each other’s existence and they can start communicating peer-to-peer (figure 6c).

Implementation of a node

To create a node, we need to specify it in a program, and then use the ROS framework to execute it. ROS
provides client libraries that can be used to interact with the framework. In our case, we use roscpp, which is
the library for the C++ language.

Let us consider the SC node of our CT system, for example. If we recall the maximal system’s computation
graph (Figure 5) we see that this node: publishes in one topic (vel), subscribes one topic (pose), and has one
service (set_pen). Listing 2.3 shows our class declaration and constructor for this node.

First we declare and use some objects that are essential in a ROS application, namely:

• TheNodeHandle object (line 11) is an handle to process the node. It gives us access to theadvertise
and subscribe functions, that will be used to communicate with the ROS Master and, when first cre-
ated, it also initializes the node.

• In lines 12 and 13, we declare the node’s Subscriber and Publisher objects. These, as the
names say, are used to subscribe and publish to topics.

• Lastly, at line 14, we declare the ServiceClient object, that is responsible for interacting with
services.

In the class constructor (lines 29-54), we initialize and setup the declared variables.

• The Subscriber is initialized with the subscribe function (lines 23-28). This function notifies the
Master about the topic the node wants to subscribe, specifying the type of message it hopes to receive,
and the callback function that will be executed when a message is received. Here, we subscribe to topic
cmd_vel, expecting to receive messages of type Twist, and with the callback that is defined in lines
24-38.

• The Publisher is initialized with the advertise function (line 40). This function makes the adver-
tising of a topic to the Master, specifying the type of message that will be published. Here, we want to
publish in topic cmd_vel with messages of type Twist.

• The ServiceClient is initialized with the serviceClient function (line 42), that tells the Mas-
ter which service the node is going to use, and what type of message will be passed.
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1 class SafetyController {
2
3 public:
4 SafetyController(void);
5 void loop(void);
6
7 private:
8 bool safety_activated = false;
9 turtlesim::Pose turtle_pose;

10
11 ros::NodeHandle nh;
12 ros::Subscriber pose_sub;
13 ros::Publisher cmd_vel_pub;
14 ros::ServiceClient pen_client;
15
16 bool turtleInCenter(turtlesim::Pose pose);
17 geometry_msgs::Twist calculateTwistMessage(turtlesim::Pose pose);
18 void setPenColor(int r, int g, int b);
19 };
20
21 SafetyController::SafetyController(void) {
22
23 pose_sub = nh.subscribe<turtlesim::Pose>("pose", 10,
24 [this](const turtlesim::Pose::ConstPtr &msg) {
25 float x = msg->x;
26 float y = msg->y;
27 if (x < 1.0 or x > 10.0 or y < 1.0 or y > 10.0) {
28 ROS_INFO("SAFETY INITATED");
29 safety_activated = true;
30 setPenColor(255, 0, 0);
31 }
32
33 turtle_pose.x = x;
34 turtle_pose.y = y;
35 turtle_pose.theta = msg->theta;
36 turtle_pose.linear_velocity = msg->linear_velocity;
37 turtle_pose.angular_velocity = msg->angular_velocity;
38 });
39
40 cmd_vel_pub = nh.advertise<geometry_msgs::Twist>("cmd_vel", 10);
41
42 pen_client = nh.serviceClient<turtlesim::SetPen>("turtle1/set_pen");
43 }

Listing 2.3: Class definition and contructor of the SC node

After defining the class and the constructor, we now define a loop function so that the node is always active
and ready for communication. And then, we are ready to create the main function. Listing 2.4 shows the
implementation of these 2 functions.

In the loop function (lines 1-23), we start by declaring a ros::Rate object, which is used to define the rate,
in Hz, at which the loop will run. In this case, we want the rate to be 10Hz. Then, we define the main loop. Once
ros::ok() returns false, all ROS calls will stop. ros::ok() returns false if: (a) a SIGINT is received; (b)
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1 void SafetyController::loop(void) {
2
3 ros::Rate rate(10);
4 while (ros::ok()) {
5
6 if (not safety_activated) {
7 setPenColor(255,255,255);
8 }
9

10 bool in_center = turtleInCenter(turtle_pose);
11 if (safety_activated and not in_center) {
12 geometry_msgs::Twist msg = calculateTwistMessage(turtle_pose);
13 cmd_vel_pub.publish(msg);
14 }
15
16 if (in_center) {
17 safety_activated = false;
18 }
19
20 ros::spinOnce();
21 rate.sleep();
22 }
23 }
24
25 int main(int argc, char *argv[]) {
26
27 ros::init(argc, argv, "safety_controller");
28
29 SafetyController controller;
30 controller.loop();
31
32 return 0;
33 }

Listing 2.4: Loop and main functions of the SC node.

another node with the same name kicks this node out of the network; (c) ros::shutdown() is called by
another part of the application; (d) all ros::NodeHandles have been destroyed.

In the main loop, various things happen. More specifically, in lines 12 and 13, we use the publish()
function to publish a message to the topic. At the end of the loop we call the ros::spinOnce() function,
so that we can keep calling callbacks, and the Rate::sleep() function, that sleeps for the correct amount
of time, according to the rate that we defined previously.

Finally, in the main function (lines 25-33), we start by calling the ros::init function. This function
initializes ROS. It can receive command line arguments and it is also responsible for naming the node. Node
names must be unique in the system. In this case, the node has the name safety_controller.

Next, we declare an SafetyController object, that, as it was said before, represents our node. After
that, we execute the object’s loop function, starting the execution of the node.
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<package format="2">
<name>controlled_turtlesim</name>
<version>0.0.0</version>
<description>

This package provides the capability of controlling the turtlesim
randomly and manually.

</description>
<maintainer email="pedrorpmoura@gmail.com">Pedro Moura</maintainer>
<licence>BSD</license>

<depend>roscpp</depend>
<depend>rospy</depend>
<depend>std_msgs</depend>

</package>

Listing 2.5: Example of a package manifest with dependencies.

2.2.2 Packages

Software in ROS is organized in packages. A ROS package is a collection of files that constitute a module
with a specific purpose. At its minimal state, it is just a directory containing an XML file, called the manifest,
that describes the package and its dependencies. This open-ended nature of ROS packages allows for great
variation in their structure and purpose. A ROS package might contain ROS nodes, a ROS-independent library,
datasets, third-party software, configuration files, anything that makes sense in the constitution of a module.

The use of packages makes it possible to divide ROS-based software into small chunks that are easily man-
ageable, and that can be maintained and developed concurrently by its own developers.

PAC K AG E M A N I F E S T As mentioned above, every package has a manifest. The manifest is a XML
file called package.xml, and it gives information about the package, such as its name, version, authors,
maintainers and dependencies.

For our CT system, we can create a package with the manifest in Listing 2.5.

L AU N C H F I L E S Initializing the nodes one by one can be a tedious process, especially if we are dealing
with tens or hundreds of nodes. To avoid this, ROS provides a way to start the master and many nodes all at
once, using launch files.

A launch file is an XML file used to specify a certain configuration of a ROS system, by listing a group of nodes
that should be started at the same time. As shown in table 2, the CT system can have six different configurations.
And each configuration has its own launch file. Listing 2.6 shows the launch file for Config. 6.
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<launch>

<node pkg="example_controlled_turtlesim" name="safety" type="safety_controller"
>

<remap from="pose" to="turtle1/pose"/>
</node>

<group ns="move">
<node pkg="turtlesim" name="teleop" type="turtle_teleop_key"/>
<node pkg="example_controlled_turtlesim" name="random" type="random"/>

<node pkg="example_controlled_turtlesim" name="binary_multiplexer" type="
binary_multiplexer_twist">

<param name="time" type="int" value="3"/>
<remap from="high" to="turtle1/cmd_vel"/>
<remap from="low" to="cmd_vel"/>

</node>
</group>

<node pkg="example_controlled_turtlesim" name="binary_multiplexer" type="
binary_multiplexer_twist">

<param name="time" type="int" value="1"/>
<remap from="high" to="cmd_vel"/>
<remap from="low" to="move/out"/>

</node>

<node pkg="turtlesim" name="sim" type="turtlesim_node">
<remap from="turtle1/cmd_vel" to="out"/>

</node>

</launch>

Listing 2.6: Launch file for the complete CT system
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2.3 ( H ) I G H ( A ) S S U R A N C E R O S

The High Assurance ROS, or HAROS, is a framework for static analysis of ROS-based code. Static analysis is
the analysis of computer software that is performed without actually executing programs. Usually, static analysis
is performed in source code, but it can also be performed in object code.

One of the most important uses of static analysis is in the verification of software properties. This is essential
in the robotic context because robots are being increasingly used in safety-critical systems3, in which software
reliability is a necessity. HAROS offers a broad range of static analysis techniques, such as code metrics extrac-
tion, property testing and even model extraction. This is possible because this framework is not self-contained
in ROS, but instead makes use of third-party analysis tools, encapsulated as HAROS plugins. Being a plugin
orientated tool, it allows for any regular ROS developer to perform a good static analysis, without having great
knowledge about it.

2.3.1 Project files

In order to analyse a system, HAROS needs project files. A project file is a YAML file, and it functions more or
less like ROS’s package manifest, informing HAROS which packages and configurations are to be analysed.

To specify which packages are to be analysed, we use the packages key, that maps to a list of values,
each one representing a package. After this, we inform HAROS which configurations are to be present in the
analysis, by using the configurations key. Listing 2.7 shows a project file for our CT package.

2.3.2 Visualizer

To help with the presentation of the analysis results, HAROS provides a visualizer. This visualizer not only has
the results of the analysis, but also has a graph diagram of the system’s packages and their dependencies, and
the computation graphs of the system’s configurations.

When we run the analysis, a web page will be opened in the default web browser, where we can see the
visualizer and its different views of the analysis result. There are four views: Dashboard, Packages, Issues e
Models.

The Dashboard (Figure 7) gives an overall result of the analysis and the number of issues found.
In the Packages tab (Figure 8), we can see the package graph view, that shows the analysed packages and

their dependencies.
The Issues page (Figure 9) shows the list of issues, with all the rules that were violated.
Lastly, there is the Models tab (Figure 10), where we can see the different computation graphs of the system’s

configurations.

3 https://en.wikipedia.org/wiki/Safety-critical_system

https://en.wikipedia.org/wiki/Safety-critical_system
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%YAML 1.1
---
packages:
- example_controlled_turtlesim

configurations:
config1:

launch: [example_controlled_turtlesim/launch/config1.launch]

config2:
launch: [example_controlled_turtlesim/launch/config2.launch]

config3:
launch: [example_controlled_turtlesim/launch/config3.launch]

config4:
launch: [example_controlled_turtlesim/launch/config4.launch]

config5:
launch: [example_controlled_turtlesim/launch/config5.launch]

config6:
launch: [example_controlled_turtlesim/launch/config6.launch]

Listing 2.7: HAROS project file example.

Figure 7: HAROS Visualizer - Dashboard.
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Figure 8: HAROS Visualizer - Packages.

Figure 9: HAROS Visualizer - Issues.
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Figure 10: HAROS Visualizer - Models.

2.3.3 Query engine

One of HAROS main features, and a focal point in this thesis, is the query engine. The query engine allows the
specification of user-defined custom queries to run over the extracted data. This engine is integrated in HAROS,
i.e. is not a plug-in, although it could be implemented like one.

In most cases, using a query language is simpler and more desirable than implementing an analysis plugin,
but the range of properties that can be specified is more limited. Being implemented as a core feature also allows
the graphical visualizer to provide graphical feedback of the executed queries.

The HAROS query language is based on pyflwor4, which is a query language for querying python objects.
To define queries, we can use the rules section in the project file, as it is shown in Listing 2.8.

4 https://github.com/timtadh/pyflwor

https://github.com/timtadh/pyflwor
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...
rules:

type_check_topics:
name: Message Types Must Match
description: All nodes using a topic must communicate using the
same message type.
tags:
- type-check
- ros-comm
- custom-filter-tag

scope: configuration
query: "for p in <nodes/publishers | nodes/subscribers>,

s in <nodes/publishers | nodes/subscribers>
where p.topic_name == s.topic_name and p.type != s.type
return p, s"

Listing 2.8: Example of a query in HAROS.
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V A R I A B I L I T Y M A N A G E M E N T I N S O F T W A R E P R O D U C T L I N E S

When developing large-scale software systems it is common to adopt the paradigm of Feature-Oriented Software
Development (FOSD). As the name suggests, the key concept of FOSD is a feature. A feature is a unit of
functionality that satisfies requirements, implements design decisions, and offers a configuration option. FOSD
tries to decompose a software system in terms of the features it provides. If correctly implemented, it is possible
to generate many variants of the system from a set of features. The set of the generated systems is called a
Software Product Line (SPL). Since their introduction, SPLs have become a popular way of enhancing quality,
supporting reuse, and taking advantage of variability to derive different product variants efficiently. Variability is
the ability of a software artifact to vary its behavior at some point in its lifecycle (Svahnberg et al., 2005).

An example of a SPL is our running example from the previous chapter, since we had a robotic system that
could have six different configurations, where each configuration could be represented by a set of features.

In fact, SPLs are very common in robotics, and managing the variability of these applications is one of the
main current challenges in robotic development. Unlike in other system domains, robotic systems do not have
a general system architecture, as robots can have different shapes, features, and behaviors, that also depend
on the environment in which they find themselves in. This diversity leads to the existence of multiple types of
variability, which come from different points in the robot’s lifecycle. According to García et al. (2019) there are
four sources of variability in a robotic application:

• Customer Requirements - Differences in the costumer requirements influence which hardware and soft-
ware components are deployed to the robot. This is known as static variability, and it leads to having
different variants of the same model. This is exactly the type of variability that happens in our example
from the previous chapter.

• Environment - A big part of the robot behavior depends on its environment. This originates a variability
of environmental conditions, such as the design of objects and possible obstacles. Although some of this
variability can be solved at design time, most of it can only be solved at runtime. Runtime variability is still
a challenge to be solved.

• Robot Hardware - A robot can have different types of hardware components, which leads to changes at
the software level.

21
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• Middleware - The same middleware can have different versions, with different requirements. Some com-
panies might want to use the same robotic application on different versions of the middleware (for example,
different versions of ROS).

Most techniques for implementing SPLs usually fall in one of two categories: annotative and compositional.
In annotative approaches, features are implemented by annotating the source code, either explicitly or implicitly.
A common example of an annotative approach is the use of the #ifdef and #endif directives of the C
preprocessor to surround feature code, as shown in Listing 3.1.

1 int foo(int a #ifdef B, int b #endif) {
2 int c = a;
3 if (c) {
4 c += a;
5 #ifdef B c += b; #endif
6 }
7 return c;
8 }

Listing 3.1: Example of the use of C preprocessor directives to implement features.

However, such annotation style “taints” the code with a large amount of boilerplate code, making it hard
to understand and maintain. This is commonly referred to as the #ifdef hell1. A common tactic to avoid
the use of #ifdef statements is to use colors to annotate the code. CIDE (Kästner et al., 2008) is a tool that
implements this idea to annotate Java source code. This strategy has been implemented not only in programming
languages, but also in modeling languages. An example of this is Colorful Alloy (Liu et al., 2019), which is a
extension for the modeling language Alloy to support SPL design. Other examples of annotative approaches
include explicit programming (Bryant et al., 2002), software plans (Coppit et al., 2007), metaprogramming with
traits (Reppy and Turon, 2007), and annotation-based aspects (Kiczales and Mezini, 2005).

On the other hand, compositional approaches use a “separations of concerns” methodology when imple-
menting variability. Each feature is implemented as a separated code unit and a software product line can be
generated through feature composition. Figure 11 illustrates the general idea of feature composition. AHEAD
(Batory et al., 2004) and FeatureAlloy (Apel et al., 2010) are examples of this type of approach for Java and Alloy,
respectively. Feature-oriented programming (Prehofer, 2001) and aspect-oriented programming (Kiczales et al.,
2001) are other examples that use an compositional approach to implement features.

3.1 VA R I A B I L I T Y M O D E L I N G W I T H F E AT U R E M O D E L S

A Feature Model is a representation of all possible products in a SPL in terms of features and the relationships
among them. Its main purpose is to provide a structure to model and analyse the commonality and variability
of a SPL. They were first introduced by Kang et al. in 1990 (Kang et al., 1990), as part of the Feature-Oriented
Domain Analysis method.

1 https://www.cqse.eu/en/news/blog/living-in-the-ifdef-hell/
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Figure 11: General idea of composition (Kästner and Apel, 2008).

Usually, in a feature model, the set of features is hierarchically arranged in a tree-like structure, in which the
root node indicates the SPL that is described, the inner nodes represent the parent (compound) features, and
the leaf nodes represent child features (subfeatures). A feature model can also have cross-tree constraints, that
establish dependencies between features.

The most common way to represent a feature model is through a feature diagram, which is just a visual
notation for feature models. Figure 12a shows the feature diagram of the CT software product line. According
to it, all systems must possess at least one type of movement activated, and may or may not have the safety
feature activated. However, there are other ways to specify feature models, such as languages (Classen et al.,
2010; Deursen and Klint, 2002; Collet, 2014) or propositional formulas2. Figure 12b shows how to describe the
same feature model in the TVL language (Classen et al., 2010).

(a) Feature diagram of the CT SPL.

root CT {
group allOf {
group someOf {

Random,
Teleop

}
opt Safety

}
}

(b) TVL specification for the CT SPL.

2 This is discussed in a later section
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In both figures, we used the classical (or basic) notation of feature models (Kang et al., 1990). Since their
introduction, various notation extensions were purposed, like cardinality-based feature models (Czarnecki et al.,
2005) and extended feature models (Benavides et al., 2005a). However, these are not really relevant for this
work, and shall not receive much focus. As for the classical notation, Table 3 shows the relationships between
parent features and child features, and also the type of dependencies that exist between features.

Name Description Diagram

R
el

at
io

ns
hi

ps

Mandatory

A mandatory relationship means that a subfea-
ture must be included if its parent is selected.
In other words, the child feature is included
in every product in which its parent feature
appears.

Optional
An optional relationship means that a subfea-
ture may be included in the product in which
its parent feature appears.

Alternative

An alternative (or xor) relationship between a
set of subfeatures and their parent means that
exactly one subfeature must be included in the
product in which its parent appears.

Or

An or relationship between a set of subfeatures
and their parent means that at least one of the
child features must be included in the product
in which its parent appears.

Requires
Feature A requires feature B means that the
selection of feature A implies the selection of
B.

Excludes
Feature A excludes feature B means that A
and B can not be part of the same product.

Table 3: Classical feature diagram notation.
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3.2 VA R I A B I L I T Y- A W A R E A N A LY S I S

Variability-aware analysis is a strategy to analyse software product lines that operates not on individual products
(as opposed to product-based analysis (Thüm et al., 2015)), but on domain artifacts, that still contain variability
and available configuration knowledge. This type of analysis avoids redundancy and prevents duplicated anal-
yses, because there is no need to generate and analyse individual products. Furthermore, in principle, it only
depends on the number and size of features, and not on the number of valid configurations.

However, changing at least one feature, or changing the variability model, means that we need to analyse the
whole product line again (Cordy et al., 2012). Also, variability-aware analyses assume a closed world, meaning
that all features must be known at the moment of the analyses.

3.2.1 Automated analysis of feature models

Manually analysing feature models is a tedious and error-prone task that becomes impractical in a large-scale
context. Although feature models have gained a lot of popularity since they were introduced, for a long time,
automated tool support was ad-hoc, offering little to no support for debugging and optimizations. Work from
people like Mannion (2002) and Batory (2005) showed how feature models could be specified using propositional
logic, enabling the use of off-the-shelf tools, like SAT-solvers, to verify properties of the models. These, and other
similar work (for example, (Benavides et al., 2005b)) opened up new possibilities for tools to specify products in
software product lines. However, there is not a consensus on which operations should be included in the analysis
of feature models. Some of the most commonly found in research works are:

• Void feature model - A feature model is void if it does not represent any product.

• Valid product - A product is valid if it belongs to the set of products defined by the feature model.

• Dead features - A dead feature is one that does not appear in any of the products of the software product
line.

• Number of products - The number of products that can be represented by the feature model.

Benavides et al. (2010) gives a nice overview of the proposed operations, along with a review of the work
made on implementing those operations until that moment.

Semantics

As aforementioned, the set of configurations represented by a feature model can be described by a propositional
logic formula. This formula is defined over a set F of boolean variables, where each variable corresponds to a
feature. Table 4 shows the general mapping of the feature model relationships to propositional logic.

If we apply this mappings to the feature model of Figure 12a, for instance, we get the following formula:

(Movement⇔ CT) ∧ (Safety⇒ CT) ∧ (Random∨ Teleop⇔ Movement) (2)
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Feature Model Primitive Propositional Formula
r is the root feature r
f1 is an optional feature of f2 f1 ⇒ f2

f1 is a mandatory feature of f2 f1 ⇔ f2

f1, ..., fn are alternative sub-features of f ( f1 ∨ ...∨ fn ⇔ f ) ∧∧
1≤i<j≤n ¬( fi ∧ f j)

f1, ..., fn are or sub-features of f f1 ∨ ...∨ fn ⇔ f
f1 requires f2 f1 ⇒ f2

f1 excludes f2 ¬( f1 ∧ f2)

Table 4: Mapping between the feature model primitives and propositional logic.

Having the feature model as a propositional formula allows us to easily specify some analysis operations. For
example, the four operations that were mentioned above can be defined as:

Void feature model = ¬SAT(FM) (3)

Valid product p = SAT(FM ∧ p) (4)

Dead feature f = ¬SAT(FM ∧ f ) (5)

Number of products = #SAT(FM) (6)

Here, SAT denotes a procedure that checks the satisfiability of a boolean formula, and #SAT a procedure that
counts the number of interpretations that satisfy a boolean formula. This is known as the Sharp Satisfiability
Problem (Valiant, 1979).

3.2.2 Variational software analysis

There has been a considerable amount of work on the static analysis of variational computer programs. Most
of it has been in data-flow analysis, be it intraprocedural (Brabrand et al., 2012; Liebig et al., 2013; Midtgaard
et al., 2015) or interprocedural (Bodden, 2012). Other people have proposed new static analyses, specific to
variational programs (Ribeiro et al., 2010; Tartler et al., 2011; Adelsberger et al., 2013; Sabouri and Khosravi,
2014). To note that the majority of these works are on annotative approaches of implementation, with exception
of the work by Adelsberger et al. (2013) and Sabouri and Khosravi (2014).

Usually, when performing static analysis on programs, we operate on data structures, like queues, abstract
syntax trees, and control-flow graphs. With variational programs, such as software product lines, this analysis
needs to be lifted in order to handle the variation. More precisely, we need to lift the data structures and,
consequently, the algorithms, needed to perform it. In particular, Brabrand et al. (2012) show how to lift a classic
intraprocedural data-flow analysis to a variability-aware analysis.
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3.2.3 Variational Data Structures

Presence Conditions

Presence conditions are formulas that represent a set of configurations.

Form 3 φ ::= ⊥ | > | f ∈ F | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

For example, if we look at the feature model from our previous example, the formula SC ∧ RM represents all
the configurations in which both the SC and RM features are present, i.e. {RM, SC} and {CM, RM, SC}. This
means that, if we are in one of these configurations, the presence condition SC ∧ RM will always evaluate to
true.

The function evalc : Form → B tells us if a boolean formula φ is true in a configuration c ⊆ F, and can
be defined inductively as follows:

evalc ⊥ = false evalc > = true

evalc f = true ≡ f ∈ c

evalc ¬φ = true ≡ evalc φ = false

evalc (φ1 ∧ φ2) = true ≡ evalc φ1 = true and evalc φ2 = true

evalc (φ1 ∨ φ2) = true ≡ evalc φ1 = true or evalc φ2 = true

With this, we can define function solveFM, which computes the set of configurations represented by a pres-
ence condition φ in a feature model FM.

solveFM : Form→ Set F

solveFM φ = {c | c ⊆ F∧ evalc φ}

Here, we have some examples of presence conditions and the respective set of configurations, for a FM =

true, and with features {A, B}:

solveFM true = {∅, {A}, {B}, {A, B}}

solveFM false = ∅

solveFM A = {{A}, {A, B}}

solveFM (¬A) = {∅, {B}}

solveFM (A ∧ B) = {{A, B}}

solveFM (A ∨ B) = {{A}, {B}, {A, B}}
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Variational Graphs

According to Erwig et al. (2013), a variational graph ~G is a graph in which both the nodes and the edges are
annotated with presence conditions. More formally, ~G is a structure (~V,~E) in which ~V : V → Form
and ~E : E → Form are mappings from nodes to presence conditions and edges to presence conditions,
respectively. Figure 13 shows an example of a variational graph.

~G = (~V,~E) where
~V = {0 7→ A, 1 7→ B, 2 7→ A ∨ B}
~E = {(0, 1) 7→ A ∧ B, (0, 2) 7→ A,

(1, 2) 7→ B, (2, 0) 7→ A ∧ ¬B}

(a) Definition.

0A

1

B

2 A ∨ B

A ∧ B B

A

A ∧ ¬B

(b) Diagram.

Figure 13: Variational graph.

Each variational graph represents a set of simple graphs, where each one can be obtained by projecting
a certain configuration in the variational graph (Figure 14). A projection pc with a configuration c consists of
a simple graph that can be obtained by filtering the nodes and edges of a variational graph whose presence
condition evaluates to true in configuration c, i.e.

pc (~V,~E) = (V, E) where

V = {v | v 7→ φ ∈ ~V ∧ evalc φ}

E = {e | e 7→ φ ∈ ~E ∧ evalc φ}

0 2

(a) {A}

1

2

(b) {B}

0

1

2

(c) {A, B}

Figure 14: Some projections of the variational graph from Figure 13.



4

E N C O D I N G I N F O R M AT I O N I N A V A R I AT I O N A L D ATA B A S E

In this chapter we define a structure that can hold variational information, called a variational database.

4.1 N O N - VA R I AT I O N A L D ATA B A S E S

Before defining a structure that can represent variational data, we should first define one that can represent
non-variational data. In the context of this thesis, we want to define a structure that represents a single product
of a SPL. We call this structure a simple database.

4.1.1 Relations

At the core of a simple database is the concept of relation. A n-ary relation Rn of type T1× · · · × Tn is a set of
tuples (x1, . . . , xn), so that x1 ∈ T1, . . . , xn ∈ Tn. We say that x1, . . . , xn are all related by Rn. With such
databases we can represent almost everything. For example, a directed graph is defined by two relations: an
unary relation that represents the set of vertices of the graph (V); and a binary relation that specifies the edges
of the graph (E). A computation graph can also be represented in terms of relations. Let’s see,

N1

N2

T N3

Here, we have three nodes, N1, N2 and N3, and one topic T. Nodes N1 and N2 publish in T and T is
subscribed by N3. This computation graph can be represented by defining four relations:

1. Two unary relations (sets): {N1,N2,N3} and {T}, that define the nodes and topics, respectively, of the
computation graph.

2. Two binary relations: {(N3,T)} and {(N1,T), (N2,T)}, that specify which nodes are subscribed to
which topics and which nodes publish in which topics, respectively.

29
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4.1.2 Definition

With this concept, we define a simple database D : Id ↪→ R as a partial function that maps names to relations,
or, in other words, a collection of named relations. Looking at the previous example, we can represent the
computation graph with the following database:

db = { Node 7→ {N1,N2,N3},

Topic 7→ {T},

subscribes 7→ {(N3,T)},

publishes 7→ {(N1,T), (N2,T)} }

Although this is a simple example, the same idea can be applied to more complex ones. Recall the computa-
tion graph of Configuration 6 from our running example.

RM velRM

CM velCM

MP1 velMP1

t1

S velS

MP2 velMP2 SIM

t2

pen

pose

In this computation graph, there are also services and parameters. We can simply accommodate to them by
adding more relations.

C6 = { Node 7→ {RM,CM,S,MP1,MP2, SIM},

Topic 7→ {velRM, velCM, velS, velMP1 , velMP2 , pose}

Param 7→ {t1, t2}, Service 7→ {pen},

subscribes 7→ {(MP1, velRM), (MP1, velCM), (MP2, velMP1), (MP2, velS),

(SIM, velMP2), (S, pose)},

publishes 7→ {(RM, velRM), (CM, velCM), (S, velS),

(MP1, velMP1), (MP2, velMP2), (SIM, pose)},

params 7→ {(MP1, t1), (MP2, t2)}, services 7→ {(S, pen, SIM)} }
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4.2 VA R I AT I O N A L D ATA B A S E S - T H E N O N - VA R I AT I O N A L W AY

Unlike simple databases, that represent only a product, variational databases are supposed to represent the
whole SPL. We have two approaches for creating a variational database.

Although it sounds a bit contradictory, our first approach for defining a variational database is called the non-
variational approach. The reason for this is that, in this version, we do not create a structure that has variational
information (with presence conditions). Instead, we define a structure that holds all the different products of the
SPL, separately.

A non-variational variational database ~Dnv : C ↪→ D is a partial function that maps a configuration to
a simple database, that in turn holds all the information of a single product. Suppose we have the following
computation graph,

N1A

N2B

T

A ∨ B
N3 C

A

B
(A ∨ B) ∧ C

that is the implementation of a SPL with the following feature model FM = (A ⇒ C) ∧ (B ⇒ C) ∧ C.
FM has four possible configurations – {C}, {A, C}, {B, C} and {A, B, C} – which means there are four
different computations graphs (and four simple databases), respectively:

N3

db1 = { Node 7→ {N3},
Topic 7→ ∅,
subscribes 7→ ∅,
publishes 7→ ∅ }

N1

T N3

db2 = { Node 7→ {N1,N3},
Topic 7→ {T},
subscribes 7→ {(N3,T)},
publishes 7→ {(N1,T)} }

N2

T N3
db3 = { Node 7→ {N2,N3},

Topic 7→ {T},

subscribes 7→ {(N3,T)},

publishes 7→ {(N2,T)} }
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N1

N2

T N3

db4 = { Node 7→ {N1,N2,N3},
Topic 7→ {T},
subscribes 7→ {(N3,T)},
publishes 7→ {(N1,T), (N2,T)} }

The resulting variational database is:

db = { {C} 7→ db1,

{A, C} 7→ db2,

{B, C} 7→ db3,

{A, B, C} 7→ db4 }

4.3 VA R I AT I O N A L D ATA B A S E S - T H E P U R E VA R I AT I O N A L W AY

The other approach for defining a variational database is called the pure variational approach. Here, instead
of saving all products separately in various databases, we have just a single database, that is a collection of
variational relations.

4.3.1 Variational Relations

A variational relation is a relation in which all its elements are annotated with presence conditions. More formally,
a n-ary variational relation ~Rn of type T1 × · · · × Tn is a partial function that maps tuples (x1, . . . , xn) to
presence conditions, of type:

~Rn : T1 × · · · × Tn ↪→ Form

Given x1 ∈ T1, . . . , xn ∈ Tn if we have the mapping

(x1, . . . , xn) 7→ φ

we say that x1, . . . , xn are all related by ~Rn if φ is true. With these, we can represent variational data. In fact,
a variational graph can be encoded in a variational database with two variational relations, as we could see in
Figure 13a. Predictably, we can also use variational relations to represent variational computation graphs. Take
a look at the previous example:
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N1A

N2B

T

A ∨ B
N3 C

A

B
(A ∨ B) ∧ C

In order to represent this with normal relations, we had to create a set of relations for each of the different
products. Now, with variational relations, we only need to define four (variational) relations to describe it entirely:

1. Two unary variational relations - {N1 7→ A,N2 7→ B,N3 7→ C}, that represents the nodes, and
{T 7→ A ∨ B}, which represents the set of topics.

2. Two binary variational relations - {(N3,T) 7→ (A ∨ B) ∧ C}, for representing the subscribers, and
{(N1,T) 7→ A, (N2,T) 7→ B}, that represents the publishers.

4.3.2 Definition

Similarly to the definition of a simple database, a pure variational database ~Dpv : Id ↪→ ~R is a partial function
that maps names to variational relations. With this, we can represent the previous example with the following
database:

db = { Node 7→ {N1 7→ A,N2 7→ B,N3 7→ C, }

Topic 7→ {T 7→ A ∨ B},

subscribes 7→ {(N3,T) 7→ (A ∨ B) ∧ C},

publishes 7→ {(N1,T) 7→ A, (N2,T) 7→ B} }
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We can also represent the CT system database:

db = { Node 7→ {RM 7→ R,CM 7→ C,S 7→ S,

MP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S),

MP2 7→ (C ∧ R ∧ S),SIM 7→ true}

Topic 7→ {velRM 7→ R, velCM 7→ C, velS 7→ S,

velMP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S),

velMP2 7→ (C ∧ R ∧ S), pose 7→ S}

Param 7→ {t1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S), t2 7→ (C ∧ R ∧ S)},

Service 7→ {pen 7→ S},

subscribes 7→ {(SIM, velMP1) 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S),

(SIM, velRM) 7→ ¬C ∧ R ∧ ¬S, (SIM, velCM) 7→ ∧¬R ∧ ¬S,

(MP1, velS) 7→ S, (MP1, velRM) 7→ (¬C ∧ R ∧ S) ∨ (C ∧ R ∧ ¬S),

(MP1, velCM) 7→ (C ∧ ¬R ∧ S) ∨ (C ∧ R ∧ ¬S),

(MP1, velMP2) 7→ (C ∧ R ∧ S), (MP2, velRM) 7→ (C ∧ R ∧ S),

(MP2, velCM) 7→ (C ∧ R ∧ S), (S, pose) 7→ S},

publishes 7→ {(SIM, pose) 7→ S, (MP1, velMP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S),

(MP2, velMP2 7→ (C ∧ R ∧ S), (S, velS) 7→ S,

(RM, velRM 7→ R, (CM, velCM) 7→ C},

params 7→ {(MP1, t1) 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S), (MP2, t2) 7→ C ∧ R ∧ S},

services 7→ {(SIM, pen,S) 7→ S},

}

The next figure shows the diagram relative to the CT database.
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4.3.3 Pure variational databases with sets

Instead of using formulas as presence conditions, we can use sets of configurations. The idea is the same as
before, only the representation of presence conditions changes. In this case, a variational relation has the type:

~Rn : T1 × · · · × Tn ↪→ Set (Set F)

and

(x1, . . . , xn) 7→ S

means that (x1, . . . , xn) exists in any configuration c ∈ S.
To avoid ambiguity, we will call the pure variational database that uses formulas as pure - formulas variational

database, and this one, that uses sets, as pure - sets variational database.



5

P R O P E R T Y E V A L U AT I O N I N V A R I AT I O N A L D ATA B A S E S

In this chapter we introduce a query language for specifying properties, and create two different algorithms for
executing them on variational databases.

5.1 A Q U E R Y L A N G U A G E F O R S P E C I F Y I N G P R O P E R T I E S

In the previous chapter, we introduced variational databases that can hold variational information, for example a
variational ROS computation graph. However, the information recorded in such variational databases may not
always be correct. Take a look at the following variational graph G,

0A 1 B
A G = {V 7→ {0 7→ A, 1 7→ B}

E 7→ {(0, 1) 7→ A}}

If we project this graph with configuration {A}, we get the following result,

0 G|{A} = {V 7→ {0}
E 7→ {(0, 1)}

which is an invalid graph because we have an edge that does not have a valid node as its destination. These
types of problems can occur rather frequently when dealing with variational data. To see if a variational data
structure, or in our case, a variational database is correct, we can specify properties to be checked. For example,
in this case, we could say that a property for the correctness of variational graphs is “An edge always connects
two existing nodes.”. As another example, if we look at computation graphs, “A topic which is subscribed must
also be published.” or “A computation graph must always have at least one node.” are examples of properties
we may want to verify.

37
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5.1.1 Language Syntax

For the purpose of specifying properties, we created a small language, inspired by the Alloy Specification Lan-
guage1, that has the following syntax :

Query 3 q ::= q1 or q2 | q1 and q2 | not q | some r | no r | r1 in r2

RExp 3 r ::= x | ∼r | r1 + r2 | r1 & r2 | r1 − r2 | r1 . r2

A property (or query) is defined in terms of relational and boolean expressions. Relational expressions allow us
to manipulate data. Boolean expressions provide us with the result we expect from a property verification: a
true or a false.

As an example, recall the “A computation graph must always have at least one node.” property for computation
graphs. This property can be specified in our language by:

some Node

In turn, “A topic which is subscribed must also be published.” could translate to:

Node.subscribes in Node.publishes

5.1.2 Language Semantics

As we said earlier, the execution of a query returns a boolean value. To determine this value, we need to know
the meaning of the operations, i.e. the language’s semantics. The semantics of our language are defined by two
functions:

QJ·K : Query→ D → B

RJ·K : RExp→ D → R

QJ·K is the semantic function of the boolean expressions, and consequently, the queries. And RJ·K is the
semantic function for the relational expressions. Both functions are defined by pattern-matching in terms of the
respective derivations in the syntax.

Let’s start withRJ·K. This function receives an relational expression r and a simple database d, and returns
a relation. Depending on the expression, we will have different function definitions. Let’s look at the first one:

RJxKd =̇ d x (7)

1 https://alloytools.org

https://alloytools.org
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Here, our expression is x, which represents an identifier, or, in other words, a name. In this case, we want to
go to the database, and retrieve the relation that has the name x. What we do to achieve that is simply call the
database function with x as its argument.

Next, we have the converse expression, that essentially inverts the result of an expression:

RJ∼rKd =̇ (RJrKd)
◦ (8)

where,

(_)◦ : Rn → Rn

r◦ = {(xn, . . . , x1) | (x1, . . . , xn) ∈ r}

The next definitions are trivial, with the expressions translating directly to set operations:

RJr1 + r2Kd =̇ RJr1Kd ∪RJr2Kd (9)

RJr1 & r2Kd =̇ RJr1Kd ∩RJr2Kd (10)

RJr1 − r2Kd =̇ RJr1Kd \ RJr2Kd (11)

Lastly, we have the composition expression:

RJr1 . r2Kd =̇ RJr1Kd · RJr2Kd (12)

We separated this from the previous ones because the · operator is a little different from the normal relational
composition. Usually, the relational composition is between binary relations. In this case, we want it to be
between n-ary relations. So we will make the composition with regards to the first and last elements of the
tuples, and return all the other elements in one tuple.

(·) : Rn → Rm → Rn+m−2

r · s = {(x1, . . . , xn−1, y2, . . . , ym) | (x1, . . . , xn) ∈ r ∧ (y1, . . . , ym) ∈ s ∧ xn = y1}

This operator allow us to compose relations with different arity, which is something that can be useful.
On the other hand, QJ·K is the semantic function of the boolean operations. It receives a query q, a simple

database d, and returns the result (boolean) of executing q in d. The first three expressions represent the
boolean operations: disjunction, conjunction and negation; and their definitions are trivial:

QJq1 or q2Kd =̇ QJq1Kd ∨QJq2Kd (13)

QJq1 and q2Kd =̇ QJq1Kd ∧QJq2Kd (14)

QJnot qKd =̇ ¬QJqKd (15)
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The remaining ones are those which interact with relational expressions. The some r expression tells if a
relation r has at least one element, i.e. is not empty:

QJsome rKd =̇ RJrKd 6= ∅ (16)

The no r is precisely the opposite of some r, as it returns true when r is empty:

QJno rKd =̇ RJrKd = ∅ (17)

Lastly, we have the r1 in r2 expression, that corresponds to testing if r1 is a subset of r2:

QJr1 in r2Kd =̇ RJr1Kd ⊆ RJr2Kd (18)

Let’s use the C6 configuration

C6 = { Node 7→ {RM,CM,S,MP1,MP2,SIM},

Topic 7→ {velRM, velCM, velS, velMP1 , velMP2 , pose}

Param 7→ {t}, Service 7→ {pen},

subscribes 7→ {(MP1, velRM), (MP1, velRM), (MP2, velMP1), (MP2, velS),

(SIM, velMP2), (S, pose)},

publishes 7→ {(RM, velRM), (CM, velCM), (S, velS),

(MP1, velMP1), (MP2, velMP2), (SIM, pose)},

params 7→ {(MP1, t1), (MP2, t2)}, services 7→ {(S, pen, SIM)} }

to test some queries:
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Jsome Node+ TopicK

≡ (16)

JNode+ TopicK 6= ∅

≡ (9)

JNodeK∪ JTopicK 6= ∅

≡ (7) ×2

{RM,CM, S,MP1,MP2, SIM} ∪ {velRM, velCM, velS, velMP1 , velMP2 , pose} 6= ∅

≡ def. ∪

{RM,CM, S,MP1,MP2, SIM, velRM, velCM, velS, velMP1 , velMP2 , pose} 6= ∅

≡ def. 6=

true

JNode.subscribes in TopicK

≡ (18)

JNode.subscribesK ⊆ JTopicK

≡ (12)

JNodeK · JsubscribesK ⊆ JTopicK

≡ (7) ×3

{RM,CM,S,MP1,MP2,SIM} · {(MP1, velRM), (MP1, velCM), (MP2, velMP1),

(MP2, velS), (SIM, velMP2), (S, pose)} ⊆ {velRM, velCM, velS, velMP1 , velMP2 , pose}

≡ def. ·

{velRM, velCM, velMP1 , velS, velMP2 , pose} ⊆ {velRM, velCM, velS, velMP1 , velMP2 , pose}

≡ def. ⊆

true

5.2 E X E C U T I N G Q U E R I E S O N VA R I AT I O N A L D ATA B A S E S

The goal of this query language is to specify properties to be checked on variational databases. For now, it is
only obvious how to execute them on simple databases because those are the ones for which the semantics are
defined for. As such, we need to define algorithms that will enable us to execute the queries on the variational
databases.
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First, we have to decide what the execution of these algorithms will return. In simple databases, the execution
of a query returns a boolean value that tells us if the specified property is valid or not in that database. However,
in a variational context, what does it mean to return a boolean value? Suppose that the execution of a certain
query q in a variational database d returns true. This means that the property specified by q is valid in all
possible configurations of d. On the other hand, returning false tells us that there is at least one configuration
of d where the specified property is not valid. The downside to this is that we do not know which configurations
failed, we just know that some did and some did not. A better option would be to somehow return something that
would give us information about which configurations satisfied the property, for example the set of configurations
in which the property is valid.

Depending on the type of the variational database (non-variational or pure), we have different algorithms to
achieve this execution.

5.2.1 Non-variational

First, we have the non-variational variational database. If we recall, this variational database is a collection
of simple databases, where each one has a configuration associated. The execution strategy for this type of
databases is pretty straightforward. We execute the query in each simple database, and if the result is true we
add the configuration of that specific database to the resulting set of configurations, if it is false, we do nothing.

This algorithm can be easily defined by set comprehension:

runnv : ~Dnv → Query→ Set C

runnv d q = {c | c ⊆ F∧ JqK(d c) = true}

Let’s see the execution of the “some Node” query on the non-variational variational database of CT:

runt d (some Node)

≡ def. runt

{c | c ⊆ F∧ JqK(d c) = true}

Now we have to execute the query on each database:

• case 1:

c = {C}

d = db1
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Jsome NodeK

≡ (16)

JNodeK 6= ∅

≡ (7)

{CM, SIM} 6= ∅

≡ def. 6=

true

• . . .

We are left with:

{c | c ⊆ F∧ JqK(d c) = true}

≡

{{C}, {R}, {C, R}, {C, S}, {R, S}, {C, R, S}}

5.2.2 Pure Variational

Next, we have the purely defined variational databases, which are collections of variational relations. As it is
expected, the algorithms for these ones should be a little more complicated than the non-variational one, because
we are dealing with more complex data structures. Just like before, we want the queries to return information
about the configurations. For their execution, we came up with two different approaches.

Trivial

The first one is what we call the trivial approach. In this algorithm, we will execute two steps for each configuration
of the variational database:

1. Project the variational relations mentioned in the query with the current configuration.

2. Execute the query on the projected relations and, if it returns true, add the configuration to the result.

runt : ~Dpv → Query→ Set C

runt d q = {c | c ⊆ F∧ JqKd|c = true}
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Pure - formulas & sets

Unlike the other approaches, this one is purely variational, since we will not make any projections. Instead, we
will make use of the presence conditions present in each variational relation of the variational database, and build
a final formula that, when solved, it will return the set of configurations where the property is valid.

The algorithm has the following type:

• pure - formulas
run f p : ~D f v → Query→ Form

• pure - sets
runsp : ~Dsv → Query→ Set (Set F)

In this algorithm, executing a boolean expression returns a propositional formula. On the other hand, the
execution of a relational expression returns a variational relation.

Once again, let’s begin with the relational expressions. The first one, x, is trivial. The variational database is
a collection of named variational relations, so we just return the variational relation with said name x:

• pure - formulas
run f p d x = d x (19)

• pure - sets
runsp d x = d x (20)

Regarding the others, the idea is the same as when defining the semantics, i.e, each expression will “as-
sociate” with a relation operation. Only this time, instead of simple relations, we are dealing with variational
relations. So, we need to define the union, intersection, etc. operations for variational relations.

Let’s start with the most simple one, the variational converse operation. Here, we want to convert all tuples
from a variational relation in their symmetrical, without changing their presence conditions.

• pure - formulas

(_)~◦ : ~Rn → ~Rn

r~◦ = {(xn, . . . , x1) 7→ φ | r (x1, . . . , xn) = φ}

• pure - sets

(_)~◦ : ~Rn → ~Rn

r~◦ = {(xn, . . . , x1) 7→ X | r (x1, . . . , xn) = X}
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Next, we have the variational union operation2.

• pure - formulas

~∪ : ~Rn → ~Rn → ~Rn

r ~∪ s = {t 7→ φ ∨ ψ | r t = φ ∧ s t = ψ}

∪ {t 7→ φ | r t = φ ∧ s t = ⊥}

∪ {t 7→ ψ | r t = ⊥∧ s t = ψ}

• pure - sets

~∪ : ~Rn → ~Rn → ~Rn

r ~∪ s = {t 7→ X ∪Y | r t = X ∧ s t = Y}

∪ {t 7→ X | r t = X ∧ s t = ⊥}

∪ {t 7→ Y | r t = ⊥∧ s t = Y}

Next, we have the variational intersection operation.

• pure - formulas

~∩ : ~Rn → ~Rn → ~Rn

r ~∩ s = {t 7→ φ ∧ ψ | r t = φ ∧ s t = ψ}

• pure - sets

~∩ : ~Rn → ~Rn → ~Rn

r ~∩ s = {t 7→ X ∩Y | r t = X ∧ s t = Y}

Next, we have the variational difference operation.

• pure - formulas

~\ : ~Rn → ~Rn → ~Rn

r~\ s = {t 7→ φ ∧ ¬ψ | r t = φ ∧ s t = ψ}

∪ {t 7→ φ | r t = φ ∧ s t = ⊥}

2 s t = ⊥ means that tuple t is not present in relation s
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• pure - sets

~\ : ~Rn → ~Rn → ~Rn

r~\ s = {t 7→ X ∩Y | r t = X ∧ s t = Y}

∪ {t 7→ X | r t = X ∧ s t = ⊥}

Lastly, we have the variational composition operation.

• pure - formulas

~· : ~Rn → ~Rm → ~Rn+m−2

r~· s = {(x1, . . . , xn−1, y2, . . . , ym) 7→ φ ∧ ψ

| r (x1, . . . , xn) = φ ∧ s (y1, . . . , ym) = ψ ∧ xn = y1}

• pure - sets

~· : ~Rn → ~Rm → ~Rn+m−2

r~· s = {(x1, . . . , xn−1, y2, . . . , ym) 7→ X ∩Y

| r (x1, . . . , xn) = X ∧ s (y1, . . . , ym) = Y ∧ xn = y1}

With these operations, we can define our execution function3:

runp d (∼R) = (runp d R)~◦ (21)

runp d (R1 + R2) = (runp d R1) ~∪ (runp d R2) (22)

runp d (R1 & R2) = (runp d R1) ~∩ (runp d R2) (23)

runp d (R1 − R2) = (runp d R1)~\ (runp d R2) (24)

runp d (R1 . R2) = (runp d R1)~· (runp d R2) (25)

Now, only the boolean expressions are left. If you recall, the execution of these expressions must return a
boolean formula.

First, we have the some expression. In this one, in the context of pure - formulas our formula is the disjunction
of all the presence conditions of the relation of the expression. In pure - sets, its the union of all presence
conditions.

• pure - formulas
run f p d (some R) =

∨
{φ | ∃t. (run f p d R) t = φ} (26)

3 runp means that, depending on the context, it can be run f p or runsp
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• pure - sets
runsp d (some R) =

⋃
{X | ∃t. (runsp d R) t = X} (27)

Next, we have the no expression, which is the opposite of the previous one.

• pure - formulas
run f p d (no R) =

∧
{¬φ | ∃t. (run f p d R) t = φ} (28)

• pure - sets
runsp d (no R) =

⋂
{X | ∃t. (runsp d R) t = X} (29)

Next, we have the in expression.

• pure - formulas

run f p d (R1 in R2) =
∧
{{φ⇒ ψ | ∃t. (run f p d R1) t = φ ∧ (run f p d R2) t = ψ} (30)

∨{¬φ | ∃t. (run f p d R1) t = φ ∧ (run f p d R2) t = ⊥}}

• pure - sets

runsp d (R1 in R2) =
⋂
{{X ∪Y | ∃t. (runsp d R1) t = X ∧ (runsp d R2) t = Y} (31)

∪{X | ∃t. (runsp d R1) t = X ∧ (runsp d R2) t = ⊥}}

Finally, we have the logical connectives.

runp d (not R) = ¬(runp d R)

runp d (R1 and R2) = (runp d R1) ∧ (runp d R2)

runp d (R1 or R2) = (runp d R1) ∨ (runp d R2)



5.2. Executing Queries on Variational Databases 48

Let’s look at an example execution in the CT variational database, with the pure - formulas variational algo-
rithm:

run f p d (some Node+ Topic)

≡ (26)∨
{φ | ∃t. (run f p d (Node+ Topic)) t = φ}

≡ (23)∨
{φ | ∃t. ((run f p d Node) ~∪ (run f p d Topic)) t = φ}

≡ (19) ×2∨
{φ | ∃t. ({CM 7→ C,RM 7→ R, S 7→ S,MP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S),

MP2 7→ (C ∧ R ∧ S),SIM 7→ true} ~∪ {velCM 7→ C, velRM 7→ R, velS 7→ S,

velMP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S), velMP2 7→ (C ∧ R ∧ S), pose 7→ S}) t = φ}

≡ def. ~∪∨
{φ | ∃t. ({CM 7→ C,RM 7→ R,S 7→ S,MP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S),

MP2 7→ (C ∧ R ∧ S), SIM 7→ true, velCM 7→ C, velRM 7→ R, velS 7→ S,

velMP1 7→ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S), velMP2 7→ (C ∧ R ∧ S), pose 7→ S}) t = φ}

≡ trivial∨
{C, R, S, (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S), C ∧ R ∧ S, true}

≡ def.
∨

C ∨ R ∨ S ∨ (C ∧ R) ∨ (C ∧ S) ∨ (R ∧ S) ∨ (C ∧ R ∧ S) ∨ true

≡ trivial

true

This means that the property is valid in all configurations.
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I M P L E M E N TAT I O N

In the previous chapters we introduced formal concepts to define and analyze variational databases. In this
chapter, we put into to practice these concepts, creating a small framework that will allow us to test and evaluate
the different approaches for checking properties on variational databases.

For this implementation, we used the Python language.

6.1 S I M P L E R E L AT I O N S A N D D ATA B A S E S

Let’s start with the simple concepts first.

6.1.1 Simple Relations

Just like before, we define a simple relation as a set of tuples with arbitrary size:

Relation = Set[Tuple[Any, ...]]

For instance,

Node = {(’n1’,), (’n2’,), (’n3’,)}

Topic = {(’t’,)}

subscribes = {(’n3’, ’t’)}

publishes = {(’n1’, ’t’), (’n2’, ’t’)}

are all examples of defined simple relations.

6.1.2 Simple Databases

A simple database is defined as a dict, with str values as keys and Relation values as values.

Database = Dict[Str, Relation]

With this, we can define a database, as it is shown in the following example:

db = {

"Node" : {("n1",), ("n2",), ("n3",)},
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"Topic" : {("t",)},

"subscribes" : {("n3", "t")},

"publishes" :{("n1", "t"), ("n2", t)}

}

6.2 VA R I AT I O N A L

Next, we have the variational concepts.

6.2.1 Presence Conditions

Let’s start with presence conditions. Earlier, we defined presence conditions as formulas that represent the
configurations in which a certain element is present. To represent these formulas, we use the Python Z3 library,
which is a Python middleware to work with the high performance theorem prover Z3. For example,

φ = A ∧ (¬B ∨ C)

can be defined as:

from z3 import *

// create the variables

A = Bool(’A’)

B = Bool(’B’)

C = Bool(’C’)

phi = And(A, Or(Not(B), C))

The Z3 library, besides having all these classes to represent formulas, also provides us with solving algorithms
and formula simplification.

6.2.2 Variational Relations

A variational relation with formulas is defined as a dict with tuples as keys and presence conditions as values:

FVRelation = Dict[Tuple[Any, ...], BoolRef]

where BoolRef is the type of a formula in Z3, and it is used to represent a presence condition.
On the other hand, variational relations with sets of configurations are a dict with tuples as keys and sets of

configurations as values:

SVRelation = Dict[Tuple[Any, ...], Set[SConfiguration]]
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where

Configuration = Dict[BoolRef, Bool]

SConfiguration = FrozenSet[BoolRef]

Here are some examples of variational relations:

// With formulas

FNode = { (’n1’,): A, (’n2’,): B, (’n3’,): C }

FTopic = { (’t’,) : Or(A,B) }

Fsubscribes = { (’n3’,’t’): And(Or(A,B),C) }

// With sets

SNode = {

(’n1’,): {{A},{A,B},{A,C},{A,B,C}},

(’n2’,): {{B},{A,B},{B,C},{A,B,C}},

(’n3’,): {{C},{A,C},{B,C},{A,B,C}}

}

...

6.2.3 Variational Databases

A variational database is defined like a simple database, only instead uses variational relations as values.

FVDatabase = Dict[Str, FVRelation]

SVDatabase = Dict[Str, SVRelation]

6.3 Q U E R Y L A N G U A G E A N D A L G O R I T H M S

The query language was implemented using the python PLY library.
This is the implemented language grammar:

query -> compose1

compose1 -> compose1 OR compose2

compose1 -> compose2

compose2 -> compose2 AND atomic

compose2 -> atomic

atomic -> SOME expression

atomic -> NO expression

atomic -> expression IN expression

atomic -> NOT atomic

atomic -> ( compose1 )

expression -> expression + term

expression -> expression & term

expression -> expression - term

expression -> term

term -> term . term1



6.3. Query Language and Algorithms 52

term -> term1

term1 -> ID

term1 -> ~ term1

term1 -> ( expression )
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A N A LY S I S A N D E V A L U AT I O N O F T H E V A R I AT I O N A L A L G O R I T H M S

In chapter 5, we presented several algorithms for executing queries in variational databases. In this chapter,
we make an evaluation of said algorithms, evaluating execution time and space, in order to try to find the most
efficient one.

7.1 VA R I AT I O N A L D ATA B A S E G E N E R AT I O N

In order to evaluate the algorithms, we first need to have some sample data. Until now, we have used the Con-
trolled Turtlesim system as a “playground” to run and test the different algorithms for query execution. However,
if we were to measure these executions in terms of time and space, we would see that the differences in the mea-
surements would not be significant, as this system is just too small. Taking a real world example with enough
size and model it with our variational databases would work, however, our evaluation would be constricted to
that system and its characteristics. We do not know if what was good and efficient in this system, would also
be in others, as different systems have different characteristics. So, we have decided to create a framework that
allows us to generate custom synthetic databases that, although do not represent any real world system, contain
information large enough for us to perform the evaluations.

In this framework, the generation of a database consists of two steps:

1. Generation of a SPL architecture according to a set of configurations.
Specifying a set of configurations will allow us to generate a SPL architecture with specific characteristics.

2. Conversion of the generated SPL architecture to each one of the variational databases types.
After the SPL architecture is generated, we want to convert it to the different variational database types.
This way, we ensure that the information in the databases is consistent, i.e. all databases faithfully repre-
sent the same SPL architecture.

For efficiency reasons, in Step 1 we will represent the SPL architecture already in the format of the Pure -
Formula variational database. We will denote this first database as O. Then, in Step 2 we will convert it to the
other two types of variational databases.

For generatingO, we have a couple of approaches: random generation and controlled generation.
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7.1.1 Random Generation

First, we have the random generator. As the name implies, in this one we generate a random variational database,
composed by variational sets and variational binary relations between the elements of the sets.

With this approach, we have two levels of configurations. The first one is on a structural level. If we strip the
elements of a variational database of their presence conditions, we get a collection of non-variational sets and
binary relations. This collection can be customized by the following variables:

• S - the variational sets. For example, S = {Node,Topic}.

• NS - number of elements per set.

• R - the variational binary relations. For example, R = {subscribes : Node → Topic, publishes :
Node→ Topic}.

• p : R→ [0, 1] - presence probability of a tuple from a relation R.

With this configurations, and based on the Erdos-Rényi model for generating random graphs, we generate the
contents of the database with the following algorithms:

generate_sets(S, N_S):

result = {}

for s in S:

result[s] = {}

for i in range(N_S):

element_name = s.lower() + str(i)

element_pc = generate_PC(F, p_F, p_D)

result[s][(element_name,)] = element_pc

return result

generate_relations(R, p):

result = {}

for r in R:

result[r.name] = {}

for x in r.dom: # relation domain

for y in r.cod: #relation codomain

if rand(0,1) <= p(r):

result[r.name][(x,y)] = generate_PC(F, p_F, p_D)

return result
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The second level of configuration consists on the generation of presence conditions (function generate_PC

invoked in the code above). We want to be able to customize this generation, in order to control the specificity of
each presence condition, and also the distribution of features present in each presence condition. The presence
conditions will be written in DNF (Disjunctive Normal Form) and, for generating them, we will use the following
variables:

• F - the set of features. In this case we assume our FM = true, so there are 2|F| possible configura-
tions, and our set of configurations C = P(F).

• pF - the probability of a feature being present in a conjunction.

• pD - the probability of a new disjunction.

A DNF formula is a disjunction of conjunctions. In this generation it is intended that the number of conjunctions
follows an exponential distribution that depends on pD. This way, we ensure that we will never have too many
conjunctions in the presence condition. Also, a presence condition has, at least, one conjunction. This is because
a disjunction with no conjunctions is a formula that evaluates to false. And if a presence condition is false,
that means that the tuple to which it is associated does not exist in the database, which makes no sense.

On the other hand, the number of features present in each conjunction should follow a binomial distribution
that depends on pF.

Having said that, the algorithm for generating a presence condition is the following:

generate_PC (F, p_F, p_D):

result = generate_conjunction(F, p_F)

while rand(0,1) <= p_D:

result = result \/ generate_conjunction(F, p_F)

return result

generate_conjunction (F, p_F):

result = true

for f in F:

if rand(0,1) <= p_F:

if rand(0,1) <= 0.5:

result = result /\ f

else:

result = result /\ not f

return result
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7.1.2 Controlled Generation

Although the random generator is capable of generating almost an unlimited amount of variational databases, its
generation is also too unpredictable, i.e. when we execute a query, we do not know which results we are going to
get. With this in mind, we decided to create a different generator, that will let us create a special type of database
in which we do know what results to expect.

The generated databases will emulate a computation graph, consisting in a sequence of nodes and topics. In
each generation we pass a value n > 0 that indicates how many nodes there are in the computation graph. The
number of topics shall be n− 1.

N1 T1 N2 T2 . . . Tn−1 Nn

In this database, the features decide which nodes are subscribed/publish to which topics. Features of type
Px control the publishes relation, while features of type Sx control the subscribes relation, according to the
following rules:

∀ 1 ≤ x < n. Px is active⇒ ∀ 1 ≤ i ≤ n− x. (Ni,Ti+x−1) ∈ publishes

∀ 1 ≤ x < n. Sx is active⇒ ∀ 1 + x ≤ i ≤ n. (Ni,Ti−x) ∈ subscribes

If feature P1 is active, this means that each node will publish to the topic directly after it:

N1 T1 N2 T2 . . . Tn−1 Nn

If P2 is active, then each node will publish to the second topic after it:

N1 T1 N2 T2 . . . Tn−1 Nn

And likewise for the remaining features of type Px.
The Sn features have identical behavior. If S1 is active, then each node is subscribed to the topic directly

before it:

N1 T1 N2 T2 . . . Tn−1 Nn

If S2 is active, then each node is subscribed to the topic two steps before, and likewise for the remaining
features of type Sx.
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According to these definitions, for a given n, there are a total of 2 ∗ (n− 1) features, that equal to the following
set F = {Sx | 1 ≤ x < n} ∪ {Px | 1 ≤ x < n}. Once again, we assume that theFM that is represented
in this generations equals to true, so the number of configurations of our generated database will be 2(2∗(n−1)).
The set of configurations is defined by C = P(F).

7.1.3 Conversion

Now thatO is generated, we can convert it to the other types of databases.

Conversion to Non-variational

First, we have the non-variational variational database. If we recall, this variational database is a collection of
simple databases, where each one has a configuration associated.

This conversion is achieved by projecting O for each configuration, creating in each projection a simple
database, and then associating this simple database with the configuration that projected it.

Onv = {c 7→ d | d = O|c ∧ c ∈ C}

Conversion to Pure Variational - Sets

To convert to the pure variational - sets database, we just need to solve each presence condition in each varia-
tional relation.

Ops = {id 7→ sr | id 7→ r ∈ O ∧ sr = {t 7→ solveFM φ | t 7→ φ ∈ r}}

7.2 E VA L U AT I O N

In this section, we first present the settings for performing the comparison of the different querying algorithms for
variational databases, and then present and discuss the results of said comparison.

7.2.1 Evaluation settings

In order to do a thorough comparison, we want to run the various algorithms taking into account different settings
and which type of database was generated.

Settings for the random generated databases

In the random generated databases, we have a set of settings that are variable and will serve as metrics in the
evaluations, and another set of settings that are fixed and will be common to all evaluations.

• Variable settings:
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– number of features - number of features of the database (depends on F);

– size of the database - number of elements per set (depends on NS);

– complexity of the presence conditions - probability of each presence condition have several disjunc-
tions (depends on pD);

• Fixed settings:

– S = {Node,Topic}

– R = {subscribes : Node→ Topic}

– p(subscribes) = 0.3

– pF = 0.3

As for the controlled generated databases, all settings are variable:

• number of features - number of features (depends on Sx and Px);

• size of the database - number of elements per set (depends on n);

For each setting we will measure the performance time and memory consumption of running each algorithm
for querying the variational databases with the following query:

no Node.subscribes− Topic

Which specifies the following property: “There can not be subscriptions to topics that do not exist.”

7.2.2 Results and Discussion

P E R F O R M A N C E

• Number of features - Figures 21a and 21b shows the evolution of performance times of the execution of
the different algorithms as the number of features of an SPL increases.

In the random generation, the values of the variable settings were: NS = 50 and pD = 0.3. In the
controlled generation, the values of the variable settings were: n = 500.

As we can see, the purely variational approaches have more or less the same execution time throughout
the analyses, with the pure - sets being the fastest. However, the non-variational algorithm, despite
starting very quickly, has an exponential growth in terms of execution time as the number of features
increases. This is to be expected because as the number of features increases, so does the number of
possible configurations of the SPL, and consequently, the number of simple databases inside the non-
variational variational database.
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(a) Random database. (b) Controlled database.

Figure 21: Number of features.

• Size of the database - In FigureS 22a and 22b, we can see the evolution of the execution time as the
number of elements per set of the variational databases increases.

In the random generation, the values of the variable settings were: |F| = 4 and pD = 0.3. In the
controlled generation, the values of the variable settings were: S = {S1, S2} and P = {P1, P2}.

In the random generation, all the curves appear to have more or less the same growth rate, with the pure
- formulas algorithm being the slowest.

In the controlled generation, the roles swap a little. Maybe because of the size of the database, we can
see that with time, the non-variational algorithm becomes slower than the pure - formulas algorithm. Once
again, the pure - sets approach is the fastest.

(a) Random database. (b) Controlled database.

Figure 22: Number of elements per set.

• Complexity of presence conditions - Figure 23 shows the execution times of the algorithms in a random
database when varying the probability of a new disjunction in a presence condition.

In this generation, the variable settings were: |F| = 6 and NS = 100.
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We can see that, once again, the pure - sets approach takes the win in terms of efficiency. The pure
- formulas approach is approximately constant. However, the non-variational approach execution times
seem to increase exponentially as the probability of a new disjunction increases.

Figure 23: Plot showing the performance times of the different algorithms, varying the probability of a new
disjunction in a presence condition.

M E M O RY C O N S U M P T I O N In terms of memory, the better approach is definitely the pure - formulas. In
small databases, the difference is insignificant. However, if we start to grow our databases, we see that the pure
- formulas variational database is significantly smaller than the others.

Let’s look at two examples. In both of them, we measure the size of the Python objects that represent the
variational databases at run-time. The first is a controlled generation, with 8 features and 1000 elements per set.
In this generation, the sizes of the variational databases were:

Figure 24: Memory consumption (MB) on controlled generation.

Here, the non-variational and the pure - sets variational databases are both about 37.8 times bigger than the
pure - formulas variational database.

In another example, a random generated one, the sizes of the variational databases were the following:
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Figure 25: Memory consumption (MB) on random generation.

Which means that the non-variational and the pure - sets variational databases were, respectively, about 5.9
and 4.6 times bigger than the pure - formulas variational database.

In both cases we can see that the pure - formulas approach is the better approach in terms of space.
Overall, the pure - sets approach seems to be the fastest. Comparing to the pure - formulas approach, this

difference must be related to the fact that, as calculations are carried out, the pure -formulas approach always
tries simplifies its presence conditions. And formula simplification is not an easy process. However, this same
simplification is also the responsible for the small space that the pure - formulas variational database occupies.
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C O N C L U S I O N

ROS is the most popular framework for developing robotic applications. A ROS system usually has several
variants for supporting different configurations of a robot. The set of these configurations is called a Software
Product Line, or SPL. HAROS is a static analysis framework used to analyse ROS systems. HAROS has a
query engine that allows the specification and execution of architectural queries. Currently, this engine can only
analyse one configuration at a time, which means that it will be unfeasible to analyse the whole SPL defined by
a ROS application, in particular if it has a large number of features.

In this thesis, we presented three different approaches capable of analysing an SPL as a whole, instead of
configuration by configuration. These approaches are: non-variational, pure - formulas and pure - sets. For each
approach, we defined both a variational data structure (that we called variational database) for holding the data
of the SPL, and a variational algorithm capable of executing queries on said data structure. We also created a
small language, inspired by the Alloy specification language, that makes use of relations and first-order logic to
specify the queries.

To compare the different approaches, we performed several analyses on synthetic databases with different
characteristics, in order to measure the algorithms in terms of performance and memory consumption.

This experimental evaluation shows that overall, performance-wise, the pure - sets approach presents the
better results. Between the non-variational and the pure - formulas approaches, it depends on the characteristics
of the databases. The non-variational approach seems to be faster on almost every analysis that we made,
except when the number of features is high and the presence conditions are more complex.

However, when we are talking about memory, then the pure - formulas is definitely the better option.
Another good advantage of the pure - formulas approach is that the query results are also formulas, which

may simplify the interpretation of said results. For example, if a query returns A ∨ B, we know that that query is
valid in all configurations in which the features A or B are active. In the other approaches, the result would be a
list of all configurations that have A or B active, making it harder to reach the same conclusion.

Future works concerns deeper analysis and implementations. An obvious one would be implementing this
in the HAROS framework. However that would imply the support of a more complex language than the one we
have. Other idea would be to try making a more detailed evaluation, with more databases, and see if the obtained
results would be similar.
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