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Introduction

Tools such as SAT and SMT solvers follow a “semantic” approach to logic.
They try to produce a model for a formula. This, however, is not the only
possible point of view.

Instead of adopting the view based on the notion of truth, we can think of
logic as a codification of reasoning. This alternative approach to logic,
called “deductive”, focuses directly on the deduction relation that is induced
on formulas.

↭ A proof system (or inference system) consists of a set of basic rules
for constructing derivations. Such a derivation is a formal object that
encodes an explanation of why a given formula (the conclusion) is
deducible from a set of assumptions (the premisses).
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Semantic approach vs Deductive approach

Semantic approach
↭ Based on the notion of model.
↭ The goal is to prove that a formula is satisfiable.
↭ SAT / SMT solvers are tools based on this approach, which are decision

procedures that produce a “SAT / UNSAT / UNKNOW” answer.
↭ If the answer is SAT, a model is produced.

Deductive approach
↭ Based on a proof system.
↭ The goal is to prove that a formula is valid.
↭ The tools based on this approach are called proof assistants and allow

the interactive development of proofs.
↭ In the proof process a derivation (proof tree) is constructed.
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Proof assistants

A variety of proof assistants are in frequent use: Rocq (formerly known as
Coq), Lean, Agda, Isabelle, HOL, PVS, ...

The use of these tools has become very popular although it carries an initial
learning curve.

Its use proves to be very advantageous in the following aspects:

↭ helps handle large-scale problems
↭ prevents details from being overlooked;
↭ does the bookkeeping of the proofs;
↭ allows for reuse of previously proven results.
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Proof assistants

In a proof assistant, after formalizing the primitive notions of the theory
under study,

↭ the user develops proofs interactively (using proof tactics),
↭ once a proof is completed, a proof term (or script) is created.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-
objects (of some form) that can be checked by an “easy” algorithm.

The reliability of a proof assistant is naturally an essential characteristic, to
which the so-called de Bruijn Criterion contributes.

↭ The Rocq Prover is a proof assistante that follows this criterion.

Maria João Frade (INESC TEC, DI-UM) Introduction VF 2025/26 6 / 56

The Rocq Prover

Rocq (formerly known as Coq) is a proof assistant that has been under
continuous development for over 40 years.

↭ ACM Software System Award (2013)
↭ Open Science Free Software Award (2022)
↭ It has been used in several landmark verification projects (CompCert,

Verified Software Toolchain, Four color Theorem,...).

The Rocq Prover is based on a formalism that is simultaneously a highly
expressive logic and a richly typed programming language.

Its operation is based on the ”propositions-as-types”correspondence, within
an intuitionistic higher-order logic.
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Natural Deduction
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Natural deduction

The proof system we will present here is a formalisation of the reasoning
used in mathematics, and was introduced by Gerhard Gentzen in the first
half of the 20th century as a “natural” representation of logical derivations.
It is for this reason called natural deduction.

We choose to present the rules of natural deduction in sequent style.

A sequent is a judgment of the form ! → A, where ! is a set of formulas
(the context) and A a formula (the conclusion of the sequent).

A sequent ! → A is meant to be read as “A can be deduced from the set of
assumptions !”, or simply “A is a consequence of !”.
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Natural deduction

The set of basic rules provided is intended to aid the translation of thought
(mathematical reasoning) into formal proof.

For example, if F and G can be deduced from !, then F ↑G can also be deduced
from ! .

This is the “↑-introduction” rule

! → F ! → G

! → F ↑G
↑I

There are two “↑-elimination” rules:

! → F ↑G

! → F
↑E1

! → F ↑G

! → G
↑E2
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A proof system for classical propositional logic

! → ↑ true
A ↓ !
! → A

assumption

! → A ↔B
! → A

↔E1

! → A ↔B
! → B

↔E2

! → A ! → B
! → A ↔B

↔I

! → A
! → A ↗B

↗I1

! → B
! → A ↗B

↗I2

! → A ↗B !, A → C !, B → C

! → C
↗E

!, A → B

! → A ↘ B
↘I

! → A ! → A ↘ B
! → B

↘E

!, A → ≃
! → ¬A

¬I
! → A ! → ¬A

! → ≃
¬E

! → ≃
! → A

≃E

!,¬A → ≃
! → A

RAA
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Rules for first-order logic

Proof rules for quantifiers.

! → ω[y/x]

! → ↓x.ω ↓I (a)
! → ↓x.ω
! → ω[t/x]

↓E

! → ω[t/x]

! → ↔x.ω ↔I
! → ↔x.ω !,ω[y/x] → ε

! → ε
↔E (b)

(a) y must not occur free in either ! or ω.

(b) y must not occur free in either !, ω or ε.
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Soundness and completeness of the inference system

Soundness

If ! → ω, then ! |= ω.

Completeness

If ! |= ω, then ! → ω.
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A proof tree

→ ¬P ↗ (Q ↗ P ) ↗ ¬Q

¬P,Q ↘ P,Q → Q ¬P,Q ↘ P,Q → Q ↘ P

¬P,Q ↘ P,Q → P
↘E ¬P,Q ↘ P,Q → ¬P

¬P,Q ↘ P,Q → ≃
¬E

¬P,Q ↘ P → ¬Q
¬I

¬P → (Q ↘ P ) ↘ ¬Q
↘I

→ ¬P ↘ (Q ↘ P ) ↘ ¬Q
↘I

This proof can be developed either by backward reasoning or by forward
reasoning.

In proof assistant, the usual approach is to develop the proof backwards by a
method that is known as goal directed proof:

For convinience, we will present proof trees in a tabular form.
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Backward reasoning

In backward reasoning, one starts from the conclusion sequent and applies a rule

that justifies it; the same procedure is then repeated on the resulting premises.

→ ¬P ↗ (Q ↗ P ) ↗ ¬Q
→ ¬P ↗ (Q ↗ P ) ↗ ¬Q ↗I

1. ¬P → (Q ↗ P ) ↗ ¬Q ↗I

1. ¬P,Q ↗ P → ¬Q ¬I

1. ¬P,Q ↗ P,Q → ↘ ¬E

1. ¬P,Q ↗ P,Q → P ↗E

1. ¬P,Q ↗ P,Q → Q assumption
2. ¬P,Q ↗ P,Q → Q ↗ P assumption

2. ¬P,Q ↗ P,Q → ¬P assumption
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An example

(↔x.¬ω) ↗ ¬↓x.ω is a theorem

→ (↔x.¬ϑ) ↗ ¬↓x.ϑ ↗I

1. ↔x.¬ϑ → ¬↓x.ϑ ¬I

1. ↔x.¬ϑ, ↓x.ϑ → ↘ ↔E
1. ↔x.¬ϑ, ↓x.ϑ → ↔x.¬ϑ assumption
2. ↔x.¬ϑ, ↓x.ϑ,¬ϑ[x0/x] → ↘ ¬E

1. ↔x.¬ϑ, ↓x.ϑ,¬ϑ[x0/x] → ϑ[x0/x] ↓E
1. ↔x.¬ϑ, ↓x.ϑ,¬ϑ[x0/x] → ↓x.ϑ assumption

2. ↔x.¬ϑ, ↓x.ϑ,¬ϑ[x0/x] → ¬ϑ[x0/x] assumption

Note that when the rule ↔E is applied a fresh variable x0 is introduced. The side

condition imposes that x0 must not occur free either in ↔x.¬ϑ or in ↓x.ϑ.
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A classical example

→ A ≃ ¬A (Law of the Excluded Middle)

→ A ≃ ¬A RAA
1. ¬(A ≃ ¬A) → ↘ ¬E

1. ¬(A ≃ ¬A) → ¬(A ≃ ¬A) assumption
2. ¬(A ≃ ¬A) → A ≃ ¬A ≃I2

1. ¬(A ≃ ¬A) → ¬A ¬I

1. ¬(A ≃ ¬A), A → ↘ ¬E

1. ¬(A ≃ ¬A), A → A ≃ ¬A ≃I1

1. ¬(A ≃ ¬A), A → A assumption
2. ¬(A ≃ ¬A), A → ¬(A ≃ ¬A) assumption

However, there is a branch of logic that does not accept this principle as
a universal axiom.
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Classical logic vs Intuitionistic logic
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Classical logic vs Intuitionistic logic

The classical understanding of logic is based on the notion of truth. The
truth of a statement is “absolute” and independent of any reasoning,
understanding, or action. So, statements are either true or false, and
(A ≃ ¬A) must hold no matter what the meaning of A is.

Intuitionistic (or constructive) logic is a branch of formal logic that
rejects this guiding principle. It is based on the notion of proof. The
judgement about a statement is based on the existence of a proof (or
“construction”) of that statement.

For a (A ≃ ¬A) to hold one has to have a proof of A or a proof of ¬A.
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Classical logic vs Intuitionistic logic

Classical logic is based on the notion of truth.
↭ The truth of a statement is “absolute”: statements are either true or

false.
↭ ω ≃ ¬ω must hold no matter what the meaning of ω is.
↭ Proofs using the excluded middle law, ω ≃ ¬ω, or the double negation

law, ¬¬ω ↗ ω (proof by contradiction), are not constructive.

Intuitionistic logic is based on the notion of proof.
↭ Rejects the guiding principle of “absolute” truth.
↭ ω is “true” if we can prove it.
↭ ω is “false” if we can show that if we have a proof of ω we get a

contradiction.
↭ To show ω ≃ ¬ω one have to show ω or ¬ω.

Maria João Frade (INESC TEC, DI-UM) Classical logic vs Intuitionistic logic VF 2025/26 20 / 56



Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or
“construction” of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

A proof of ω ↑ ϑ is given by presenting a proof of ω and a proof of ϑ.

A proof of ω ≃ ϑ is given by presenting either a proof of ω or a proof of ϑ
(plus the stipulation that we want to regard the proof presented as evidence
for ω ≃ ϑ).

A proof ω ↗ ϑ is a construction which permits us to transform any proof of
ω into a proof of ϑ.

Absurdity ↘ (contradiction) has no proof; a proof of ¬ω is a construction
which transforms any hypothetical proof of ω into a proof of a contradiction.

A proof of ↓x.ω(x) is a construction which transforms a proof of d ⇐ D (D
the intended range of the variable x) into a proof of ω(d).

A proof of ↔x.ω(x) is given by providing d ⇐ D, and a proof of ω(d).
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Intuitionistic logic

Some classical tautologies that are not intuitionistically valid

ω ≃ ¬ω excluded middle law
¬¬ω ↗ ω double negation law
((ω ↗ ϑ) ↗ ω) ↗ ω Pierce’s law
(ω ↗ ϑ) ≃ (ϑ ↗ ω)
(ω ↗ ϑ) ↗ (¬ω ≃ ϑ)
¬(ω ↑ ϑ) ↗ (¬ω ≃ ¬ϑ)
(¬ω ↗ ϑ) ↗ (¬ϑ ↗ ω)
(¬ω ↗ ¬ϑ) ↗ (ϑ ↗ ω)
¬↓x.¬ω(x) ↗ ↔x.ω(x)
¬↔x.¬ω(x) ↗ ↓x.ω(x)
¬↓x.ω(x) ↗ ↔x.¬ω(x)
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Proof systems for intuitionistic logic

A natural deduction system for intuitionistic propositional logic or
intuitionistic first-order logic are given by the set of rules presented for
PL or FOL, respectively, except the reductio ad absurdum rule (RAA).

Traditionally, classical logic is defined by extending intuitionistic logic
with the reductio ad absurdum law, the double negation law, the
excluded middle law or with Pierce’s law.
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Proposition as Types
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Proposition-as-types correspondence

The proposition-as-types interpretation establishes a precise relation between
intuitionistic logic and ϖ-calculus:

↭ a proposition A can be seen as a type (the type of its proofs);
↭ and a proof of A as a term of type A.

Hence:

↭ A is provable ⇒⇑ A is inhabited
↭ proof checking boils down to type checking.

This analogy between systems of formal logic and computational calculi was
first discovered by Haskell Curry and William Howard.

Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural
deduction for intuitionistic logic and the lambda calculus.
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Type-theoretic approach to interactive theorem proving

In the practice of interactive proof assistants based on type theory, the user
provides tactics that guide the proof development system in constructing a proof
term. In the final step, this term is type-checked, and its inferred type is verified
against the original goal.

provability of formula A ⇒⇑ inhabitation of type A

interactive theorem proving ⇒⇑ interactive construction of a term
of a given type

proof checking ⇒⇑ type checking

So, decidability of type checking is at the core of the type-theoretic
approach to theorem proving.
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Typed Lambda Calulus
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Typed lambda calculus

The lambda calculus (introduced in the 1930s by Alonzo Church) is a formal
system for expressing computation, based on function construction (via the
abstraction mechanism) and function application (via the variable
substitution mechanism).

The typed lambda calculus introduces a type discipline over terms.

↭ Types are syntactic entities associated with lambda terms.
↭ The concrete nature of the types depends on the specific calculus in

question.

These calculi form the basis of functional programming languages and proof
theory via the propositions-as-types isomorphism.
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Simply typed lambda calculus - ε↗

Types

Fix an arbitrary non-empty set G of ground types.

Types are just ground types or arrow types:

ϱ,ς ::= T | ϱ↗ς where T ⇐ G

Terms

Assume a denumerable set of variables: x, y, z, . . .

Fix a set of term constants for the types.

Terms are built up from constants and variables by ϖ-abstraction and
application:

e, a, b ::= c | x | ϖx :ϱ.e | a b where c is a term constant
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Simply typed lambda calculus - ε↗

Convention

The usual conventions for omitting parentheses are adopted:

the arrow type construction is right associative;

application is left associative; and

the scope of ϖ extends to the right as far as possible.

Usually, we write

ϱ↗ς↗ϱ
→↗ς

→ instead of ϱ↗(ς↗(ϱ →↗ς
→))

a b c d instead of ((a b) c) d

ϖx :ς.ϖb :ϱ↗ς.f x (ϖz :ϱ.b z)
instead of ϖx :ς.(ϖb :ϱ↗ς.((f x) (ϖz :ϱ.b z)))
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Simply typed lambda calculus - ε↗
Free and bound variables

FV(e) denote the set of free variables of an expression e

FV(c) = {}
FV(x) = {x}

FV(ϖx :ϱ.a) = FV(a)\{x}
FV(a b) = FV(a) ⇓ FV(b)

A variable x is said to be free in e if x ⇐ FV(e).

A variable in e that is not free in e is said to be bound in e.

An expression with no free variables is said to be closed.

Convention

We identify terms that are equal up to a renaming of bound variables (or
φ-conversion). Example: (ϖx :ϱ. yx) = (ϖz :ϱ. yz).

We assume standard variable convention, so, all bound variables are chosen
to be di!erent from free variables.
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Simply typed lambda calculus - ε↗

Typing

Functions are classified with simple types that determine the type of their
arguments and the type of the values they produce, and can be applied only
to arguments of the appropriate type.

We use contexts to declare the free variables: ! ::= ⇔↖ | !, x : ϱ

Typing rules

(var)
(x : ς) ⇐ !

! → x : ς
(const)

c has type ϱ

! → c : ϱ

(abs)
!, x : ϱ → e : ς

! → (ϖx :ϱ.e) : ϱ↗ς
(app) ! → a : ϱ↗ς ! → b : ϱ

! → (a b) : ς

A term e is well-typed if there are ! and ς such that ! → e : ς.

Maria João Frade (INESC TEC, DI-UM) Typed Lambda Calculus VF 2025/26 32 / 56



Simply typed lambda calculus - ε↗

Example of a typing derivation

z : ω, y : ω →ω ↑ y : ω →ω
(var)

z : ω, x : ω →ω ↑ z : ω
(var)

z : ω, y : ω →ω ↑ yz : ω
(app)

z : ω ↑ (εy :ω →ω.yz) : (ω →ω)→ω
(abs)

z : ω, x : ω ↑ x : ω
(var)

z : ω ↑ (εx :ω.x) : ω →ω
(abs)

z : ω ↑ (εy :ω →ω.yz)(εx :ω.x) : ω
(app)
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Simply typed lambda calculus - ε↗

Substitution

Substitution is a function from variables to expressions.

a[e/x] denote the substitution of e for x (the free occurrences of x) in a.

[e1/x1, . . . , en/xn] denote the substitution mapping xi to ei for 1 ↙ i ↙ n,
and mapping every other variable to itself.

Remark

In the application of a substitution to a term, we rely on a variable convention.
The action of a substitution over a term is defined with possible changes of
bound variables.

(ϖx :ϱ.y x)[wx/y] = (ϖz :ϱ.y z)[wx/y] = (ϖz :ϱ.w x z)
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Simply typed lambda calculus - ε↗
Computation

Terms are manipulated by the ↼-reduction rule that indicates how to
compute the value of a function for an argument.

ϑ-reduction
↼-reduction, ↗ω , is defined as the compatible closure of the rule

(ϖx :ϱ.a) b ↗ω a[b/x]

↭ ↭ω is the reflexive-transitive closure of ↗ω .

↭ =ω is the reflexive-symmetric-transitive closure of ↗ω .

↭ terms of the form (ϖx :ϱ.a) b are called ↼-redexes

By compatible closure we mean that

if a ↗ω a
→ , then ab ↗ω a

→
b

if b ↗ω b
→ , then ab ↗ω ab

→

if a ↗ω a
→ , then ϖx :ϱ.a ↗ω ϖx :ϱ.a→
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Simply typed lambda calculus - ε↗

Usually there are more than one way to perform computation.

(ωx :ε.f(fx))((ωx :ε.x)z)

!
!"

ϑ

(ωx :ε.f(fx))((ωy :ε↘ε.yz)(ωx :ε.x))

#
#$

ϑ

f(f((ωy :ε↘ε.yz)(ωx :ε.x)))

Normalization

The term a is in normal form if it does not contain any ↼-redex, i.e., if there
is no term b such that a ↗ω b.

The term a strongly normalizes if there is no infinite ↼-reduction sequence
starting with a.
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Properties of ε↗

Uniqueness of types

If ! → a : ς and ! → a : ϱ , then ς = ϱ .

Type inference

The type synthesis problem is decidable, i.e., one can deduce automatically the
type (if it exists) of a term in a given context.

Subject reduction

If ! → a : ς and a↭ω b , then ! → b : ς .

Strong normalization

If ! → e : ς, then all ↼-reductions from e terminate.
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Properties of ε↗

Confluence

If a =ω b , then a↭ω e and b↭ω e , for some term e .

Substitution property

If !, x : ϱ → a : ς and ! → b : ϱ , then ! → a[b/x] : ς .

Thinning

If ! → e : ς and ! ∝ !→, then !→ → e : ς.

Strengthening

If !, x : ϱ → e : ς and x ′⇐ FV(e), then ! → e : ς.
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The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural

deduction for intuitionistic logic and ϖ-calculus.

Observe the analogy between the implicational fragment of intuitionistic
propositional logic and ϖ↗

Implicational fragment of PL ϖ↗

ω ⇐ !

! → ω
(assumption)

(x : ω) ⇐ !

! → x : ω
(var)

!,ω → ϑ

! → ω ↗ ϑ
(↗I)

!, x : ω → e : ϑ

! → (ϖx :ω.e) : ω↗ϑ
(abs)

! → ω ↗ ϑ ! → ω

! → ϑ
(↗E)

! → a : ω↗ϑ ! → b : ω

! → (a b) : ϑ
(app)

The Curry-Howard isomorphism is well established for first-order logic, and can be

extended to higher-order logic.
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Higher-order logic and type theory

The set T of pseudo-terms is defined by

A,B,M,N ::= s | x | M N | ϖx :A.M | ”x :A.B

x ⇐ V (a countable set of variables) and s ⇐ S (a set of sorts).

Both ” and ϖ bind variables.

Both ⇑ and ↓ are generalized by a single construction ”.

We write A↗B instead of ”x :A.B whenever x ′⇐ FV(B).

The typing rules for abstraction and application became

(abs)
!, x :A → M : B ! → (”x :A.B) : s

! → (ωx :A.M) : (”x :A.B)

(app)
! → M : (”x :A.B) ! → N : A

! → MN : B[N/x]
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The Rocq Prover in Brief
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The Rocq Prover

Rocq is a general purpose proof management system based on a formalism
which is both a very expressive logic and a richly-typed programming
language – the Calculus of Inductive Constructions (CIC).

↭ Intuitionistic logic. A proof is a process which produces witnesses for
existential statements, and e!ective proofs for disjunction.

↭ The proofs-as-programs, formulas-as-types correspondence. The
language of proofs is a programming language.

↭ Higher-order logic and primitive inductive types. Elimination
machanisms are automatically generated from inductive definitions.

The Rocq Prover is open source, is supported by a substantial library and
has a large and active user community.
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The Rocq Prover

Rocq allows:

to define functions or predicates, that can be evaluated e”ciently;

to state mathematical theorems and software specifications;

to interactively develop formal proofs of these theorems;

to machine-check these proofs by a small ”certification kernel”;

to extract certified programs from the constructive proof of its formal
specification.

Rocq specificities:

Gallina is the Rocq’s specification language, which allows developing
mathematical theories and to write specifications of programs.

Vernacular is the Rocq’s command language, which includes all sorts of
usefull queries and requests to the Rocq system.

Ltac is the Rocq’s domain-specific language for writing proofs and decision
procedures.
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The Rocq Prover

All objects have a type. There are

types for functions (or programs)

atomic types (especially datatypes)

types for proofs

types for the types themselves.

The types of types are called sorts. All sorts have a type and there is an infinite
well-founded typing hierarchy of sorts whose base sorts are:

Prop - logical propositions

SProp - strict logical propositions (similar to Prop, but no access to proofs)

Set - small sets (types whose values do not contain other types)

Type is the sort for datatypes and mathematical structures (there is a hierarchy of
Type(i), for i = 1.2. . . .)
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Rocq syntax

ϖx :A.ϖ y :A↗B. y x fun (x:A) (y:A->B) => y x

”x :A.P x forall x:A, P x

Inductive types

Inductive nat :Set := O : nat
| S : nat -> nat.

This definition yields: – constructors: O and S
– eliminators: nat ind, nat rec and nat rect

General recursion and case analysis

Fixpoint double (n:nat) :nat :=
match n with

| O => O
| (S x) => S (S (double x))

end.
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Environment

In the Rocq Prover the well typing of a term depends on an environment which
consists in a global environment and a local context.

The local context is a sequence of variable declarations, written x : A (A is
a type) and “standard” definitions, written x := t : A (that is abbreviations
for well-formed terms).

The global environment is the list of global declarations and definitions.
This includes not only assumptions and “standard” definitions, but also
definitions of inductive objects. (The global environment can be set by
loading some libraries.)

We frequently use the names constant to describe a globally defined identifier and
global variable for a globally declared identifier.

The typing judgments are as follows:

E |! → t : A
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Declarations and definitions

The environment combines the contents of initial environment, the loaded
libraries, and all the global definitions and declarations made by the user.

Loading modules

Require Import ZArith.
This command loads the definitions and declarations of module ZArith which is
the standard library for basic relative integer arithmetic.

The Rocq system has a block mechanism (similar to the one found in many
programming languages) Section id. ... End id. which allows to manipulate the
local context (by expanding and contracting it).

Declarations

Parameter max int : Z. Global variable declaration
Section Example.
Variables A B : Set. Local variable declarations
Variables Q : Prop.
Variables (b:B) (P : A->Prop).
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Declarations and definitions

Definitions

Definition min int := (1 - max int) Global definition

Let FB := B -> B. Local definition

Proof-terms

Lemma trivial : forall x:A, P x -> P x.
Proof.
intros x H.
exact H.

Qed.

Using tactics a term of type forall x:A, P x -> P x has been created.

Using the Qed command the identifier trivial is defined as this proof-term
and add to the global environment.
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Computation

Computations are performed as series of reductions. The Eval command
computes the normal form of a term with respect to some reduction rules (and
using some reduction strategy: cbv or lazy).

↼-reduction for compute the value of a function for an argument:

(ϖx :A. a) b ↗ω a[b/x]

↽-reduction for unfolding definitions:

e ↗ ε t if (e := t) ⇐ E |!

⇀-reduction for primitive recursion rules, general recursion, and case analysis

⇁-reduction for local definitions: let x := a in b ↗ ϑ b[a/x]
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Computation
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Proof example

Section EX.

Variables (A:Set) (P : A->Prop).
Variable Q:Prop.

Lemma example : forall x:A, (Q -> Q -> P x) -> Q -> P x.
Proof.

intros x h g.
apply h.
assumption.
assumption.

Qed.

example = ωx :A.ωh :Q↘ Q↘P x.ωg :Q. h g g

Print example.

example =
fun (x : A) (h : Q -> Q -> P x) (g : Q) => h g g

: forall x : A, (Q -> Q -> P x) -> Q -> P x
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Proof example

Observe the analogy with the lambda calculus.

example = ωx :A.ωh :Q↘ Q↘Px.ωg :Q. h g g

A : Set, P : A↘Prop, Q : Prop → example : ⇐x :A, (Q ⇒ Q ⇒ Px) ⇒ Q ⇒ Px

End EX.
Print example.

example =
fun (A:Set) (P:A->Prop) (Q:Prop) (x:A) (h:Q->Q->P x) (g:Q) => h g g

: forall (A : Set) (P : A -> Prop) (Q : Prop) (x : A),
(Q -> Q -> P x) -> Q -> P x

→ example : ⇐A :Set, ⇐P :A↘Prop, ⇐Q :Prop, ⇐x :A, (Q ⇒ Q ⇒ P x) ⇒ Q ⇒ P x
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Tactics for first-order reasoning

Proposition (P ) Introduction Elimination (H of type P )
↘ elim H, contradiction
¬A intro apply H

A ↑B split elim H, destruct H as [H1 H2]

A ⇑ B intro apply H

A ≃B left, right elim H, destruct H as [H1|H2]

↓x :A.Q intro apply H

↔x :A.Q exists witness elim H, destruct H as [x H1]
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Some more tactics

Some basic tactics

intro, intros – introduction rule for ” (several times)

apply – elimination rule for ”

assumption – match conclusion with an hypothesis

exact – gives directly the exact proof term of the goal

Some automatic tactics

trivial – tries those tactics that can solve the goal in one step.

auto – tries a combination of tactics intro, apply and assumption using
the theorems stored in a database as hints for this tactic.

tauto – useful to prove facts that are tautologies in intuitionistic PL.

intuition – useful to prove facts that are tautologies in intuitionistic PL.

firstorder – useful to prove facts that are tautologies in intuitionistic FOL.
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Lab session

Load the file lesson1.v in the Rocq proof assistant. Analyse the
examples and solve the exercises proposed.

Solve the exercises presented in Rocq(1).pdf.

Maria João Frade (INESC TEC, DI-UM) The Rocq Prover in Brief VF 2025/26 55 / 56

The Rocq Prover

https://rocq-prover.org
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