
Software Verification
 Maria João Frade


HASLab - INESC TEC 
Dep. Informática, Universidade do Minho

1

The central problem of formal methods is to guarantee 
the behaviour of a given computing system following 
some rigorous approach.

Formal Methods

2

What is a specification?

 

A specification is a model of a system that contains a 
description of its desired behaviour — what is to be 
implemented, by opposition to how.


3

• Program verification techniques aim to answer this problem. 

• Given a program and a specification, check that the former 
conforms to the latter.


• In many situations, this is the only applicable method.

Program Verification
Given an implementation, how can it be guaranteed 
that it has the same behaviour as the specification?

4



Program Verification
Two main approaches:


• Software Model Checking 
• Safety properties proved about transition system models extracted 

from the code.

• Typically allows only for simple properties, expressed as assertions 

in the code, but is fully automated. 


• Deductive Program Verification 
• Based on the use of a program logic and the design-by-contract 

principle.

• Gives full guarantees and allows for expressing properties using a 

rich behaviour specification language, but it is not fully automated.5

Software Model Checking
• The basic idea is to determine if a correctness property holds by exhaustively 

exploring the reachable states of a program. 

• If the property does not hold, the model checking algorithm generates a 

counterexample, an execution trace leading to a state in which the property is 
violated. 


State explosion problem 
• The state space of software programs is typically too large to be analyzed 

explicitly.

• To overcome this problem:

• model checking is often combined with abstraction techniques 
• depth-bounded exploration of the state space — Bounded Model Checking

6

Soundness and Completeness
• A software verifier is sound if it reports every property violation. All 

existing bugs are reported. There are no missing bugs. In other words, 
if it says the program is correct, then it really is correct.


• A verifier is complete if all the violations it reports are indeed errors. 
No spurious warnings are produced. In other words, if it says the 
program is incorrect, then it really is incorrect.


• Abstraction techniques introduce false positives, sacrificing 
completeness. Bounded Model Checking only checks execution paths 
with size up to a fixed bound, sacrificing soundness. Bugs that require 
longer paths are missed. 

7

Bounded Model Checking of SW
• The key idea is to encode bounded behaviours of the program that enjoy some 

given property as a logical formula which is passed to a SAT solver. Models of 
the formula, if any, describe execution paths leading to a violation of the 
property. 

• The properties to be established are assertions on the program state, included 
in the program through the use of assert statements. 


• This technique explores program behaviour exhaustively, but only up to a given 
depth. Bugs that require longer paths are missed. Nevertheless, the technique 
is successful, as many bugs have been identified that would otherwise have 
gone unnoticed. 


• We will work with CBMC — a Bounded Model Checker for C programs.
8



Deductive Verification

• A sound and complete form of static checking w.r.t. to a specification, based 
on a program logic and the design-by-contract principle.


• It is the user’s responsibility to provide contracts and other information 
required for verification to proceed, such as loop invariants.


• We will work with Frama-C a platform for static analysis of C code, in 
particular, with the WP plugin based on Hoare logic and weakest precondition 
calculus.  

9


