CBMC

A Bounded Model Checker for C programs

Maria Jodo Frade

HASLab - INESC TEC
Dep. Informatica, Universidade do Minho

(First part is based on slides by Arie Gurfinkel.)

CBMC — C Bounded Model Checker

» Developed at CMU by Daniel Kroening (Oxford) and Edmund Clarke (CMU).
* Available at: http://www.cprover.org/cbmc/

* CBMC demonstrates the violation of assertions in C programs, or proves
safety of the assertions under a given bound.

* CBMC implements a bit-precise translation of an input C program, annotated
with assertions and with loops unrolled to a given depth, into a formula. If the
formula is satisfiable, then an execution leading to a violated assertion
exists.

* CBMC is not able to prove correctness for programs with unbounded loops in
general, but is very useful for bug catching.

Bug catching with CBMC

* Main Ideia: Given a program and a claim use a SAT solver to find whether
there exists an execution that violates the claim.

* Arbitrary ANSI-C programs (with bitvector arithmetic, dynamic memory,
pointers, type casts, etc).

» Simple Safety Claims (such as, array bound checks, pointer checks, division
by zero, arithmetic overflow, user supplied assertions).

* Loops must be bounded (i.e., the analysis is incomplete).

* The analysis is completely automated.

Program>Ana|ysis CNF | SAT
Claim Engine " Solver

Bound (n) —t /\

SAT UNSAT

(counterexample exists) (no counterexample of

bound n is found)

How does CBMC work

» Transform a program into a set of equations.

Simplify control flow

Unwind all the loops

Convert into Static Single Assignment (SSA) form
Convert into equations

Bit-blast

ok o=

» Solve the equations with a SAT solver.

» Convert the SAT assignment (if any) into a counterexample.

How does CBMC work

C Program Static Analysis

SAFE

SAT solver m

Control flow simplifications

» All side effect are removed
e.g., j=i++ becomes j=i;i=i+1
 Control flow is made explicit

continue, break replaced by goto

* All loops are simplified into one form

for, do-while replaced by while

Loop unwinding

* All loops are unwound.

* different unwinding bounds for different loops can be
used

* to check whether unwinding is sufficient special
“‘unwinding assertion” claims are added

* |f a program satisfies all of its claims and all unwinding
assertions then it is correct!

* Same for backward goto jumps and recursive functions.

Loop unwinding

void f(...) { void f(...) { void f(...) { void f(...) {
;lf.l:}_le(cond) { if(cond) { if(cond) { if(cond) {
Body; Body; Body; ?ody;
} ’ while(cond) { if(cond) { 1*;‘:“‘” {
s Q Body; ody ;
RIS ik while(cond) { if(cond) {
’ ’ Body; Body;
} } assert(!cond);
Remainder; } S
. }
Remainder; ¥ Unwim!ing
}) } assertion

Remainder;

} I

This allows us to prove that we have done enough unwinding.

Example of a sufficient loop unwinding

void f(...) {
j=1
while (j <= 2)
J=3+1;
Remainder;

}

unwind =3

void f(...) {
j=1
if(j <= 2) {
Jji=J+ 1;
if(j <= 2) {
J=3+1;
if(j <= 2) {
j=3+1;
assert(!(j <= 2));

Unwinding
assertion

}
}

Remainder;

} 7

Example of a insufficient loop unwinding

void f(...) { void f(...) {
j=1 j=1
while (j <= 10) if(j <= 10) {
j=3+1 j=3+1
Remainder; if(j <= 10) {
} j=3+1;
if(j <= 10) {
J=3+1;
unwind = 3 assert(!(j <= 10));
}
} o
} Unwmc!mg
} assertion
Remainder;
} 4

Transforming loop-free programs into equations

When a variable is assigned multiple times, use a new variable
for the LHS of each assignment.

This is called Static Single Assignment (SSA) form.

Program

x+y;
xX*2;

X
X
a

[i] = 100;

SSA Program

X, = Xotyos
X, = xX,*2;
p a,[i,] = 100;

Transforming loop-free programs into equations

What about conditionals?

For each join point, add new variables with selectors.

Program

if (v)
X =y
else

SSA Program

X, = Vy ? X, @ X,

Example

Example
int main() { int main() {
int x, y; int x, y;
y=8; y1=8; (y, =8
if (x) if (xq) AY,=Yy; -1
¥y y2=y1-1; Ay =y +1
else | 0 else [AN Vs =X 2 Y, 1 Y3)
yo+; y3=y1+1; = (V=7 V y,=9)
y4= X0 7y2:¥3; valid?
assert assert
(y==7 || (ya==7 ||
y==9); y4==9);

} PN 7 y

int main() { int main() {
int x, y; int x, y;
% i (=8
if (x) if (xq) A Y,=y, -1
y==s y2=y1-1; AN ys=y +1
else | :> else i :> A Ya =X 2 Y, 1 Y3)
y++; ¥3=y1+1; A ~(Ye=7 V ¥4=9)
y4= X0 7y2:¥3; Unsat?
assert assert
(y==7 || (y4==7 ||
y==9); ¥4==9) ;
/4 7

Bit-basting

* To check satisfiability of the formulas the usual approach is to
replace the arithmetic operators by circuit equivalents to obtain
a propositional formula, which is then passed to a SAT solver.

* This approach is called 'bit-blasting’ or ‘bit-flattening’, as the
word-level structure is lost.

* CBMC also supports SMT solvers as back-ends. In this case a
bit-vector theory is used.

From programming to modelling

Extend C programming language with 3 modelling features.

Assertions
assert (e) — aborts an execution when e is false, no-op otherwise.

Non-determinism
nondet_int () - returns a non-deterministic integer value.

Assumptions
__CPROVER_assume (e) — “ignores” execution when e is false.

Restricts the program traces that are considered
and allows assume-guarantee reasoning.

16

Assume-Guarantee reasoning

(A) Is foo correct assuming p is not NULL?

‘int foo (int* p) { _ CPROVER_assume(p!=NULL); .. } j

(G)lIs foo guaranteed to be called with a non-NULL argument?

void main(void) {
assert (x!=NULL);// foo(x);

assert (y!=NULL); //foo(y);
o}

This program is passed by CBMC!

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction.

if (x > 0) {
__CPROVER_assume (x < 0);
assert (0); }

Assumptions can be used to restrict the program traces that are considered.

x = nondet_int ();

y = nondet_int ();

__CPROVER_assume (x < y);

CBMC by example

Assertions [ex1.c]

CBMC checks assertions as defined by the ANSI-C standard.
The assert statement takes a Boolean condition, and CBMC checks
that this condition is true for all runs of the program.

void main (void)
{
int x;
int y=8, z=0, w=0;

if (x)
z =y - 1;
else
w=y+ 1;

assert (z == [| w==9);

}

S cbmec exl.c

$ cbmc exl.c --show-vcc
20

ex1.c outcome

S cbmec exl.c

CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 macos
Parsing exl.c

Converting

Type-checking exl

file exl.c line 11 function main: function “assert' is not declared
Generating GOTO Program

Adding CPROVER library (x86_64)

Removal of function pointers and virtual functions
Generic Property Instrumentation

Running with 8 object bits, 56 offset bits (default)
Starting Bounded Model Checking

size of program expression: 43 steps

simple slicing removed 2 assignments

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to propositional reduction
converting SSA

Running propositional reduction

Post-processing

Solving with MiniSAT 2.2.1 with simplifier

141 variables, 39 clauses

SAT checker inconsistent: instance is UNSATISFIABLE
Runtime decision procedure: 0.00294518s

** Results:
[main.assertion.1] assertion z == 7 || w == 9: SUCCESS

** @ of 1 failed (1 iteration)
VERIFICATION SUCCESSFUL 21

ex1.c outcome

$ cbmc exl.c --show-vcc

..

Generated 1 VCC(s), 1 remaining after simplification
VERIFICATION CONDITIONS:

file exl.c line 11 function main
assertion z == Il w ==

C.)

{-12} ylo@1#2 ==
{-13} z!oe@1#2
{-14} w!0@1#2 ==
{-15} \guard#l == !(x!0@1#1 == @)
{-16} z!0@1#3 == 7

{-17} z!0@1#4 == 0

{-18} w!o@1#3
{-19} w!0@1#4 == (\guard#l ? @ : 9)
{-20} z!0@1#5 == (\guard#l ? 7 : @)

8
0
0

{1} w!o@l#4 == 9 || z!0@1#5 == 7
22

Alternatively: use SMT solver

S cbmec -z3 exl.c
(€S)

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to SMT2 QF_AUFBV using Z3

converting SSA

Running SMT2 QF_AUFBV using Z3

Runtime decision procedure: 0.027970@9s

** Results:
[main.assertion.1] assertion z == 7 || w == 9: SUCCESS

** @ of 1 failed (1 iteration)
VERIFICATION SUCCESSFUL

S cbmc -cvcéd exl.c
)

Generated 1 VCC(s), 1 remaining after simplification
Passing problem to SMT2 QF_AUFBV using CVC4
converting SSA

Running SMT2 QF_AUFBV using CVC4

Runtime decision procedure: ©.0147195s

** Results:
[main.assertion.1] assertion z == 7 || w == 9: SUCCESS

** @ of 1 failed (1 iteration)

VERIFICATION SUCCESSFUL -

ex2.c

void main (void)

{
int x;
int y=8, z=0, w=0;
if (x)
z =y - 1;
else
w=y + 1;
assert (z == 5 || w == 9)
}

S cbmec ex2.c
S cbmc ex2.c --trace

24

ex2.c outcome

S cbmc ex2.c

(@)

Solving with MiniSAT 2.2.1 with simplifier
141 variables, 50 clauses

SAT checker: instance is SATISFIABLE
Runtime decision procedure: 0.000694225s

** Results:
[main.assertion.1] assertion z == 5 || w == 9: FAILURE

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED

25

ex2.c outcome

$ cbmc ex2.c --trace

(@)

Solving with MiniSAT 2.2.1 with simplifier
141 variables, 50 clauses

SAT checker: instance is SATISFIABLE
Runtime decision procedure: 0.000671996s

** Results:
[main.assertion.1] assertion z == 5 || w == 9: FAILURE

Trace for main.assertion.l1:

State 17 file ex2.c line 3 function main thread @

x=33554432 (00000010 00000000 00000000 00000000)

State 18 file ex2.c line 4 function main thread @

y=0 (00000000 00000000 00000000 00000000)

State 19 file ex2.c line 4 function main thread @

y=8 (00000000 00000000 00000000 00001000)

26

ex2.c outcome

$ cbmc ex2.c --trace

(@)
State 23 file ex2.c line 4 function main thread 0

w=0 (00000000 00000000 00000000 0000000D)

State 25 file ex2.c line 7 function main thread @

z=7 (00000000 00000000 00000000 00000111)

Violated property:
file ex2.c line 11 function main
assertion z == 5 || w==9
z==51lw==09

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED

27

ex3.c

CBMC can ignore user assertions.

void main (void)

{
int x, y;
X =X +y;
if (x !'= 3) x = 2;
else x++;
assert (x <= 3);
}
$ cbmec ex3.c --show-vce
S cbmec ex3.c
$ cbmc ex3.c --no-assertions
$ cbmc ex3.c --no-assertions --show-vcc

28

Checking overflow

But the code can be automatically instrumented.

$ cbmc ex3.c --signed-overflow-check
--no-assertions --trace

State 17 file ex3.c line 3 function main thread 0

=-1610612735 (10100000 00000000 00000000 00000001)

State 18 file ex3.c line 3 function main thread 0@

y=-2147483648 (10000000 00000000 00000000 00000000)

Violated property:
file ex3.c line 5 function main
arithmetic overflow on signed + in x + y

loverflow("+", signed int, x, y)

** 1 of 2 failed (2 iterations)

VERIFICATION FAILED 2

Workflow

* Internally CBMC runs goto-cc to produce a
representation of the control flow graph of the program.

$ goto-cc ex3.c -o ex3.gb

* Then the instrumentation tool goto-instrument
automatically add assertions to be checked.

$ goto-instrument --signed-overflow-check ex3.gb
ex3.instr.gb

* And finally the assertions are checked.

$ cbmc ex3.instr.gb

30

Seeing the properties

$ cbmc ex3.c --signed-overflow-check --show-properties

Property main.overflow.1l:
file ex3.c line 5 function main
arithmetic overflow on signed + in x + y

loverflow("+", signed int, x, y)

Property main.overflow.2:
file ex3.c line 7 function main
arithmetic overflow on signed + in x + 1
loverflow("+", signed int, x, 1)

Property main.assertion.l:
file ex3.c line 9 function main
assertion x <= 3
X <= 3

31

Seeing the instrumented code

$ cbmc ex3.c --signed-overflow-check --show-goto-functions

main /* main */

// @ file ex3.c line 3 function main
signed int x;
// 1 file ex3.c line 3 function main
signed int y;
// 2 file ex3.c line 5 function main
ASSERT !overflow("+", signed int, x, y) // arithmetic overflow on signed + in x + y
// 3 file ex3.c line 5 function main
X =X+ Y;
// 4 file ex3.c line 6 function main
IF !(x != 3) THEN GOTO 1
// 5 file ex3.c line 6 function main
X = 2;
// 6 file ex3.c line 6 function main
GOTO 2
// 7 file ex3.c line 7 function main

1: ASSERT !overflow("+", signed int, x, 1) // arithmetic overflow on signed + in x + 1
// 8 file ex3.c line 7 function main
X =X + 1;
// 9 file ex3.c line 9 function main

2: ASSERT x <= 3 // assertion x <= 3
// 10 file ex3.c line 10 function main
dead y;
// 11 file ex3.c line 1@ function main
dead x;
// 12 file ex3.c line 10 function main
END_FUNCTION 30

v »n »n »n

Entrypoints [ex4.c]

int fun (int a, int b)

if (a>0 || b>0)
c = 1/(a+b);
return c;

cbmc ex4.c
cbmc ex4.c --function fun
cbmc ex4.c --function fun --div-by-zero-check

cbmc ex4.c --function fun --div-by-zero-check --trace
33

Checking division by zero

$ cbmc ex4.c --function fun --div-by-zero-check --trace

** Results:
[fun.division-by-zero.1] division by zero in 1 / (a + b): FAILURE

Trace for fun.division-by-zero.1:

(€)
State 23 file ex4.c line 1 thread @

=-1073741808 (11000000 00000000 00000000 00010000)

State 24 file ex4.c line 1 thread @

b=1073741808 (00111111 11111111 11111111 11110000)

State 25 file ex4.c line 3 function fun thread @

c=0 (00000000 00000000 00000000 00000000)

State 26 file ex4.c line 3 function fun thread 0

c=0 (00000000 00000000 00000000 00000000)

Violated property:
file ex4.c line 6 function fun
division by zero in 1 / (a + b)
'(a + b == 0)

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED 34

exb.c

void main ()
{
char c;
long 1;
int i;

l=c=1i;
assert (l==i);

$ cbmc ex5.c

$ cbmc ex5.c --trace

35

ex5.c outcome

S cbmc ex5.c --trace

** Results:
[main.assertion.1] assertion 1 == (signed long int)i: FAILURE
Trace for main.assertion.1:

State 17 file ex5.c line 3 function main thread @

c=0 (00000000)

State 18 file ex5.c line 4 function main thread @

1=01 (00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000)

State 19 file ex5.c line 5 function main thread @

1=262144 (00000000 00000100 00000000 00000000)

State 20 file ex5.c line 7 function main thread @

c=0 (00000000)

State 21 file ex5.c line 7 function main thread @

1=01 (00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000)

Violated property:
file ex5.c line 8 function main
assertion 1 == (signed long int)i
1 == (signed long int)i 36

Array bounds [ex6.c]

int puts (const char *s);

int main (int argc, char **argv)

{
int i;
if (argc >= 1)
puts (argv[2]);
}

$ cbmc ex6.c
$ cbmc ex6.c --bounds-check --pointer-check
$ cbmc ex6.c --bounds-check --pointer-check --trace

37

ex6.c outcome

$ cbmc ex6.c --bounds-check --pointer-check --trace

(@S]
Trace for main.pointer_dereference.6:
State 17 thread @

INPUT argc: 1 (00000000 00000000 00000000 00000001)

State 18 thread @
argv'[1]=C(char *INULL) (00000000 00000000 00000000 00000000 00000000 00000000 00000000 V00V0000)
State 21 file ex6.c line 3 thread @

argc=1 (00000000 00000000 00000000 00000001)

State 22 file ex6.c line 3 thread @

argv=argv' (00000010 00000000 00000000 00000000 00000000 00000000 00000000 00000000)

State 23 file ex6.c line 5 function main thread @

i=0 (00000000 00000000 00000000 00000000)

Violated property:
file ex6.c line 8 function main
dereference failure: pointer outside object bounds in argv[(signed long int)2]
161 + POINTER_OFFSET(argv) >= @1 && OBJECT_SIZE(argv) >= 24ul + (unsigned long
int)POINTER_OFFSET(argv) || DYNAMIC_OBJECT(argv)

** 1 of 7 failed (2 iterations)
VERIFICATION FAILED 38

Array bounds [ex7.c]

int puts (const char *s);

int main (int argc, char **argv)

{
int i;
if (argc >= 2)
puts (argv[2]);
}

$ cbmc ex7.c --bounds-check --pointer-check

(@)
[main.pointer_dereference.7] dereference failure: invalid integer address
in argv[(signed long int)2]: SUCCESS

** @ of 7 failed (1 iteration)

VERIFICATION SUCCESSFUL %

ex8.c

int array[10];

int sum ()

{
unsigned i, sum;
sum = 0;
for (i = 0; 1 <= 10; i++)
sum += array [i];
}
$ cbmc ex8.c --function sum

$ cbmc ex8.c --function sum --bounds-check

S cbmc ex8.c --function sum --bounds-check --trace

40

ex8.c outcome

S cbmc ex8.c --function sum --bounds-check --trace

(@D)

State 59 file ex8.c line 9 function sum thread 0

sum$$1$$sum=0u (00000000 00000000 000000 00000000)

State 60 file ex8.c line 8 function sum thread 0

1=10u (00000000 00000000 00000000 00001010)

Violated property:
file ex8.c line 9 function sum
array “array' upper bound in array[(signed long int)i]
I((signed long int)i >= 101)

** 1 of 1 failed (1 iteration)
VERIFICATION FAILED

41

Loop unwinding [ex9.c]

int binsearch (int x)

{
int a[l6];
signed low = 0, high = 16;
while (low < high) {
signed middle = low + ((high - low) >> 1);
if (a[middle] < x) high = middle;
else if (a[middle] > x) 1low = middle + 1;
else return middle;
}
return -1;
}

$ cbmc ex9.c --function binsearch
--bounds-check --pointer-check

42

ex9.c outcome

$ cbmc ex9.c --function binsearch
—--bounds-check --pointer-check

CBMC does not stop! The loop is being infinitely unwound.
We must provide the number of iterations to be unwound.

$ cbmec ex9.c --function binsearch
--bounds-check --pointer-check
--unwind 4

(@)
[binsearch.array_bounds.4] array “a' upper bound in a[(signed long int)middle]: SUCCESS

** @ of 4 failed (1 iteration)
VERIFICATION SUCCESSFUL

The above verification simply means that no array bounds are
violated in the first 4 iterations os the loop!

43

Unwinding assertion

To see if the entire set of possible executions is being covered, we
must generate unwinding assertions.

$ cbmc ex9.c --function binsearch
--bounds-check --pointer-check
—--unwind 4 --unwinding-assertions

(@)

[binsearch.array_bounds.4] array “a' upper bound in a[(signed long int)middle]: SUCCESS
[binsearch.unwind.@] unwinding assertion loop @: FAILURE

** 1 of 5 failed (2 iterations)
VERIFICATION FAILED

44

Unwinding assertion

The failure of the “unwinding assertion” means that it is not
guaranteed that the number k of iterations given as parameter will be
sufficient, i.e. some execution path may run through n>k iterations.

In this case it suffices to increase k.

$ cbmc ex9.c --function binsearch
--bounds-check --pointer-check
--unwind 6 --unwinding-assertions
C.)
** Results:

[binsearch.array_bounds.1] array “a' lower bound in a[(signed long int)middle]: SUCCESS
[binsearch.array_bounds.2] array “a' upper bound in a[(signed long int)middle]: SUCCESS
[binsearch.array_bounds.3] array “a' lower bound in a[(signed long int)middle]: SUCCESS
[binsearch.array_bounds.4] array “a' upper bound in a[(signed long int)middle]: SUCCESS
[binsearch.unwind.@] unwinding assertion loop @: SUCCESS

** @ of 5 failed (1 iteration)
VERIFICATION SUCCESSFUL

45

Bounded loops [ex10.c]
CBMC checks if enough unwinding is done.

int sumg (void)

{

short int i, s;

s = 0;

for (i =0
s *= i*ji

return s

$ cbmc exl10.c --function sumqg --signed-overflow-check

[sumg.overflow.3] line 6 arithmetic overflow on signed + in i + 1: SUCCESS

[sumg.overflow.1] line 7 arithmetic overflow on signed * in (signed int)i * (signed int)i: SUCCESS
[sumg.overflow.2] line 7 arithmetic overflow on signed * in s * (signed short int)((signed int)i *
(signed int)i): SUCCESS

** @ of 3 failed (1 iteration)
VERIFICATION SUCCESSFUL 46

Unbounded loops [ex11.c]

CBMC can also be used for programs with unbounded loops.

int sumgg (int x)

{
short int i, s;
s = 0;
for (i = 0; i <= x; it++)

s += i+i;

return s;

}

$ cbmc exll.c --function sumqq

--signed-overflow-check --unwind 100

47

Unbounded loops [ex11.c]

$ cbmc exll.c --function sumqq --signed-overflow-check
--unwind 100

** Results:
(@)

[sumgq.overflow.3] arithmetic overflow on signed + in i + 1: SUCCESS

** @ of 3 failed (1 iteration)
VERIFICATION SUCCESSFUL

In this case CBMC is used for bug hunting only. CBMC does not
attempt to find all bugs. If you increase the bound you can find a bug.

$ cbmc exll.c --function sumqq --signed-overflow-check
--unwind 200

[sumgq.overflow.3] line 6 arithmetic overflow on signed + in i + 1: SUCCESS

[sumqq.overflow.1] line 7 arithmetic overflow on signed + in (signed int)i + (signed int)i: SUCCESS
[sumqgq.overflow.2] line 7 arithmetic overflow on signed + in s + (signed short int)((signed int)i +
(signed int)i): FAILURE

** 1 of 3 failed (2 iterations)
VERIFICATION FAILED 48

Inlining [ex12.c]

CBMC supports functions by inlining, and preserves the locality of the
parameters and the non-static local variables by renaming.

. int h() {
int £() { int x=10;
static int s=0; x += £() + g();
s++; return x;
return s; }
}
void main(void)
int g() { { .
int 1=0: assert(f()==1); // first call to f
[P ! assert(f()==2); // second call to £
! assert(g()==1); // first call to g
return 1; assert(g()==1); // second call to g
} assert(h()==14);

$ cbmec exl2.c

** @ of 1 failed (1 iteration)
VERIFICATION SUCCESSFUL
Generated 5 VCC(s), @ remaining after simplification
VERIFICATION SUCCESSFUL
49

Recursion [ex13.c]

Recursion is implemented by finite unwinding, as done for while loops.

int fact(int n)
{
if (n==0)
return 1;
else return n*fact(n-1);

}

void main(void)
{

fact(20);
}

$ cbmc ex1l3.c --function fact —signed-overflow-check

Unwinding recursion fact iteration 1
Unwinding recursion fact iteration 2 infinitel d
Unwinding recursion fact iteration 3 infinitely unvvqun .)

Unwinding recursion fact iteration 4 We must provide the number of iterations

Unwinding recursion fact iteration .. to be unwound.

CBMC does not stop! The loop is being

50

Recursion [ex13.c]

$ cbmc exl3.c --function fact --signed-overflow-check
—--unwind 5

[fact.overflow.1] line 5 arithmetic overflow on signed - in n - 1: FAILURE

[fact.overflow.2] line 5 arithmetic overflow on signed * in n * return_value_fact: SUCCESS

** 1 of 2 failed (2 iterations)

VERIFICATION FAILED

If called from main fact will be inlined and unwound.
There is no need to provide ——unwind k switch.

$ cbmc exl1l3.c --signed-overflow-check

[fact.overflow.1] line 5 arithmetic overflow on signed - in n - 1: SUCCESS
[fact.overflow.2] line 5 arithmetic overflow on signed * in n * return_value_fact: FAILURE

** 1 of 2 failed (2 iterations)
VERIFICATION FAILED

51

Low level properties [ex14.C]

Nondeterminism can be introduced explicitly into the program by means of
functions that begin with the prefix nondet_

int nondet int();

int *p; int main (void)
int global; {
int z;
void f (void)
{ global = 10;
int local = 10; £ ();
int input = nondet int(); zZ = *p;
assert (z==10);
p = input ? &local : &global; }
}
$ cbmc exl4.c VERIFICATION FAILED Why?

$ cbmc exl4.c --pointer-check --no-assertions
52

ex15.c

int fun (int n) int main(void)
{ {
int *p, i, s=0; printf("%d",fun(8) + 100);
return 0;
p = malloc(sizeof(int)*n); }

for (i=0; i<++n; i++)
pli] = 10*i;

for (i=0; i<n; i++)
s += p[i];

return s;

}

$ cbmc exl5.c --bounds-check --pointer-check

The loop is being infinitely unwound. Why'?
$ cbmc exl1l5.c --bounds-check —pointer-check —unwind 5
VERIFICATION SUCCESSFUL Why?
$ cbmc ex15.c --bounds-check —pointer-check —unwind 10
VERIFICATION FAILED Why?

ex16.c

char *p = "abc";

void fun(unsigned int i)
{

char ch;

ch = p[i];

$ cbmc ex1l6.c --bounds-check --pointer-check --function fun

)

[fun.pointer_dereference.6] dereference failure: pointer outside object bounds in
p[(signed long int)i]: FAILURE

[fun.pointer_dereference.?7] dereference failure: invalid integer address in p[(signed long
int)i]: SUCCESS

** 1 of 7 failed (2 iterations)
VERIFICATION FAILED

54

ex17.c

void f (unsigned int n)

{
int *p;
p = malloc(sizeof(int)*n);
pln-1] = 0;
free(p);
¥
$ cbmc exl1l7.c --function £ VERIFICATION SUCCESSFUL

$ cbmc ex1l7.c --function £
--bounds-check --pointer-check

VERIFICATION FAILED Why?

55

ex18.c

void f (int 1i)
{
int *p, y;

p = malloc(sizeof(int)*10);
if (1) p = &y;
free(p);

$ cbmc ex18.c --function f

VERIFICATION FAILED Why?

56

Assume-guarantee reasoning

In addition to the assert statement, CBMC provides the __ CPROVER_assume
statement.

As an assertion, _ CPROVER_assume takes a Boolean expression.

The _ CPROVER_assume Statement restricts the program traces that are
considered and allows assume-guarantee reasoning.

Intuitively, one can consider the _ CPROVER_assume statement to abort the
program successfully if the condition is false. If the condition is true, the
execution continues.

57

ex19.c

int nondet int();
int x ;
v Yi $ cbmc exl19.c

void main (void
{ () VERIFICATION FAILED Why?

x = nondet_int();
y = x+1;
assert (y>x);

} $ cbmc ex19.c --show-vcc

VERIFICATION CONDITIONS:

[@D)
assertion y > x
)
{-12} x#1 =0
{-13} y#1 = 0
{-14} x#2 = nondet_symbol identifier="symex::nondet@"
{-15}F y#2 = 1 + x#2
I
{1} =(x#2 2 y#2)
58

ex20.c

int nondet int();
int x, y;
$ cbmc ex20.c
void main (void)
{
x = nondet int();
__ CPROVER_assume (x<10);

VERIFICATION SUCCESSFUL

y = x+1;
assert (y>x);
} $ cbmc ex20.c --show-vcc

VERIFICATION CONDITIONS:
(@D
assertion y > x
(@)
{-12} x#1 =0
{-13} y#1 = 0
{-14} x#2 = nondet_symbol identifier="symex::nondet@"

{-15} ~(x#2 2 10)
{-16} y#2 = 1 + x#2

{1} f8#2 > y#2)

|.ab session

60

