Model Checking

Alcino Cunha

Motivation

» Concurrent and distributed systems are difficult to design and verify
» (Correctness proofs typically require finding non-trivial invariants
 Can we automate verification?

- Yes, but ...

Mutual Exclusion

* A mutual exclusion concurrent algorithm ensures that
- At most one process is in a critical section of code at the same time
* (Can also provide other guarantees:

- No starvation or lockout freedom: every process waiting to enter the
critical section will eventually succeed

- Bounded waiting: no process can enter the critical section more than k
times while others are waiting (k = 1 equals no takeover)

int sem

0;

Semaphore

J

while (true) {
// idle
while (testAndSet(sem)
// critical

sem = 0;

1);

Peterson

int level[N]
int last[N-1];

{-1, .., -1};

while (true) {

// idle
for (1 = 0; 1 < N-1; 1++) {
level[1] = 1;

last[1l] = 1;
while (last[1]
}

// critical

level[1] -1;

i && d k .

(k = 1 && level[k] >= 1));

Leader election

* A leader election distributed algorithm ensures that
- At most one leader will be elected
- At least one leader will be elected

- Any elected leader stays elected

Chang and Roberts

4/ 35 \4
o

Chang and Roberts

4/ 35 \4
o

Self stabilisation

* A self stabilising distributed algorithm ensures

- Convergence: starting from any state it will eventually reach a correct
state

- Closure: if the system is in a correct state it will stay in a correct state

Dijkstra

Dijkstra

Model Checking

Model checking automates the verification process

No need to find complex invariants

But...

- the system must described with a finite state model

- and the desired properties formally specified using a temporal logic

If the specification does not hold in the model, a counter-example is
returned

Semaphore

while (true) {

wo: wWhile (testAndSet(sem)

ep: sem = 0;

int sem = 0;
while (true) {
1;
1);) wi: while (testAndSet(sem)
C1

e;: sem = 0;

1);

Semaphore

sem = 0
i 11
0
sem = 1 sem = sem = sem = sem = 1
+-— — :
o 13 Co 11 Wo Wi lo C1 1o €1
sem = 1 sem = 1 sem = 1 sem = 1
—m —

eo Wi Co Wi wWo Ci Wo €1

Kripke Structures

* Given a set A of atomic propositions, a Kripke structure M is a tuple
(S, 1, R, L) where:

- S is a finite set of states
- [C §is the set of initial states

- R C § X § is a total transition relation (every state has at least one
SUCCEeSSOor)

- L:S—>2isa labelling function, mapping each state s € S to the set of
atomic propositions that are in s

Kripke Structures

* A path (or trace) & in a structure M = (3§, I, R, L) is an infinite sequence of
states 545(5,... such that Vi > 0 - (s;,5;,, () € R

« Given a path & it's i-th state will be denoted by 7; and the path suffix
starting in that state by i

e Abusing the notation, the set of all paths in M will also be denoted by M

phore

Sema

S — {So, S19S2’ S3, ...,515, ...,531}
I'={s}
R = {(SOa Sl)a (S()9 S2)9 (S19S4)9 (S19S5)9 cee (S159 516)9 }

L = {SO > {Sem — O’iO’il}’SO > {Sem — O’WO’il}"”’SlS > {Sem — 1,10,11},

Modelling

 Modelling is the act of defining the Kripke structure that describes a
system

 Most model checkers have specific domain specific languages to do so

SMV Input Language

MODULE main
VAR
sem : 0..1;
pc : array 0..1 of {idle, wait, critical, exit};
IVAR
proc : 0..1;
ASSIGN
init(sem) := 0;
init(pc[0]) := idle;
init(pc[l]) := idle;

next(sem) := case pc[proc] = wait & sem = 0: 1;
pc[proc] = exit : 0;
TRUE : sem;
esac;

next(pc[0]) := case proc = 0 & pc[0] = idle : wait;
proc = 0 & pc[0] = wait & sem = 0 : critical;
proc = 0 & pc[0] = critical : exit;
proc = 0 & pc[0] = exit : idle;
TRUE : pc[0];

esac;

next(pc[l]) := case proc =1 & pc[l] = idle : wait;
proc = 1 & pc[l] = wait & sem = 0 : critical;
proc = 1 & pc[l] = critical : exit;
proc = 1 & pc[l] = exit : idle;

TRUE : pc[l];
esac;

PlusCal

(*

——algorithm Semaphore {
variable sem = 0;

process (proc \in {0,1}) {
idle: while (TRUE) {
skip;
wait: await (sem = 0);
sem := 1;
crit: skip;
exit: sem := 0;

Validation

* \alidation is the act of checking if the model correctly describes the
system under analysis

e |ts an inherently manual activity, few automated support

% nuXmv -int

o

nuXmv > read model -i semaphore.smv

encode_ variables

>
nuXmv > flatten hierarchy
nuXmv >

>

nuXmv build model
nuXmv > pick state -1i

kkkkkkkkkkkkx*x* AVATILABLE STATES ****k*k*xk*xk**%

idle
pc[l] = idle

o
Q
o

I

There's only one available state. Press Return to Proceed.
Chosen state is: 0

nuXmv > simulate -k 3 -i

*xkk*k*x** Simulation Starting From State 1.1 k% ok ok ok ok ok k

kkkkkkkkkkk** %% AVAILABLE STATES ***%*kkkkkkk*x*

pc[0] = idle

pc[l] = wait

This state is reachable through:

0) - ——————————

proc =1
================= State =================
pc[0] = wait

pc[l] = idle

Choose a state from the above (0-1):

TLA+ Toolbox

Specification

o Specification is the act of formalising the desired requirements in temporal
logic

Models of Time

* There are two basic models of time in temporal logic:

- Linear Time: the behaviour of the system is the set of all infinite paths
starting in initial states.

- Branching Time: the behaviour of the system is the set of all infinite
computation trees unrolled from initial states.

 Both can be determined from a Kripke structure

Linear Time

Branching Time

() —C) —CG) —()—
® () —()
GO (% o
Go— (%)
O

Linear Temporal Logic

 LTL is a temporal logic with a linear model of time

 AIl LTL formulas are evaluated in infinite paths

« Given a set A of atomic propositions, the syntax of LTL formulas is given
by the following rules

- If p € A, then p is an atomic LTL formula

- If fand g are LTL formulas, then T, L,=f,f Vg, fAg,f— g, Xf F
G/, f Ug andg R fare LTL formulas

LTL Temporal Operators

Xf O f neXt, after fwill be true in the next state
Gf [17f Globaly, always f will always be true
Fr Of Future, eventually fwill eventually be true
fUg Until g will be true and fis true until then

gRf Release f can only be false after g becomes true

LTL Semantics

» Given a Kripke structure M = (3, I, R, L) we will denote the fact that LTL
formula f holds in M by M F f

MEf & VreM-nyel->MaEf

LTL Semantics

M,mE T

M, m k= 1

M,n = p & p € Lin)

M,n = —f = M,n k= f

M,rEfvVg =4 M,rEforM,nFE g

M,nEfAgG = M,mFEfand M, nF g

M,nEf-g = M,m ¥ forM,nE g

M,nEXf & M, 7' Ef

M,z=Ff e Fi>0-MTEf

M,nEGf = Vi>0 M,z Ef

M,zrEfUg & 1i>0- M2 EgAVOLj<i- M adEf
M,mEgRf & Vi>0-M,7Efv30<j<i- M7Eg

Minimal LTL Operators

« All LTL formulas can be expressed with T, =, Vv, X, and U

1 = il

JAg = 2 (7f VvV g)
/=8 = f Vg

Ff = TUf

Gf = - F —f

g RS = - (7g U =f)

LTL Examples

e Mutual exclusion
G _'(CO A\ Cl)
e | ockout freedom

e No takeover

G (wWygAcy = (cgRc)AG (wWogAC; = ((cgRc)) Rcy) A ...

SMV Input Language

LTLSPEC

G !(pc[0] = crit & pc[l] = crit)
LTLSPEC

G (pc[0] = wait -> F pc[0] = crit) &

G (pc[l] = wait -> F pc[l] = crit)
LTLSPEC

G (pc[0] = wait & pc[l] != crit ->

(pc[0] = crit V pc[l] != crit)) & ..

TLA+

[1] ~(pc[0] "crit" /\ pc[l] = "crit")

"crit")) /\
"crit"))

"wait" => <> (pc[0]
"wait" => <> (pc[1]

[1 (pc[0]
[1 (pc[l]

Specifying Behaviour with LTL'

LTL is expressive enough to specify the valid behaviours of a Kripke structure

For a boolean variable b, we can define b’ = a as an abbreviation of X b < a and likewise for other
(bounded) variables

A standard LTL extension is to support the prime operator on variables, to denote the value of the
variable in the next state

The valid behaviours can then be specified with a formula init A G trans
- 1nit is a propositional formula that specifies what are the valid initial states
- trans a propositional formula (with primes) that specifies what are the valid transitions

Thus, the Kripke structure could be left unconstrained and instead of checking f we check
init A G trans — f

Semaphore

I=3S9
R=RXR
L=1{sy {sem=0,i,,1,},50 {sem=0,wy,1,},...,85 = {sem=1,i,,1i},...}

nit = sem=0A1ig A1 AWy AW ATICH A TIC A€y A 1€

trans = idleg V idley V waity V wait; V crity V crit; V exity V exit;

idley = I AX igA X WogACy=CoA€y=¢€ Al =1 AW =W, AC]{=C A€ =€ Asem = sem
Walto — Wo/\semz()/\x_'W()/\XCo/\xSem=1/\1(,)=io/\66=eo/\ii=il/\Wi=W1/\Ci=C1/\ei=el

(init AG trans) - G ~(cy A Cy)

MODULE main

VAR
sem :
pcC

DEFINE
1dle0
walitO
critO
exit0
idlel
waitl
critl
exitl
start
trans

LTLSPEC

0..
array 0..1 of {idle, wait, crit, exit};

1;

pcl
pcl
pcl
pc
pcl
pc|
pcl
pcl
sem =
1dle0

R P P P O O O O

SMV Input Language

0
|

start & G trans -> G

idle & next (pc[0]) = wait &
walt & sem & next(pc[0]) = crit &
crit & next (pc[0]) = exit &
exit & next (pc[0]) = idle &
idle & next(pc[l]) = wait &
walit & sem & next(pc[l]) = crit &
crit & next(pc[l]) = exit &
exit & next(pc[l]) = idle &
& pc[0] = 1dle & pc[l] = 1idle;

wait0 | crit0 | exit0 | idlel | waitl

l1(pc[0] = crit & pc[l] = crit)

S e

Il
-

Sem

Il
o

S e

Il

S e

Il
o

exitl;

2 2 22 2 9 @2 2 @

next (pc|
next (pc|
next (pc|
next (pc|
next (pc|
next (pc|
next (pc|
next (pc|

o O o o P P P

e e’ ' ' Ny Ny Ny

pcl
pcl
pcl
pcl
pcl
pcl
pcl
pcl

o o o o r Pk Pk

MODULE main

SMV Input Language

VAR
sem : 0..1;
pcC array 0..1 of {idle, wait, crit, exit};
DEF INE
1idle0 := pc[0] = 1idle & next (pc[0])
wait0 := pc[0] = wait & sem = 0 & next(pc[0])
crit0 := pc[0] = crit & next (pc[0])
ex1t0 := pc[0] = exit & next (pc[0])
idlel := pc[l] = idle & next(pc[l])
waitl := pc[l] = walit & sem = 0 & next(pc[l])
critl := pc[l] = crit & next(pc[l])
exitl := pc[l] = exit & next(pc[1l])
INIT
sem = 0 & pc[0] = 1idle & pc[l] = idle;
TRANS
idle0 | waitO0 | crit0 | exit0 | idlel | waitl |
LTLSPEC
G !(pc[0] = crit & pc[l] = crit)

walit
crit
exit
idle
wait
crit
exit
idle

2 22 222 22 @ 9 9

next (sem)
next (sem)
next (sem)
next (sem)
next (sem)
next (sem)
next (sem)
next (sem)

critl | exitl;

S e

S e

Sem

S e

2 22 22 22 @ 9 9

next (pc|
next (pc|
next (pc|
next (pc|
next (pc|
next (pc|
next (pc|
next (pc|

o o o o P B B

e ' ' ' N N N S

pcl
pcl
pc|
pcl
pcl
pc|
pcl
pcl

o o o o r Pk = =

VARIABLES sem, pcC

Init == /\ sem = 0
/\ pc = [p \in {0,1} |-> "idle"]

idle(p) == /\ pc[p] = "idle"
/\ pc' = [pc EXCEPT ![p] = "wait"]
/\ sem' = sem
wait(p) == /\ pc[p] = "wait"
/\ sem = 0
/\ sem' =1
/\ pc' = [pc EXCEPT ![p] = "crit"]
crit(p) == /\ pc[p] = "crit"
/\ pc' = [pc EXCEPT ![p] = "exit"]
/\ sem' = sem
exit(p) == /\ pc[p] = "exit"
/\ sem' = 0
/\ pc' = [pc EXCEPT ![p] = "idle"]

Next == \/ idle(0) \/ wait(0) \/ crit(0) \/ exit(0)
\/ idle(1l) \/ wait(1l) \/ crit(l) \/ exit(1)

Spec == Init /\ [][Next] <<sem,pc>>

Yf

H f

Of
/S8
gTf

Past Time LTL

Yesterday, before
Historically
Once
Since
Triggers

f was true in the previous state
f was always true
f was once true
g was once true and f is true since then
f could only be false before g becomed true

Temporal Logic of Actions

Restricts LTL' to ensure formulas are stutter invariant

Stutter invariance is fundamental to check refinement, that is, to check
that one specification is an implementation of a more abstract
specification

TLA also adds first order quantifiers to LTL'

TLA+ Is the full concrete specification language based on TLA

TLA Syntax

 The syntax of TLA formulas is given by the following rules

- Any state predicate p (without primes) is an atomic TLA formula

- If a is an action predicate (one with primes), then[] [a], and
ENABLED a are atomic TLA formulas, being [a], = a V (¢’ = 1)

- If fand g are TLA formulas and § is a set, then TRUE, FALSE, —f,
fAg fVvegf=>g VxeS:f,Axe S f, O f O fare TLA formulas

EXTENDS Naturals

CONSTANT N
ASSUME N > 0

VARIABLES sem, pc

Proc == 0..(N-1)
Init == /\ sem = 0
/\ pc = [p \in Proc |-> "idle"]

idle(p) == /\ pc[p] = "idle"

/\ pc' = [pc EXCEPT ![p] = "wait"]

/\ sem' = sem
wait(p) == /\ pc[p] = "wait"

/\ sem = 0

/\ sem' =1

/\ pc' = [pc EXCEPT ![p] = "crit"]
crit(p) == /\ pc[p] = "crit"

/\ pc' = [pc EXCEPT ![p] = "exit"]

/\ sem' = sem
exit(p) == /\ pc[p] = "exit"

/\ sem' = 0

/\ pc' = [pc EXCEPT ![p] = "idle"]
Next == \E p \in Proc : idle(p) \/ wait(p) \/ crit(p) \/ exit(p)

Spec == Init /\ [][Next] <<sem,pc>>

TLA+

[] (\A p \in Proc : pc[p] = "crit" =>
(\A g \in Proc : pc[qg] # "crit" \/ p = q))
\A p \in Proc : [] (pc[p] = "wait" =>

<> (pc[p] = "crit"))

Validation with TLA+

 To find scenarios where f holds just check —f

« In particular to see a scenario where action a happens check []| —a],

e |t is also common to include an invariant to check type correctness

TypesOK == /\ sem \in {0,1}
/\ pc \in [Proc -> {"idle","wait","crit","exit"}]

Computation Tree Logic

 CTL is a temporal logic with a branching model of time

* Besides temporal operators it also has path quantifiers, that build state formulas out of path
formulas

« Given a set A of atomic propositions, the syntax of CTL formulas is given by the following rules
- If p € A, then p is an CTL state formula

- If fand g are CTL state formulas, then T, L,—f,f V g, f A g, and f — ¢ are CTL state
formulas

- If fis a CTL path formula, then A fand E f are CTL state formulas

- If fand g are CTL state formulas,then X f,F /, G f,f U g, and g R fare CTL path formulas

CTL Semantics

» Given a Kripke structure M = (3, I, R, L) we will denote the fact that a
CTL (state) formula f holds in M by M E f

MEf & Vsel-MsFf

CTL Semantics

M,sET

M,s = L

M,s Ep

M,s E ~f

M,sEfVg
M,sEfAg
M,sEf—g
M,sEAf
M,sFE/f
M,mnEXf
M,rEFf
M,nEGf
M,rEfUg
M,nEgRf

(B T O

p € L(s)

M,s ¥ f

M,sEforM,sF g
M,sEfand M,s F g

M,s FforM,sFE g
VeeM- -np=s > M,nFEf
dreM-ny=5s > M, n F
M, E f
1i>0-M,n,Ef
Vi>0-M,z,Ef
1i20-M,m; FgAVOLj<i-M,mx;
Vi20-M,rmFfva0<j<i-M,x

CTL Semantics

CTL Semantics

CTL Semantics

CTL Semantics

J AU g

Minimal CTL Operators

« All CTL formulas can be expressed with T, =, Vv, X, EX, EG, and EU

1 = il

fNg = 7 (f VvV g)

S8 = Vg

AX f = - EX —f

EF f = T EU f

AG f = - EF —f

AF f = - EG —f

gARf = - (7g EU =f)

g ERf = (EG V(S EU(gAS))
S AU g = - (7f ER =g)

CTL Examples

e Mutual exclusion
AG _'(CO A\ Cl)
e | ockout freedom

AG (wy — AF co)) AAG (w; —- AF ¢))

* Reversibility

AG EF (iy A i)

LTL vs CTL

 Most properties can be expressed both in LTL and CTL, but their expressiveness is
iIncomparable

e For example, AG EF p cannot be expressed in LTL and F G p cannot be expressed in

CTL — -

* |n general, LTL formulas are not equivalent to the CTL formulas obtained by preceding
each temporal operator with A. For example, AF AX pis notthe sameasF X p

oQ
di@/@@

SMV Input Language

CTLSPEC

AG !(pc[0] = crit & pc[l] = crit)
CTLSPEC

AG (pc[0] = wait -> AF pc[0] = crit) &

AG (pc[l] = wait -> AF pc[l] = crit)
CTLSPEC

AG EF (pc[0] = 1dle & pc[l] = 1idle)

Safety vs Liveness

o Safety properties
- Nothing "bad" will happen
- Counter-examples have a “bad” prefix, one where every possible continuation violates the property
- Mutual exclusion is a safety property
e Liveness properties
- Something "good"” will happen
- It is always possible to satisfy them after any finite prefix of events
- Thus, counter-examples must be complete infinite traces

- Lockout freedom is a liveness property

Fairness

* Fairness assumptions are necessary to verify most liveness properties

* A fairness assumption is a liveness property that forces the system to keep doing something
(to progress) under certain conditions

- Unconditional fairness. some action will recurrently occur

G F action

- Strong fairness: some action that is recurrently enabled will (recurrently) occur

G F enabled - G F action

- Weak fairness: some action that is continuously enabled will (recurrently) occur

F G enabled — G F action

SMV Input Language

LTLSPEC
(G F (pc[0] = wait & sem = 0) -=> G F waitl0) &
(G F (pc[l] = wait & sem = 0) -> G F waitl)
->
G (pc[0] = wait -> F pc[0] = crit) &
G (pc[l] = wait -> F pc[l] = crit)

Fairness in TLA

- If a is an action predicate (one with primes), then WF,(a), and SF,(a)
are atomic TLA formulas

WF(a) = ¢ []ENABLED(a) = []{){a),
SF(a) = [JOENABLED(a) = []{){a),
O(a), = Qla At # 1)

= O (navit =1

= <>_I[a]l‘
= []lal,

EXTENDS Naturals

CONSTANT N
ASSUME N > 0

VARIABLES sem, pcC

Proc 0..(N-1)

Init

idle(p)
walit(p)

crit(p)

exit(p)

Next == \E p \in Proc : idle(p) \/ wait(p) \/ crit(p) \/ exit(p)

state == <<sem,pc>>

Fairness == WF state(Next) /\ \A p \in Proc: SF state(wait(p))

Spec == Init /\ [][Next] state /\ Fairness

CTL Model Checking

« Given a Kripke structure M = (S, I, R, L) and a CTL formula f, the goal of
a model checker is to find the set of states that satisfy f

[fly=iseM|M,sFf}]

Explicit vs Symbolic

* Explicit model checking
- Sets and transitions are encoded extensionally
- Semantics of temporal operators is implemented by graph traversals
MEf iff TCIlfly
 Symbolic model checking
- Sets and transitions are encoded intentionally by propositional formulas

- Semantics of temporal operators is implemented by fixpoint computations

MEf iff I-[fly

Explicit vs Symbolic

I={s}
R = {(Sl, S2)9 (Sz, Sz), (339 54)9 (54’ S3)}

[=—aA-b
R=("bANa AD)V(bAD ANa = —a)

Explicit CTL Model Checking

[Pl={s€S|pe€ L)}
[TI=S
[~f1=S—-1[f]

[fVvel=0/1Vvlgl

[EX fl={se€S|3s€[f]"(s,s)ER)} = U R™1(s)
sellf 1l

Explicit CTL Model Checking

[f EU gl =
U < [lg]
O« A
while O # @

choose s € O
O« 0 —{s}
for s’ € R™(s)
ifs"¢UAs €[f]
U< UuU{s'}
O« 0OU{s'}
return U

Explicit CTL Model Checking

IAG ~a]l =" (TEUa)]=S—-[T EU a]] =

Explicit CTL Model Checking

S S5 S Sy

IAG ~a]l =" (TEUa)]=S—-[T EU a]] =

Explicit CTL Model Checking

S S5 S Sy

IAG ~a]l =" (TEUa)]=S—-[T EU a]] =

Explicit CTL Model Checking

‘ m
S S5 S Sy

IAG ~a]l =" (TEUa)]=S—-[T EU a]] =

Explicit CTL Model Checking

‘ m
S S5 S Sy

[AG ~a]] =" (T EU@)=S-[T EUa]] =8 —{s,,53,54} =

Explicit CTL Model Checking

l D S

—>Q<— — a
*-—

S S5 S3 Sy

[AG ~a]|=["(TEU)] =S—-T EUa]] =5 — {s5,53,5,} = {5}

Explicit CTL Model Checking

[AG ~a]|=["(TEU)] =S—-T EUa]] =5 — {s5,53,5,} = {5}

[Z[AG —a]] = MEAG-a

Explicit CTL Model Checking

To determine [[EG f]] it suffices to restrict M to the states that satisfy f

M= l/ILINTLSLROMAIX AL LA T XA)

M, s F EG fiff s € [[f]] and there exists a path in M from s to some node in a nontrivial
strongly connected component of Mf

A strongly connected component (SCC) is a maximal subgraph where every node is reachable
from every other

A SCC is nontrivial if it has at least one path (more than one node or one node with a self loop)

The nontrivial SCCs of Mf can be computed efficiently with Tarjan's algorithm

sce(M;) € 211

Explicit CTL Model Checking

[EG f1 =

G < | Jsce(M))
O« U
while O # @
choose s € O
O« 0 - {s}
for s’ € R™1(s)
if s G
G« GuU{s'}
O« OuU{s’}
return G

Explicit CTL Model Checking

IAF a]l =7 EG —a]] =95 — [[EG —a]] =

Explicit CTL Model Checking

IAF a]l =7 EG —a]] =95 — [[EG —a]] =

Explicit CTL Model Checking

—>Q<— —
81 N 53

IAF a]l =7 EG —a]] =95 — [[EG —a]] =

Explicit CTL Model Checking

Q ‘
81 N 53

IAF a]l =7 EG —a]] =95 — [[EG —a]] =

Explicit CTL Model Checking

Q ‘
81 N 53

IAF all = [EG —a]] =S - [[EG na]] =8 — {s(,5,} =

Explicit CTL Model Checking

S S5 S Sy

[AF a]] =[[7 EG —a]l =S5 —[[EG —a]] =5 — {5, } = (53,54}

Explicit CTL Model Checking

S S5 S Sy

[AF a]] =[[7 EG —a]l =S5 —[[EG —a]] =5 — {5, } = (53,54}

IZ[AFa]l = MEAFa

Explicit CTL Model Checking

Fairness cannot be expressed in CTL

Semantics and model checking must be adapted to consider fairness

M = [f],iff M & fand p is recurrently true in M (unconditional fairness)

To model check M F [EG f]p it suffices to compute the reachability from fair SCCs, those where at least

one state satisfies p

Since a path is fair iff any of its suffixes is fair and since [EG T]p holds in a state iff there is a fair path
starting in that state we have

[EX f1,=EX (If],A[EG T1,)

[f EU g1, = [f1, EU ([g], A [EG T1,)

Symbolic CTL Model Checking

lpll=p
[TN=T
[/ =-ls1

Lfvgl=I0f1VIgl
[EX I = 3% - RA[f]

 [[/]"is the formula obtained from [| /]| by replacing all variables by the
respective primed version

* The existential quantifier can be eliminated by expansion

dx-f=flx < T]Vflx < 1]

Symbolic CTL Model Checking

R=(bAa' AND)YVBbAD ANa = —a)

[EX a]l =3da’,b’'- R A [[a]l
=da’,b’'-RANAa
=3da’,b’'- ("bANa'AD)YV(DAN-aADb Aa)
=da’"-("bAa' AT)VOA-aAT Aa)V(bAa A L)VIODA—-aNLAa)
=da'-(bAaAa’)V (bAa)
=bAaANT)V("DAT)VOA—-aNL)V(bA L)
=(bA-a)V b

Symbolic CTL Model Checking
-8 oo

R=(bAa' AND)YVBbAD ANa = —a)

[EX a]l =3da’,b’'- R A [[a]l
=da’,b’'-RANAa
=3da’,b’'- ("bANa'AD)YV(DAN-aADb Aa)
=da’"-("bAa' AT)VOA-aAT Aa)V(bAa A L)VIODA—-aNLAa)
=da'-(bAaAa’)V (bAa)
=bAaANT)V("DAT)VOA—-aNL)V(bA L)
=(bA-a)V b

Symbolic CTL Model Checking

EG f= fAEX (EG f)

[EG /1 =
G<T
repeat

G <G

G < [lfIANIEX G]
until G = G’
return G

Symbolic CTL Model Checking
(Y

- m—— a
—

[EG a] =

Symbolic CTL Model Checking

IEG a]] =

Symbolic CTL Model Checking

G, = [[all A [EX Gl = a

Symbolic CTL Model Checking

Gy=T
G, = [lall A [EX Gyll = a
G, =[lalAIEX G ll=aAn((bA—a)Vb)=aA-b

Symbolic CTL Model Checking

IEG a]] =a A b

Gy=T

G, = [lall A [EX Gyll = a

G, =[lalAIEX G ll=aAn((bA—a)Vb)=aA-b
G; = [[al A[EX Gy]l =a A b

Symbolic CTL Model Checking

JEUg=gV({fAEX(f EUg))

Lf EU gll =
U« L
repeat

U —U

U< gl vI/IALEX UL
until U = U’
return U

Symbolic CTL Model Checking

[EG f1, = [f1, AEX ([f], EU (p A [EG f],))

[EX f1,= EX ([f], A[EG T],)

[f EU g], = [f], EU (Ig], A[EG T1,)

Symbolic CTL Model Checking

* Requires procedures to check the validity and equivalence of
propositional formulas

 Can be implemented efficiently with Ordered Binary Decision Diagrams

a N b

Explicit LTL Model Checking

« Given a Kripke structure M = (S, I, R, L) and considering S as an alphabet, the
language of M, denoted £ (M) is the set of all paths starting in an initial state

SM)={r|lreMAr, €I}

« The language of an LTL formula f, denoted Z(f) is the set of all possible paths that
satisfy f

Z(f)=1in|nF [}

A formula is valid iff the language of the model is a subset of the language of the
formula

MEf it ZM)CZ(f) it LML) =0

Buchi Automata

 The model and formula languages can captured by a non-deterministic Blichi automaton (S, 2, R, I, IF')
where

- S is a set of states

- 2. is an alphabet

- R C § X 2 X §is a transition relation
<L = {bbbbb...,babbb...,bbabbb...,baabhb...}

- I C §Sis a set of initial states

- ' C S is a set of accepting (or final) states
* A valid path must visit an accepting state infinitely often

 The language of an automaton is the set of all valid paths

From Kripke Structures to Automata

e Given a Kripke structure M it is possible to construct a Blichi automaton
o, with the same language

- Using as alphabet conjunctions of atomic propositions, that is 2. = A4

- Adding a new separate Iinitial state

- A transition in &f,, is possible iff the transition label matches the next
state label in M

- All states are accepting

From Kripke Structures to Automata

From LIL Formulas to Automata

 Given an LTL formula f it is possible to construct a Blichi automaton gzif
with the same language

- Again using as alphabet conjunctions of atomic propositions, that is
> =24

- Try it at http://www.lsv.fr/~gastin/ItI2ba/index.php

http://www.lsv.fr/~gastin/ltl2ba/index.php

From LIL Formulas to Automata

G a

-

From LIL Formulas to Automata

{a
a
tom
AU

O

mulas t

r

FO

L

LT

m

Fro

GFa

(g

Explicit LTL Model Checking

* Checking the emptiness of language intersection can be reduced to
checking the emptiness of the product automaton

MEf it SDONL)=0 iff L(dy®d.)

. Since all states of &/, are accepting, the product of
= (Sy, 2, Ry, Iy, Syy) @nd gzﬁf (Sﬁf, 2, R 1, Fﬂf) can be
computed as follows

Ay Q Ay = (Spy X S, 2, R, Ly X g, Spy X F)

(59> 51> a, (89, 57)) €E R iff (sg,a,5)) € Ryy A (s1,a,57) € R_;

Explicit LTL Model Checking

MEFGa iff L(dyQ®dge_)

—d

-0-8 - .18
009 - .

Checking Automata Emptiness

* Check if a nontrivial SCC containing an accepting state is reachable from the initial
state

- Typically requires storing the entire automaton in memory

* Determine the reachable states using DFS and if an accepting state is reachable run
a nested DFS to determine if there is a cycle

- Better for on-the-fly model checking

« Use a CTL model checker to verify if EG T is valid assuming the system is fair to the
accepting states

- Enables symbolic model checking for LTL

