Model Checking

Alcino Cunha

Motivation

- Concurrent and distributed systems are difficult to design and verify
- Correctness proofs typically require finding non-trivial invariants
- Can we automate verification?
 - Yes, but ...

Mutual Exclusion

- A mutual exclusion concurrent algorithm ensures that
 - At most one process is in a critical section of code at the same time
- Can also provide other guarantees:
 - No starvation or lockout freedom: every process waiting to enter the critical section will eventually succeed
 - Bounded waiting: no process can enter the critical section more than k times while others are waiting (k = 1 equals no takeover)

Semaphore

```
int sem = 0;
```

```
while (true) {
   // idle
   while (testAndSet(sem) == 1);
   // critical
   sem = 0;
}
```

Peterson

```
int level[N] = {-1, ..., -1};
int last[N-1];
```

```
while (true) {
  // idle
  for (1 = 0; 1 < N-1; 1++) {
    level[i] = 1;
    last[l] = i;
    while (last[l] == i && \exists k . (k != i && level[k] >= l));
  // critical
  level[i] = -1;
```

Leader election

- A leader election distributed algorithm ensures that
 - At most one leader will be elected
 - At least one leader will be elected
 - Any elected leader stays elected

Chang and Roberts

Chang and Roberts

Self stabilisation

- A self stabilising distributed algorithm ensures
 - Convergence: starting from any state it will eventually reach a correct state
 - Closure: if the system is in a correct state it will stay in a correct state

Dijkstra

Dijkstra

Model Checking

- Model checking automates the verification process
- No need to find complex invariants
- But...
 - the system must described with a finite state model
 - and the desired properties formally specified using a temporal logic
- If the specification does not hold in the model, a counter-example is returned

Semaphore

```
int sem = 0;
```

```
while (true) {
    io: ...
    wo: while (testAndSet(sem) == 1);
    Co: ...
    eo: sem = 0;
}
```

```
while (true) {
    i1: ...
    w1: while (testAndSet(sem) == 1);
    C1: ...
    e1: sem = 0;
}
```

Semaphore

Kripke Structures

- Given a set A of atomic propositions, a *Kripke structure* M is a tuple (S, I, R, L) where:
 - S is a finite set of states
 - $I \subseteq S$ is the set of initial states
 - $R \subseteq S \times S$ is a total transition relation (every state has at least one successor)
 - $L:S\to 2^A$ is a labelling function, mapping each state $s\in S$ to the set of atomic propositions that are in s

Kripke Structures

- A path (or trace) π in a structure M = (S, I, R, L) is an infinite sequence of states $s_0s_1s_2...$ such that $\forall i \geq 0 \cdot (s_i, s_{i+1}) \in R$
- Given a path π it's i-th state will be denoted by π_i and the path suffix starting in that state by π^i
- ullet Abusing the notation, the set of all paths in M will also be denoted by M

Semaphore

$$\begin{split} S &= \{s_0, s_1, s_2, s_3, \dots, s_{15}, \dots, s_{31}\} \\ I &= \{s_0\} \\ R &= \{(s_0, s_1), (s_0, s_2), (s_1, s_4), (s_1, s_5), \dots, (s_{15}, s_{16}), \dots\} \\ L &= \{s_0 \mapsto \{\text{sem} = 0, \textbf{i}_0, \textbf{i}_1\}, s_0 \mapsto \{\text{sem} = 0, \textbf{w}_0, \textbf{i}_1\}, \dots, s_{15} \mapsto \{\text{sem} = 1, \textbf{i}_0, \textbf{i}_1\}, \dots\} \end{split}$$

Modelling

- Modelling is the act of defining the Kripke structure that describes a system
- Most model checkers have specific domain specific languages to do so

SMV Input Language

```
MODULE main
VAR
  sem : 0..1;
  pc : array 0..1 of {idle, wait, critical, exit};
IVAR
  proc : 0..1;
ASSIGN
 init(sem) := 0;
 init(pc[0]) := idle;
 init(pc[1]) := idle;
  next(sem) := case pc[proc] = wait & sem = 0: 1;
                    pc[proc] = exit : 0;
                    TRUE : sem;
               esac;
  next(pc[0]) := case proc = 0 & pc[0] = idle : wait;
                      proc = 0 \& pc[0] = wait \& sem = 0 : critical;
                      proc = 0 & pc[0] = critical : exit;
                      proc = 0 & pc[0] = exit : idle;
                      TRUE : pc[0];
                 esac;
  next(pc[1]) := case proc = 1 & pc[1] = idle : wait;
                      proc = 1 \& pc[1] = wait \& sem = 0 : critical;
                      proc = 1 & pc[1] = critical : exit;
                      proc = 1 & pc[1] = exit : idle;
                      TRUE : pc[1];
                 esac;
```

PlusCal

```
------ MODULE Semaphore -----
( *
--algorithm Semaphore {
   variable sem = 0;
   process (proc \in {0,1}) {
       idle: while (TRUE) {
                skip;
           wait: await (sem = 0);
                sem := 1;
           crit: skip;
           exit: sem := 0;
```

Validation

- Validation is the act of checking if the model correctly describes the system under analysis
- Its an inherently manual activity, few automated support

nuXmv

```
% nuXmv -int
nuXmv > read_model -i semaphore.smv
nuXmv > flatten_hierarchy
nuXmv > encode_variables
nuXmv > build_model
nuXmv > pick_state -i
********** AVAILABLE STATES ********
  ========= State =========
 0) -----
 sem = 0
 pc[0] = idle
 pc[1] = idle
There's only one available state. Press Return to Proceed.
Chosen state is: 0
nuXmv > simulate -k 3 -i
****** Simulation Starting From State 1.1 ******
********* AVAILABLE STATES ********
  ======== State ========
 sem = 0
 pc[0] = idle
 pc[1] = wait
   This state is reachable through:
   0) -----
   proc = 1
  ========= State =========
 pc[0] = wait
 pc[1] = idle
   This state is reachable through:
   proc = 0
Choose a state from the above (0-1):
```

TLA+ Toolbox

Specification

• Specification is the act of formalising the desired requirements in temporal logic

Models of Time

- There are two basic models of time in temporal logic:
 - Linear Time: the behaviour of the system is the set of all infinite paths starting in initial states.
 - Branching Time: the behaviour of the system is the set of all infinite computation trees unrolled from initial states.
- Both can be determined from a Kripke structure

Linear Time

Branching Time

Linear Temporal Logic

- LTL is a temporal logic with a linear model of time
- All LTL formulas are evaluated in infinite paths
- Given a set A of atomic propositions, the syntax of LTL formulas is given by the following rules
 - If $p \in A$, then p is an atomic LTL formula
 - If f and g are LTL formulas, then T, \bot , $\neg f, f \lor g, f \land g, f \to g$, X f, F f, G f, f U g, and g R f are LTL formulas

LTL Temporal Operators

```
egin{array}{lll} {\sf X}\,f & igcap f & {\sf neXt,\,after} \\ {\sf G}\,f & igcup f & {\sf Globaly,\,always} \\ {\sf F}\,f & igtriangle f & {\sf Future,\,eventually} \\ f \ {\sf U}\,g & {\sf Until} \\ g \ {\sf R}\,f & {\sf Release} \end{array}
```

```
f will be true in the next state f will always be true f will eventually be true g will be true and f is true until then f can only be false after g becomes true
```

LTL Semantics

• Given a Kripke structure M = (S, I, R, L) we will denote the fact that LTL formula f holds in M by $M \models f$

$$M \models f \Leftrightarrow \forall \pi \in M \cdot \pi_0 \in I \to M, \pi \models f$$

LTL Semantics

```
M, \pi \vDash \top
M, \pi \nvDash \bot
M, \pi \vDash p
                                                       p \in L(\pi_0)
                                       \Leftrightarrow
M, \pi \vDash \neg f
                                                       M, \pi \nvDash f
                            \Leftrightarrow
M, \pi \models f \vee g
                                                       M, \pi \models f \text{ or } M, \pi \models g
                                       \Leftrightarrow
M, \pi \models f \land g
                                                       M, \pi \models f \text{ and } M, \pi \models g
                                       \Leftrightarrow
M, \pi \models f \rightarrow g
                                                       M, \pi \nvDash f \text{ or } M, \pi \vDash g
                                       \Leftrightarrow
                                                       M, \pi^1 \models f
M, \pi \vDash \mathsf{X} f
                                       \Leftrightarrow
                                                        \exists i \geq 0 \cdot M, \pi^i \vDash f
M, \pi \models \mathsf{F} f
                                       \Leftrightarrow
                                                        \forall i \geq 0 \cdot M, \pi^i \models f
M, \pi \models \mathsf{G} f
                                  \Leftrightarrow
                                                        \exists i \ge 0 \cdot M, \pi^i \vDash g \land \forall 0 \le j < i \cdot M, \pi^j \vDash f
M, \pi \models f \cup g
                                       \Leftrightarrow
                                                      \forall i \geq 0 \cdot M, \pi^i \models f \vee \exists 0 \leq j < i \cdot M, \pi^j \models g
M, \pi \vDash g R f
                                       \Leftrightarrow
```

Minimal LTL Operators

All LTL formulas can be expressed with T, ¬, ∨, X, and U

```
\begin{array}{cccc}
\bot & \equiv & \neg T \\
f \land g & \equiv & \neg (\neg f \lor \neg g) \\
f \rightarrow g & \equiv & \neg f \lor g \\
Ff & \equiv & T \cup f \\
Gf & \equiv & \neg F \neg f \\
g R f & \equiv & \neg (\neg g \cup \neg f)
\end{array}
```

LTL Examples

Mutual exclusion

$$G \neg (c_0 \land c_1)$$

Lockout freedom

$$G(w_0 \rightarrow Fc_0) \land G(w_1 \rightarrow Fc_1)$$

No takeover

$$G (w_0 \wedge \neg c_1 \rightarrow (c_0 R \neg c_1)) \wedge G (w_0 \wedge c_1 \rightarrow ((c_0 R \neg c_1) R c_1)) \wedge \dots$$

SMV Input Language

LTLSPEC

```
G !(pc[0] = crit & pc[1] = crit)
```

LTLSPEC

```
G (pc[0] = wait \rightarrow F pc[0] = crit) &
G (pc[1] = wait \rightarrow F pc[1] = crit)
```

LTLSPEC

```
G (pc[0] = wait & pc[1] != crit ->
(pc[0] = crit V pc[1] != crit)) & ...
```

TLA+

```
[] ~(pc[0] = "crit" /\ pc[1] = "crit")

[] (pc[0] = "wait" => <> (pc[0] = "crit")) /\
[] (pc[1] = "wait" => <> (pc[1] = "crit"))
```

Specifying Behaviour with LTL'

- LTL is expressive enough to specify the valid behaviours of a Kripke structure
- For a boolean variable b, we can define b'=a as an abbreviation of X $b\leftrightarrow a$ and likewise for other (bounded) variables
- A standard LTL extension is to support the prime operator on variables, to denote the value of the variable in the next state
- The valid behaviours can then be specified with a formula $init \land G$ trans
 - init is a propositional formula that specifies what are the valid initial states
 - trans a propositional formula (with primes) that specifies what are the valid transitions
- Thus, the Kripke structure could be left unconstrained and instead of checking f we check $init \land G \ trans \rightarrow f$

Semaphore

```
\begin{split} S &= \{s_0, s_1, s_2, s_3, \dots, s_{15}, \dots, s_{31}\} \\ I &= S \\ R &= R \times R \\ L &= \{s_0 \mapsto \{\mathtt{sem} = 0, \mathtt{i}_0, \mathtt{i}_1\}, s_0 \mapsto \{\mathtt{sem} = 0, \mathtt{w}_0, \mathtt{i}_1\}, \dots, s_{15} \mapsto \{\mathtt{sem} = 1, \mathtt{i}_0, \mathtt{i}_1\}, \dots\} \end{split}
```

```
\begin{array}{lll} \mathit{init} & \equiv & & & & & & \\ \mathit{trans} & \equiv & & & & & \\ \mathit{idle}_0 \vee \mathit{idle}_1 \vee \mathit{wait}_0 \vee \mathit{wait}_1 \vee \mathit{crit}_0 \vee \mathit{crit}_1 \vee \mathit{exit}_0 \vee \mathit{exit}_1 \\ \mathit{idle}_0 & \equiv & & & & \\ \mathit{idle}_0 \wedge \mathsf{X} \vee \mathsf{idle}_1 \vee \mathit{wait}_0 \vee \mathsf{wait}_1 \vee \mathit{crit}_0 \vee \mathit{crit}_1 \vee \mathit{exit}_0 \vee \mathit{exit}_1 \\ \mathit{idle}_0 & \equiv & & & \\ \mathit{i}_0 \wedge \mathsf{X} \vee \mathsf{i}_0 \wedge \mathsf{X} \vee \mathsf{w}_0 \wedge \mathsf{c}_0' = \mathsf{c}_0 \wedge \mathsf{e}_0' = \mathsf{e}_0 \wedge \mathsf{i}_1' = \mathsf{i}_1 \wedge \mathsf{w}_1' = \mathsf{w}_1 \wedge \mathsf{c}_1' = \mathsf{e}_1 \wedge \mathit{sem}' = \mathit{sem} \\ \mathit{wait}_0 & \equiv & & \\ \mathit{wait}_0 & \equiv & & \\ \mathit{w}_0 \wedge \mathit{sem} = 0 \wedge \mathsf{X} \vee \mathsf{w}_0 \wedge \mathsf{X} \wedge \mathsf{c}_0 \wedge \mathsf{X} \wedge \mathsf{sem} = 1 \wedge \mathsf{i}_0' = \mathsf{i}_0 \wedge \mathsf{e}_0' = \mathsf{e}_0 \wedge \mathsf{i}_1' = \mathsf{i}_1 \wedge \mathsf{w}_1' = \mathsf{w}_1 \wedge \mathsf{c}_1' = \mathsf{c}_1 \wedge \mathsf{e}_1' = \mathsf{e}_1 \\ \ldots & \ldots & \ldots \end{array}
```

$$(init \land G trans) \rightarrow G \neg (c_0 \land c_1)$$

SMV Input Language

```
MODULE main
VAR
  sem : 0..1;
 pc : array 0..1 of {idle, wait, crit, exit};
DEFINE
  idle0 := pc[0] = idle & next(pc[0]) = wait & next(sem) = sem & next(pc[1]) = pc[1];
 wait0 := pc[0] = wait & sem = 0 & next(pc[0]) = crit & next(sem) = 1 & next(pc[1]) = pc[1];
  crit0 := pc[0] = crit & next(pc[0]) = exit & next(sem) = sem & next(pc[1]) = pc[1];
  exit0 := pc[0] = exit & next(pc[0]) = idle & next(sem) = 0 & next(pc[1]) = pc[1];
  idle1 := pc[1] = idle & next(pc[1]) = wait & next(sem) = sem & next(pc[0]) = pc[0];
 wait1 := pc[1] = wait & sem = 0 & next(pc[1]) = crit & next(sem) = 1 & next(pc[0]) = pc[0];
  crit1 := pc[1] = crit & next(pc[1]) = exit & next(sem) = sem & next(pc[0]) = pc[0];
  exit1 := pc[1] = exit & next(pc[1]) = idle & next(sem) = 0 & next(pc[0]) = pc[0];
  start := sem = 0 & pc[0] = idle & pc[1] = idle;
  trans := idle0 | wait0 | crit0 | exit0 | idle1 | wait1 | crit1 | exit1;
LTLSPEC
  start & G trans \rightarrow G !(pc[0] = crit & pc[1] = crit)
```

SMV Input Language

```
MODULE main
VAR
 sem : 0..1;
 pc : array 0...1 of {idle, wait, crit, exit};
DEFINE
 idle0 := pc[0] = idle & next(pc[0]) = wait & next(sem) = sem & next(pc[1]) = pc[1];
 wait0 := pc[0] = wait & sem = 0 & next(pc[0]) = crit & next(sem) = 1 & next(pc[1]) = pc[1];
 crit0 := pc[0] = crit &
                         next(pc[0]) = exit & next(sem) = sem & next(pc[1]) = pc[1];
 exit0 := pc[0] = exit & next(pc[0]) = idle & next(sem) = 0 & next(pc[1]) = pc[1];
 idle1 := pc[1] = idle & next(pc[1]) = wait & next(sem) = sem & next(pc[0]) = pc[0];
 wait1 := pc[1] = wait & sem = 0 & next(pc[1]) = crit & next(sem) = 1 & next(pc[0]) = pc[0];
 crit1 := pc[1] = crit &
                        next(pc[1]) = exit & next(sem) = sem & next(pc[0]) = pc[0];
  exit1 := pc[1] = exit & next(pc[1]) = idle & next(sem) = 0 & next(pc[0]) = pc[0];
INIT
 sem = 0 \& pc[0] = idle \& pc[1] = idle;
TRANS
 idle0 | wait0 | crit0 | exit0 | idle1 | wait1 | crit1 | exit1;
LTLSPEC
 G !(pc[0] = crit & pc[1] = crit)
```

TLA+

----- MODULE Semaphore ------VARIABLES sem, pc Init $== / \setminus sem = 0$ /\ pc = [p \in {0,1} |-> "idle"] $idle(p) == /\ pc[p] = "idle"$ /\ pc' = [pc **EXCEPT** ![p] = "wait"] $/\$ sem' = sem $wait(p) == /\ pc[p] = "wait"$ $/\$ sem = 0 $/\$ sem' = 1 /\ pc' = [pc **EXCEPT** ![p] = "crit"] crit(p) == /\ pc[p] = "crit" /\ pc' = [pc **EXCEPT !**[p] = "exit"] $/\ sem' = sem$ $exit(p) == /\ pc[p] = "exit"$ $/\ sem' = 0$ /\ pc' = [pc **EXCEPT** ![p] = "idle"] Next == \/ idle(0) \/ wait(0) \/ crit(0) \/ exit(0) \/ idle(1) \/ wait(1) \/ crit(1) \/ exit(1) Spec == Init /\ [][Next]_<<sem,pc>>

Past Time LTL

```
Y f Yesterday, before f was true in the previous state

H f Historically f was always true

O f Once f was once true

f \ S \ g Since g was once true and f is true since then

g \ T \ f Triggers f could only be false before g becomed true
```

Temporal Logic of Actions

- Restricts LTL' to ensure formulas are stutter invariant
- Stutter invariance is fundamental to check *refinement*, that is, to check that one specification is an implementation of a more abstract specification
- TLA also adds first order quantifiers to LTL'
- TLA+ is the full concrete specification language based on TLA

TLA Syntax

- The syntax of TLA formulas is given by the following rules
 - Any state predicate p (without primes) is an atomic TLA formula
 - If a is an action predicate (one with primes), then $[a]_t$ and ENABLED a are atomic TLA formulas, being $[a]_t \equiv a \lor (t' = t)$
 - If f and g are TLA formulas and S is a set, then TRUE, FALSE, $\neg f$, $f \land g, f \lor g, f \Rightarrow g, \ \forall x \in S: f, \ \exists x \in S: f, \ \Box f, \ \Diamond f$ are TLA formulas

TLA+

```
----- MODULE Semaphore -----
EXTENDS Naturals
CONSTANT N
ASSUME N > 0
VARIABLES sem, pc
Proc == 0..(N-1)
Init == / \setminus sem = 0
      /\ pc = [p \in Proc |-> "idle"]
idle(p) == /\ pc[p] = "idle"
         /\ pc' = [pc EXCEPT ![p] = "wait"]
         /\ sem' = sem
wait(p) == /\ pc[p] = "wait"
        /\ sem = 0
        /\ sem' = 1
         /\ pc' = [pc EXCEPT ![p] = "crit"]
crit(p) == /\ pc[p] = "crit"
         /\ pc' = [pc EXCEPT ![p] = "exit"]
         /\ sem' = sem
exit(p) == /\ pc[p] = "exit"
         /\ sem' = 0
         /\ pc' = [pc EXCEPT ![p] = "idle"]
Next == \E p \in Proc : idle(p) \/ wait(p) \/ crit(p) \/ exit(p)
Spec == Init /\ [][Next]_<<sem,pc>>
______
```

TLA+

Validation with TLA+

- To find scenarios where f holds just check $\neg f$
- In particular to see a scenario where action a happens check $\square [\neg a]_t$
- It is also common to include an invariant to check type correctness

Computation Tree Logic

- CTL is a temporal logic with a branching model of time
- Besides temporal operators it also has path quantifiers, that build state formulas out of path formulas
- ullet Given a set A of atomic propositions, the syntax of CTL formulas is given by the following rules
 - If $p \in A$, then p is an CTL state formula
 - If f and g are CTL state formulas, then T, \bot , $\neg f$, $f \lor g$, $f \land g$, and $f \to g$ are CTL state formulas
 - If f is a CTL path formula, then A f and E f are CTL state formulas
 - If f and g are CTL state formulas, then Xf, Ff, Gf, Gf, f U g, and g R f are CTL path formulas

• Given a Kripke structure M = (S, I, R, L) we will denote the fact that a CTL (state) formula f holds in M by $M \models f$

$$M \vDash f \Leftrightarrow \forall s \in I \cdot M, s \vDash f$$

```
M, s \vDash \top
M, s \nvDash \bot
M, s \models p
                                                         p \in L(s)
                                         \Leftrightarrow
M, s \models \neg f
                                                         M, s \nvDash f
                                        \Leftrightarrow
M, s \models f \lor g
                                                         M, s \models f \text{ or } M, s \models g
                                        \Leftrightarrow
                                                         M, s \models f and M, s \models g
M, s \models f \land g
                                       \Leftrightarrow
M, s \models f \rightarrow g
                                                         M, s \not\models f \text{ or } M, s \models g
                                        \Leftrightarrow
                                                          \forall \pi \in M \cdot \pi_0 = s \to M, \pi \models f
M, s \models A f
                                         \Leftrightarrow
                                                           \exists \pi \in M \cdot \pi_0 = s \to M, \pi \vDash f
M, s \models \mathsf{E} f
                                         \Leftrightarrow
M, \pi \vDash \mathsf{X} f
                                                         M, \pi_1 \models f
                                         \Leftrightarrow
M, \pi \models \mathsf{F} f
                                                          \exists i \geq 0 \cdot M, \pi_i \models f
                                         \Leftrightarrow
                                                          \forall i \geq 0 \cdot M, \pi_i \models f
M, \pi \vDash \mathsf{G} f
                                         \Leftrightarrow
M, \pi \models f \cup g
                                                           \exists i \geq 0 \cdot M, \pi_i \vDash g \land \forall 0 \leq j < i \cdot M, \pi_i \vDash f
                                         \Leftrightarrow
M, \pi \vDash g \mathrel{\mathsf{R}} f
                                                          \forall i \geq 0 \cdot M, \pi_i \vDash f \lor \exists 0 \leq j < i \cdot M, \pi_i \vDash g
                                         \Leftrightarrow
```


EG f

f AU g

Minimal CTL Operators

All CTL formulas can be expressed with T, ¬, ∨, X, EX, EG, and EU

```
\begin{array}{ccc}
\bot & \equiv & \neg \top \\
f \land g & \equiv & \neg (\neg f \lor \neg g)
\end{array}

f \rightarrow g \equiv \neg f \lor g
\mathsf{AX} f \equiv \neg \mathsf{EX} \neg f
 \mathsf{EF} f \equiv \mathsf{T} \; \mathsf{EU} f
 \mathsf{AG}\,f \qquad \equiv \qquad \neg \;\mathsf{EF}\; \neg f
 \mathsf{AF}\,f \qquad \equiv \qquad \neg \;\mathsf{EG}\; \neg f
 g AR f \equiv \neg (\neg g EU \neg f)
                                    (\mathsf{EG}\,f) \lor (f \; \mathsf{EU} \; (g \land f))
 g \, \mathsf{ER} \, f
                \equiv \neg (\neg f ER \neg g)
f AU g
```

CTL Examples

Mutual exclusion

$$AG \neg (c_0 \land c_1)$$

Lockout freedom

$$AG (w_0 \rightarrow AF c_0) \wedge AG (w_1 \rightarrow AF c_1)$$

Reversibility

AG EF
$$(i_0 \wedge i_1)$$

LTL VS CTL

- Most properties can be expressed both in LTL and CTL, but their expressiveness is incomparable
- For example, AG EF p cannot be expressed in LTL and F G p cannot be expressed in CTL

• In general, LTL formulas are not equivalent to the CTL formulas obtained by preceding each temporal operator with A. For example, AF AX p is not the same as F X p

SMV Input Language

CTLSPEC

```
AG ! (pc[0] = crit & pc[1] = crit)
```

CTLSPEC

```
AG (pc[0] = wait -> AF pc[0] = crit) & AG (pc[1] = wait -> AF pc[1] = crit)
```

CTLSPEC

```
AG EF (pc[0] = idle & pc[1] = idle)
```

Safety vs Liveness

- Safety properties
 - Nothing "bad" will happen
 - Counter-examples have a "bad" prefix, one where every possible continuation violates the property
 - Mutual exclusion is a safety property
- Liveness properties
 - Something "good" will happen
 - It is always possible to satisfy them after any finite prefix of events
 - Thus, counter-examples must be complete infinite traces
 - Lockout freedom is a liveness property

Fairness

- Fairness assumptions are necessary to verify most liveness properties
- A fairness assumption is a liveness property that forces the system to keep doing something (to progress) under certain conditions
 - Unconditional fairness: some action will recurrently occur

G F action

- Strong fairness: some action that is recurrently enabled will (recurrently) occur

$$G F enabled \rightarrow G F action$$

- Weak fairness: some action that is continuously enabled will (recurrently) occur

F G enabled → G F action

SMV Input Language

LTLSPEC

```
(G F (pc[0] = wait & sem = 0) -> G F wait0) &
(G F (pc[1] = wait & sem = 0) -> G F wait1)
->
G (pc[0] = wait -> F pc[0] = crit) &
G (pc[1] = wait -> F pc[1] = crit)
```

Fairness in TLA

- If a is an action predicate (one with primes), then $WF_t(a)$, and $SF_t(a)$ are atomic TLA formulas

$$WF_{t}(a) \equiv \Diamond \square ENABLED(a) \Rightarrow \square \Diamond \langle a \rangle_{t}$$

$$SF_{t}(a) \equiv \square \Diamond ENABLED(a) \Rightarrow \square \Diamond \langle a \rangle_{t}$$

$$\Diamond \langle a \rangle_{t} \equiv \Diamond (a \wedge t' \neq t)$$

$$\equiv \Diamond \neg (\neg a \vee t' = t)$$

$$\equiv \Diamond \neg [a]_{t}$$

$$\equiv \neg \square [a]_{t}$$

TLA+

```
------ MODULE Semaphore ------
EXTENDS Naturals
CONSTANT N
ASSUME N > 0
VARIABLES sem, pc
Proc == 0..(N-1)
Init == ...
idle(p) == ...
wait(p) == ...
crit(p) == ...
exit(p) == ...
Next == \E p \in Proc : idle(p) \/ wait(p) \/ crit(p) \/ exit(p)
state == <<sem,pc>>
Fairness == WF_state(Next) /\ \A p \in Proc: SF_state(wait(p))
Spec == Init /\ [][Next]_state /\ Fairness
```

CTL Model Checking

• Given a Kripke structure M = (S, I, R, L) and a CTL formula f, the goal of a model checker is to find the set of states that satisfy f

$$[\![f]\!]_M \equiv \{s \in M \mid M, s \models f\}$$

Explicit vs Symbolic

- Explicit model checking
 - Sets and transitions are encoded extensionally
 - Semantics of temporal operators is implemented by graph traversals

$$M \vDash f \quad \text{iff} \quad I \subseteq \llbracket f \rrbracket_M$$

- Symbolic model checking
 - Sets and transitions are encoded intentionally by propositional formulas
 - Semantics of temporal operators is implemented by fixpoint computations

$$M \models f \quad \text{iff} \quad I \to \llbracket f \rrbracket_M$$

Explicit vs Symbolic

$$I = \{s_1\}$$

$$R = \{(s_1, s_2), (s_2, s_2), (s_3, s_4), (s_4, s_3)\}$$

$$I = \neg a \wedge \neg b$$

$$R = (\neg b \wedge a' \wedge \neg b') \vee (b \wedge b' \wedge a' = \neg a)$$

```
\llbracket f \text{ EU } g \rrbracket =
        U \leftarrow [\![g]\!]
        O \leftarrow A
        while O \neq \emptyset
                 choose s \in O
                 O \leftarrow O - \{s\}
                 for s' \in R^{-1}(s)
                         if s' \notin U \land s' \in [f]
                                  U \leftarrow U \cup \{s'\}
                                  O \leftarrow O \cup \{s'\}
        return U
```


$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] =$$

$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] =$$

$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] =$$

$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] =$$

$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] = S - \{s_2, s_3, s_4\} = [[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] = S - [[T$$

$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] = S - \{s_2, s_3, s_4\} = \{s_1\}$$

$$[[AG \neg a]] = [[\neg (T EU a)]] = S - [[T EU a]] = S - \{s_2, s_3, s_4\} = \{s_1\}$$

$$I \nsubseteq [AG \neg a] \Rightarrow M \nvDash AG \neg a$$

• To determine [[EG f]] it suffices to restrict M to the states that satisfy f

$$M_f = ([[f]], I \cap [[f]], R \cap [[f]] \times [[f]], L \cap [[f]] \times A)$$

- $M,s \models \mathsf{EG}\ f$ iff $s \in [\![f]\!]$ and there exists a path in M_f from s to some node in a nontrivial strongly connected component of M_f
- A strongly connected component (SCC) is a maximal subgraph where every node is reachable from every other
- A SCC is nontrivial if it has at least one path (more than one node or one node with a self loop)
- ullet The nontrivial SCCs of M_f can be computed efficiently with Tarjan's algorithm

$$\mathbf{scc}(M_f) \subseteq 2^{\llbracket f \rrbracket}$$

```
[[EG f]] =
       G \leftarrow \bigcup \operatorname{scc}(M_f)
        O \leftarrow U
        while O \neq \emptyset
                choose s \in O
                O \leftarrow O - \{s\}
                for s' \in R^{-1}(s)
                        if s' \notin G
                                G \leftarrow G \cup \{s'\}
                                O \leftarrow O \cup \{s'\}
        return G
```


$$[[AF \ a]] = [[\neg EG \ \neg a]] = S - [[EG \ \neg a]] =$$

$$[[AF \ a]] = [[\neg EG \ \neg a]] = S - [[EG \ \neg a]] =$$

$$[[AF \ a]] = [[\neg EG \ \neg a]] = S - [[EG \ \neg a]] =$$

$$[[AF \ a]] = [[\neg EG \ \neg a]] = S - [[EG \ \neg a]] =$$

$$[AF \ a] = [\neg EG \neg a] = S - [EG \neg a] = S - \{s_1, s_2\} = S$$

$$[[AF \ a]] = [[\neg EG \ \neg a]] = S - [[EG \ \neg a]] = S - \{s_1, s_2\} = \{s_3, s_4\}$$

$$[[AF \ a]] = [[\neg EG \ \neg a]] = S - [[EG \ \neg a]] = S - \{s_1, s_2\} = \{s_3, s_4\}$$

$$I \nsubseteq [AF a] \Rightarrow M \nvDash AF a$$

- Fairness cannot be expressed in CTL
- Semantics and model checking must be adapted to consider fairness
- $M \models [f]_p$ iff $M \models f$ and p is recurrently true in M (unconditional fairness)
- To model check $M \models [\mathsf{EG}\,f]_p$ it suffices to compute the reachability from *fair* SCCs, those where at least one state satisfies p
- Since a path is fair iff any of its suffixes is fair and since $[EG\ T]_p$ holds in a state iff there is a fair path starting in that state we have

$$[\mathsf{EX}\,f]_p \equiv \mathsf{EX}\,([f]_p \land [\mathsf{EG}\;\mathsf{T}]_p)$$

$$[f \text{ EU } g]_p \equiv [f]_p \text{ EU } ([g]_p \land [\text{EG T}]_p)$$

$$[p] = p$$

$$[T] = T$$

$$[\neg f] = \neg [f]$$

$$[f \lor g] = [f] \lor [g]$$

$$[EX f] = \exists \overline{x}' \cdot R \land [f]'$$

- $[\![f]\!]'$ is the formula obtained from $[\![f]\!]$ by replacing all variables by the respective primed version
- The existential quantifier can be eliminated by expansion

$$\exists x \cdot f \equiv f[x \leftarrow \top] \lor f[x \leftarrow \bot]$$

$$R = (\neg b \land a' \land \neg b') \lor (b \land b' \land a' = \neg a)$$

$$\begin{split} \llbracket \mathsf{EX} \ a \rrbracket &= \exists a', b' \cdot R \wedge \llbracket a \rrbracket' \\ &= \exists a', b' \cdot R \wedge a' \\ &= \exists a', b' \cdot (\neg b \wedge a' \wedge \neg b') \vee (b \wedge \neg a \wedge b' \wedge a') \\ &= \exists a' \cdot (\neg b \wedge a' \wedge \neg \top) \vee (b \wedge \neg a \wedge \top \wedge a') \vee (\neg b \wedge a' \wedge \neg \bot) \vee (b \wedge \neg a \wedge \bot \wedge a') \\ &= \exists a' \cdot (b \wedge \neg a \wedge a') \vee (\neg b \wedge a') \\ &= (b \wedge \neg a \wedge \top) \vee (\neg b \wedge \top) \vee (b \wedge \neg a \wedge \bot) \vee (\neg b \wedge \bot) \\ &= (b \wedge \neg a) \vee \neg b \end{split}$$

$$R = (\neg b \land a' \land \neg b') \lor (b \land b' \land a' = \neg a)$$

$$\begin{aligned} & [[\mathsf{EX}\ a]] = \exists a', b' \cdot R \wedge [[a]]' \\ & = \exists a', b' \cdot (R \wedge a') \\ & = \exists a', b' \cdot (\neg b \wedge a' \wedge \neg b') \vee (b \wedge \neg a \wedge b' \wedge a') \\ & = \exists a' \cdot (\neg b \wedge a' \wedge \neg \top) \vee (b \wedge \neg a \wedge \top \wedge a') \vee (\neg b \wedge a' \wedge \neg \bot) \vee (b \wedge \neg a \wedge \bot \wedge a') \\ & = \exists a' \cdot (b \wedge \neg a \wedge a') \vee (\neg b \wedge a') \\ & = (b \wedge \neg a \wedge \top) \vee (\neg b \wedge \top) \vee (b \wedge \neg a \wedge \bot) \vee (\neg b \wedge \bot) \\ & = (b \wedge \neg a) \vee \neg b \end{aligned}$$

 $EG f \equiv f \land EX (EG f)$

$$[\![\mathsf{EG}\,f]\!] = \\ G \leftarrow \mathsf{T}$$

$$\mathbf{repeat}$$

$$G' \leftarrow G$$

$$G \leftarrow [\![f]\!] \wedge [\![\mathsf{EX}\,G]\!]$$

$$\mathbf{until}\ G \equiv G'$$

$$\mathbf{return}\ G$$

$$\llbracket \mathsf{EG} \ a \rrbracket =$$

$$\llbracket \mathsf{EG} \ a \rrbracket =$$

$$G_0 = \mathsf{T}$$

$$\llbracket \mathsf{EG} \ a \rrbracket =$$

$$G_0 = T$$
 $G_1 = [a] \land [EX G_0] = a$

$$\llbracket \mathsf{EG} \ a \rrbracket =$$

$$G_0 = \mathsf{T}$$

$$G_1 = \llbracket a \rrbracket \land \llbracket \mathsf{EX} \ G_0 \rrbracket = a$$

$$G_2 = \llbracket a \rrbracket \land \llbracket \mathsf{EX} \ G_1 \rrbracket = a \land ((b \land \neg a) \lor \neg b) = a \land \neg b$$

[[EG
$$a$$
]] = $a \land \neg b$

$$G_0 = \mathsf{T}$$

$$G_1 = [\![a]\!] \land [\![\mathsf{EX}\ G_0]\!] = a$$

$$G_2 = [\![a]\!] \land [\![\mathsf{EX}\ G_1]\!] = a \land ((b \land \neg a) \lor \neg b) = a \land \neg b$$

$$G_3 = [\![a]\!] \land [\![\mathsf{EX}\ G_2]\!] = a \land \neg b$$

```
f EU g \equiv g \lor (f \land EX (f EU g))
[f EU g] =
         U \leftarrow \bot
         repeat
                  U' \leftarrow U
                  U \leftarrow \llbracket g \rrbracket \lor (\llbracket f \rrbracket \land \llbracket \mathsf{EX} \ U \rrbracket)
         until U \equiv U'
         return U
```

$$[\mathsf{EG}\,f]_p \equiv [f]_p \land \mathsf{EX}\;([f]_p\;\mathsf{EU}\;(p \land [\mathsf{EG}\,f]_p))$$

$$[\mathsf{EX}\,f]_p \equiv \mathsf{EX}\;([f]_p \wedge [\mathsf{EG}\;\mathsf{T}]_p)$$

$$[f\;\mathsf{EU}\;g]_p \equiv [f]_p\;\mathsf{EU}\;([g]_p \wedge [\mathsf{EG}\;\mathsf{T}]_p)$$

- Requires procedures to check the validity and equivalence of propositional formulas
- Can be implemented efficiently with Ordered Binary Decision Diagrams

• Given a Kripke structure M = (S, I, R, L) and considering S as an alphabet, the language of M, denoted $\mathcal{L}(M)$ is the set of all paths starting in an initial state

$$\mathcal{L}(M) = \{ \pi \mid \pi \in M \land \pi_0 \in I \}$$

• The language of an LTL formula f, denoted $\mathcal{L}(f)$ is the set of all possible paths that satisfy f

$$\mathcal{L}(f) = \{ \pi \mid \pi \models f \}$$

 A formula is valid iff the language of the model is a subset of the language of the formula

$$M \vDash f$$
 iff $\mathscr{L}(M) \subseteq \mathscr{L}(f)$ iff $\mathscr{L}(M) \cap \mathscr{L}(\neg f) = \varnothing$

Büchi Automata

- The model and formula languages can captured by a non-deterministic Büchi automaton (S, Σ, R, I, F) where
 - S is a set of states
 - Σ is an alphabet
 - $R \subseteq S \times \Sigma \times S$ is a transition relation
 - $I \subseteq S$ is a set of initial states
 - $F \subseteq S$ is a set of accepting (or final) states
- A valid path must visit an accepting state infinitely often
- The language of an automaton is the set of all valid paths

 $\mathcal{L} = \{bbbbb...,babbb...,babbb...,baabb...\}$

From Kripke Structures to Automata

- Given a Kripke structure M it is possible to construct a Büchi automaton \mathcal{A}_M with the same language
 - Using as alphabet conjunctions of atomic propositions, that is $\Sigma=2^A$
 - Adding a new separate initial state
 - A transition in \mathcal{A}_M is possible iff the transition label matches the next state label in M
 - All states are accepting

From Kripke Structures to Automata

- Given an LTL formula f it is possible to construct a Büchi automaton \mathscr{A}_f with the same language
 - Again using as alphabet conjunctions of atomic propositions, that is $\Sigma = 2^A$
 - Try it at http://www.lsv.fr/~gastin/ltl2ba/index.php

G a

F a

G F a

 Checking the emptiness of language intersection can be reduced to checking the emptiness of the product automaton

$$M \vDash f \quad \text{iff} \quad \mathscr{L}(M) \cap \mathscr{L}(\neg f) = \varnothing \quad \text{iff} \quad \mathscr{L}(\mathscr{A}_M \otimes \mathscr{A}_{\neg f})$$

• Since all states of \mathscr{A}_M are accepting, the product of $\mathscr{A}_M = (S_M, \Sigma, R_M, I_M, S_M)$ and $\mathscr{A}_{\neg f} = (S_{\neg f}, \Sigma, R_{\neg f}, I_{\neg f}, F_{\neg f})$ can be computed as follows

$$\mathcal{A}_{M} \otimes \mathcal{A}_{\neg f} = (S_{M} \times S_{\neg f}, \Sigma, R, I_{M} \times I_{\neg f}, S_{M} \times F_{\neg f})$$

$$((s_0, s_1), a, (s'_0, s'_1)) \in R$$
 iff $(s_0, a, s'_0) \in R_M \land (s_1, a, s'_1) \in R_{\neg f}$

Checking Automata Emptiness

- Check if a nontrivial SCC containing an accepting state is reachable from the initial state
 - Typically requires storing the entire automaton in memory
- Determine the reachable states using DFS and if an accepting state is reachable run a nested DFS to determine if there is a cycle
 - Better for on-the-fly model checking
- Use a CTL model checker to verify if EG T is valid assuming the system is fair to the accepting states
 - Enables symbolic model checking for LTL