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Roadmap

Deductive Reasoning and the Coq Proof Assistant
I Natural Deduction. Typed lambda calculus. Propositons-as-types

isomorphism. Main features of the Coq proof assistant.

Inductive Reasoning in Coq
I Inductive types and its elimination mechanisms. Proofs by induction.

Programming and Proving in Coq
I Functional correctness. Specification types. Program extraction.
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Introduction

Tools such as SAT and SMT solves follow a “semantic” approach to logic.
They try to produce a model for a formula. This, however, is not the only
possible point of view.

Instead of adopting the view based on the notion of truth, we can think of
logic as a codification of reasoning. This alternative approach to logic,
called “deductive”, focuses directly on the deduction relation that is induced
on formulas.

A proof system (or inference system) consists of a set of basic rules for
constructing derivations. Such a derivation is a formal object that encodes
an explanation of why a given formula – the conclusion – is deducible from a
set of assumptions.

The rules that govern the construction of derivations are called inference

rules and consist of zero or more premises and a single conclusion.
Derivations have a tree-like shape. We use the standard notation of
separating the premises from the conclusion by a horizontal line.

perm1 . . . permn

concl
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Natural deduction

The proof system we will present here is a formalisation of the reasoning
used in mathematics, and was introduced by Gerhard Gentzen in the first
half of the 20th century as a “natural” representation of logical derivations.
It is for this reason called natural deduction.

We choose to present the rules of natural deduction in sequent style.

A sequent is a judgment of the form � ` A, where � is a set of formulas
(the context) and A a formula (the conclusion of the sequent).

A sequent � ` A is meant to be read as “A can be deduced from the set of
assumptions �”, or simply “A is a consequence of �”.
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Natural deduction

The set of basic rules provided is intended to aid the translation of thought
(mathematical reasoning) into formal proof.

For example, if F and G can be deduced from �, then F ^G can also be deduced
from � .

This is the “^-introduction” rule

� ` F � ` G

� ` F ^G
^I

There are two “^-elimination” rules:

� ` F ^G

� ` F
^E1

� ` F ^G

� ` G
^E2
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Natural deduction

This system is intended for human use, in the sense that
I a person can guide the proof process;
I the proof produced is highly legible, and easy to understand.

This contrast with decision procedures that just produce a “yes/no” answer,

and may not give insight into the relationship between the assumption and

the conclusion.

We present natural deduction in sequent style, because
I it gives a clear representation of the discharging of assumptions;
I it is closer to what one gets while developing a proof in a proof

assistant.
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Proof system NPL for classical propositional logic

� ` > true
A 2 �
� ` A

assumption

� ` A ^B
� ` A

^E1
� ` A ^B
� ` B

^E2
� ` A � ` B
� ` A ^B

^I

� ` A
� ` A _B

_I1
� ` B

� ` A _B
_I2

� ` A _B �, A ` C �, B ` C

� ` C
_E

�, A ` B

� ` A ! B
!I

� ` A � ` A ! B
� ` B

!E

�, A ` ?
� ` ¬A

¬I
� ` A � ` ¬A

� ` ?
¬E

� ` ?
� ` A

?E
�,¬A ` ?
� ` A

RAA
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A proof tree

` ¬P ! (Q ! P ) ! ¬Q

¬P,Q ! P,Q ` Q ¬P,Q ! P,Q ` Q ! P

¬P,Q ! P,Q ` P
!E ¬P,Q ! P,Q ` ¬P

¬P,Q ! P,Q ` ?
¬E

¬P,Q ! P ` ¬Q
¬I

¬P ` (Q ! P ) ! ¬Q
!I

` ¬P ! (Q ! P ) ! ¬Q
!I

This proof can be developed either by
I backward reasoning (a top-down strategy, starting with the conclusion

sequent (the root of the tree) and building the tree to the leaves (by
applying the rules); or

I forward reasoning (a bottom-up strategy, starting with the axioms
sequents (the leaves of the tree) and building the tree to the conclusion
(by applying the rules).

In a proof assistant the proof is usually developed backwards.

For convinience, we will present proof trees in a tabular form.
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Backward reasoning

In backward reasoning one starts with the conclusion sequent and chooses to
apply a rule that can justify that conclusion; one then repeats the procedure
on the resulting premises.

` ¬P ! (Q ! P ) ! ¬Q
` ¬P ! (Q ! P ) ! ¬Q !I

1. ¬P ` (Q ! P ) ! ¬Q !I

1. ¬P,Q ! P ` ¬Q ¬I

1. ¬P,Q ! P,Q ` ? ¬E

1. ¬P,Q ! P,Q ` P !E

1. ¬P,Q ! P,Q ` Q assumption
2. ¬P,Q ! P,Q ` Q ! P assumption

2. ¬P,Q ! P,Q ` ¬P assumption

In a proof assistant the proof is usually developed backwards.
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In a proof-assistant

In a proof-assistant, the usual approach is to develop the proof backwards
by a method that is known as goal directed proof:

1 The user enters a statement that he wants to prove.

2 The system displays the formula as a formula to be proved, possibly
giving a context of local facts that can be used for this proof.

3 The user enters a command (a basic rule or a tactic) to decompose
the goal into simpler ones.

4 The system displays a list of formulas that still need to be proved.

When there are no more goals the proof is complete!
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An example

` A _ ¬A proved in backward direction

` A _ ¬A RAA
1. ¬(A _ ¬A) ` ? ¬E

1. ¬(A _ ¬A) ` ¬(A _ ¬A) assumption
2. ¬(A _ ¬A) ` A _ ¬A _I2

1. ¬(A _ ¬A) ` ¬A ¬I

1. ¬(A _ ¬A), A ` ? ¬E

1. ¬(A _ ¬A), A ` A _ ¬A _I1

1. ¬(A _ ¬A), A ` A assumption
2. ¬(A _ ¬A), A ` ¬(A _ ¬A) assumption
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Soundness and completeness of PL

Soundness

If � ` F , then � |= F .

Completeness

If � |= F , then � ` F .
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Natural deduction for FOL

We present here a natural deduction proof system for classical first-order
logic in sequent style.

Derivations in FOL will be similar to derivations in PL, except that we will
have new proof rules for dealing with the quantifiers.

More precisely, we overload the proof rules of PL, and we add introduction
and elimination rules for the quantifiers. This means that the proofs
developed for PL still hold in this proof system.

The proof system NFOL of natural deduction for first-order logic is defined by the
rules presented in the next slide.

An instance of an inference rule is obtained by replacing all occurrences of
each meta-variable by a phrase in its range. In some rules, there may be side
conditions that must be satisfied by this replacement. Also, there may be
syntactic operations (such as substitutions) that have to be carried out after
the replacement.
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Proof system NFOL for classical first-order logic

� ` > true
� 2 �

� ` � assumption

� ` � ^  
� ` �

^E1
� ` � ^  
� `  

^E2
� ` � � `  
� ` � ^  

^I

� ` �
� ` � _  

_I1
� `  

� ` � _  
_I2

� ` � _  �,� ` ✓ �, ` ✓
� ` ✓

_E

�,� `  
� ` �!  

!I
� ` � � ` �!  

� `  
!E

�,� ` ?
� ` ¬�

¬I
� ` � � ` ¬�

� ` ?
¬E

� ` ?
� ` � ?E

�,¬� ` ?
� ` � RAA
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Proof system NFOL for classical first-order logic

Proof rules for quantifiers.

� ` �[y/x]
� ` 8x.� 8I (a)

� ` 8x.�
� ` �[t/x] 8E

� ` �[t/x]
� ` 9x.� 9I

� ` 9x.� �,�[y/x] ` ✓
� ` ✓ 9E (b)

(a) y must not occur free in either � or �.

(b) y must not occur free in either �, � or ✓.
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An example

(9x.¬ ) ! ¬8x. is a theorem

` (9x.¬ ) ! ¬8x. !I

1. 9x.¬ ` ¬8x. ¬I

1. 9x.¬ , 8x. ` ? 9E
1. 9x.¬ , 8x. ` 9x.¬ assumption
2. 9x.¬ , 8x. ,¬ [x0/x] ` ? ¬E

1. 9x.¬ , 8x. ,¬ [x0/x] `  [x0/x] 8E
1. 9x.¬ , 8x. ,¬ [x0/x] ` 8x. assumption

2. 9x.¬ , 8x. ,¬ [x0/x] ` ¬ [x0/x] assumption

Note that when the rule 9E is applied a fresh variable x0 is introduced. The side

condition imposes that x0 must not occur free either in 9x.¬ or in 8x. .
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An example

Instead of explicitly write the substitutions, the following derivation adopts the
following convention to establish the converse implication.

�(x1, . . . , xn) to denote a formula having free variables x1, . . . , xn and �(t1, . . . , tn)
denote the formula obtained by replacing each free occurrence of xi in � by the term ti.

(¬8x. (x)) ! 9x.¬ (x) is a theorem

` (¬8x. (x)) ! 9x.¬ (x) !I

1. ¬8x. (x) ` 9x.¬ (x) RAA
1. ¬8x. (x),¬9x.¬ (x) ` ? ¬E

1. ¬8x. (x),¬9x.¬ (x) ` ¬8x. (x) assumption
2. ¬8x. (x),¬9x.¬ (x) ` 8x. (x) 8I

1. ¬8x. (x),¬9x.¬ (x) `  (x0) RAA
1. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` ? ¬E

1. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` ¬9x.¬ (x) assumption
2. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` 9x.¬ (x) 9I

1. ¬8x. (x),¬9x.¬ (x),¬ (x0) ` ¬ (x0) assumption
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Soundness and completeness of NFOL

Soundness

If � ` �, then � |= �.

Completeness

If � |= �, then � ` �.
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Deductive approach vs Semantic approach

Deductive approach
I Based on a proof system.
I The goal is to prove that a formula is valid.
I The tools based on this approach are called proof assistants and allow

the interactive development of proofs.
I In the proof process a derivation (proof tree) is constructed.

Semantic approach
I Based on the notion of model.
I The goal is to prove that a formula is satisfiable.
I The SMT solvers are tools based on this approach, which are decision

procedures that produce a “SAT/UNSAT/UNKNOW” answer.
I If the answer is SAT, a model is produced.

Maria João Frade (HASLab, DI-UM) Natural Deduction VF 2021/22 20 / 62



Higher-order logic

There is no need to stop at first-order logic; one can keep going.

We can add to the language “super-predicate” symbols, which take as
arguments both individual symbols and predicate symbols. And then
we can allow quantification over super-predicate symbols.

And we can keep going further...

We reach the level of type theory.

Higher-order logics allows quantification over “everything”.

One needs to introduce some kind of typing scheme.

The original motivation of Church (1940) to introduce simple type
theory was to define higher-order (predicate) logic.
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Two branches of formal logic: classical and intuitionistic

The classical understanding of logic is based on the notion of truth.
The truth of a statement is “absolute” and independent of any
reasoning, understanding, or action. So, statements are either true or
false, and (A _ ¬A) must hold no matter what the meaning of A is.

Intuitionistic (or constructive) logic is a branch of formal logic that
rejects this guiding principle. It is based on the notion of proof. The
judgement about a statement is based on the existence of a proof (or
“construction”) of that statement.
For a (A_¬A) to hold one has to have a proof of A or a proof of ¬A.
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Classical logic vs Intuitionistic logic

Classical logic is based on the notion of truth.
I The truth of a statement is “absolute”: statements are either true or

false.
I Here “false” means the same as “not true”.
I � _ ¬� must hold no matter what the meaning of � is.
I Proofs using the excluded middle law, � _ ¬�, or the double negation

law, ¬¬�! � (proof by contradiction), are not constructive.

Intuitionistic (or constructive) logic is based on the notion of proof.
I Rejects the guiding principle of “absolute” truth.
I � is “true” if we can prove it.
I � is “false” if we can show that if we have a proof of � we get a

contradiction.
I To show “� _ ¬�” one have to show � or ¬�. (If neither of these can

be shown, then the putative truth of the disjunction has no
justification.)
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Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or
“construction” of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

A proof of � ^  is given by presenting a proof of � and a proof of  .

A proof of � _  is given by presenting either a proof of � or a proof of  
(plus the stipulation that we want to regard the proof presented as evidence
for � _  ).

A proof �!  is a construction which permits us to transform any proof of
� into a proof of  .

Absurdity ? (contradiction) has no proof; a proof of ¬� is a construction
which transforms any hypothetical proof of � into a proof of a contradiction.

A proof of 8x.�(x) is a construction which transforms a proof of d 2 D (D
the intended range of the variable x) into a proof of �(d).

A proof of 9x.�(x) is given by providing d 2 D, and a proof of �(d).
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Intuitionistic logic

Some classical tautologies that are not intuitionistically valid

� _ ¬� excluded middle law

¬¬�! � double negation law

((�!  ) ! �) ! � Pierce’s law

(�!  ) _ ( ! �)
(�!  ) ! (¬� _  )
¬(� ^  ) ! (¬� _ ¬ )
(¬�!  ) ! (¬ ! �)
(¬�! ¬ ) ! ( ! �)
¬8x.¬�(x) ! 9x.�(x)
¬9x.¬�(x) ! 8x.�(x)
¬8x.�(x) ! 9x.¬�(x)
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Proof systems for intuitionistic logic

A natural deduction system for intuitionistic propositional logic or
intuitionistic first-order logic are given by the set of rules presented for
PL or FOL, respectively, except the reductio ad absurdum rule (RAA).

Traditionally, classical logic is defined by extending intuitionistic logic
with the reductio ad absurdum law, the double negation law, the
excluded middle law or with Pierce’s law.
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Typed Lambda Calulus
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Typed lambda calculus

Lambda calculus is a formal system for expressing computation, based
on function abstraction and application using variable binding and
substitution.

A typed lambda calculus introduces a typing discipline in lambda
calculus. Types are entities of a syntactic nature that are assigned to
lambda terms; the exact nature of a type depends on the calculus
considered.

Typed lambda calculi play an important role in the design of type
systems for programming languages, and are the base of typed
functional programming languages.

Typed lambda calculi are closely related to mathematical logic and
proof theory via the propositions-as-types isomorphism.
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Simply typed lambda calculus - �!

Types

Fix an arbitrary non-empty set G of ground types.

Types are just ground types or arrow types:

⌧,� ::= T | ⌧!� where T 2 G

Terms
Assume a denumerable set of variables: x, y, z, . . .

Fix a set of term constants for the types.

Terms are built up from constants and variables by �-abstraction and
application:

e, a, b ::= c | x | �x :⌧.e | a b where c is a term constant

Maria João Frade (HASLab, DI-UM) Typed Lambda Calculus VF 2021/22 29 / 62

Simply typed lambda calculus - �!

Convention
The usual conventions for omitting parentheses are adopted:

the arrow type construction is right associative;

application is left associative; and

the scope of � extends to the right as far as possible.

Usually, we write

⌧!�!⌧
0!�

0 instead of ⌧!(�!(⌧ 0!�
0))

a b c d instead of ((a b) c) d

�x :�.�b :⌧!�.f x (�z :⌧.b z) instead of
�x :�.(�b :⌧!�.((f x) (�z :⌧.b z)))

(�y :A!�.�x :�!(A!�)!⌧.x (y a) y) (�z :A.f z) instead of
(�y :A!�.(�x :�!((A!�)!⌧).(x (y a)) y)) (�z :A.f z)
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Simply typed lambda calculus - �!

Typing

Functions are classified with simple types that determine the type of their
arguments and the type of the values they produce, and can be applied only
to arguments of the appropriate type.

We use contexts to declare the free variables: � ::= hi | �, x : ⌧

Typing rules

(var)
(x : �) 2 �

� ` x : �
(const)

c has type ⌧

� ` c : ⌧

(abs)
�, x : ⌧ ` e : �

� ` (�x :⌧.e) : ⌧!�
(app) � ` a : ⌧!� � ` b : ⌧

� ` (a b) : �

A term e is well-typed if there are � and � such that � ` e : �.
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Simply typed lambda calculus - �!

Example of a typing derivation

z : ⌧, y : ⌧ !⌧ ` y : ⌧ !⌧
(var)

z : ⌧, x : ⌧ !⌧ ` z : ⌧
(var)

z : ⌧, y : ⌧ !⌧ ` yz : ⌧
(app)

z : ⌧ ` (�y :⌧ !⌧.yz) : (⌧ !⌧)!⌧
(abs)

z : ⌧, x : ⌧ ` x : ⌧
(var)

z : ⌧ ` (�x :⌧.x) : ⌧ !⌧
(abs)

z : ⌧ ` (�y :⌧ !⌧.yz)(�x :⌧.x) : ⌧
(app)
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Simply typed lambda calculus - �!
Free and bound variables

FV(e) denote the set of free variables of an expression e

FV(c) = {}
FV(x) = {x}

FV(�x :⌧.a) = FV(a)\{x}
FV(a b) = FV(a) [ FV(b)

A variable x is said to be free in e if x 2 FV(e).

A variable in e that is not free in e is said to be bound in e.

An expression with no free variables is said to be closed.

Convention
We identify terms that are equal up to a renaming of bound variables
(or ↵-conversion). Example: (�x :⌧. yx) = (�z :⌧. yz).

We assume standard variable convention, so, all bound variables are
chosen to be di↵erent from free variables.
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Simply typed lambda calculus - �!

Substitution

Substitution is a function from variables to expressions.

[e1/x1, . . . , en/xn] to denote the substitution mapping xi to ei for
1  i  n, and mapping every other variable to itself.

[~e/~x] is an abbreviation of [e1/x1, . . . , en/xn]

t[~e/~x] denote the expression obtained by the simultaneous
substitution of terms ei for the free occurrences of variables xi in t.

Remark
In the application of a substitution to a term, we rely on a variable
convention. The action of a substitution over a term is defined with
possible changes of bound variables.

(�x :⌧.y x)[wx/y] = (�z :⌧.y z)[wx/y] = (�z :⌧.w x z)
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Simply typed lambda calculus - �!
Computation

Terms are manipulated by the �-reduction rule that indicates how to
compute the value of a function for an argument.

�-reduction

�-reduction, !� , is defined as the compatible closure of the rule

(�x :⌧.a) b !� a[b/x]

I ⇣� is the reflexive-transitive closure of !� .

I =� is the reflexive-symmetric-transitive closure of !� .

I terms of the form (�x :⌧.a) b are called �-redexes

By compatible closure we mean that
if a !� a

0 , then ab !� a
0
b

if b !� b
0 , then ab !� ab

0

if a !� a
0 , then �x :⌧.a !� �x :⌧.a0
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Simply typed lambda calculus - �!

Usually there are more than one way to perform computation.

(�x :⌧.f(fx))((�x :⌧.x)z)

�
�*

�

(�x :⌧.f(fx))((�y :⌧!⌧.yz)(�x :⌧.x))

H
Hj

�

f(f((�y :⌧!⌧.yz)(�x :⌧.x)))

Normalization
The term a is in normal form if it does not contain any �-redex, i.e.,
if there is no term b such that a !� b.

The term a strongly normalizes if there is no infinite �-reduction
sequence starting with a.
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Properties of �!

Uniqueness of types

If � ` a : � and � ` a : ⌧ , then � = ⌧ .

Type inference

The type synthesis problem is decidable, i.e., one can deduce automatically
the type (if it exists) of a term in a given context.

Subject reduction

If � ` a : � and a⇣� b , then � ` b : � .

Strong normalization

If � ` e : �, then all �-reductions from e terminate.
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Properties of �!

Confluence
If a =� b , then a⇣� e and b⇣� e , for some term e .

Substitution property

If �, x : ⌧ ` a : � and � ` b : ⌧ , then � ` a[b/x] : � .

Thinning

If � ` e : � and � ✓ �0, then �0 ` e : �.

Strengthening

If �, x : ⌧ ` e : � and x 62 FV(e), then � ` e : �.
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Proposition as Types

Maria João Frade (HASLab, DI-UM) Proposition as Types VF 2021/22 39 / 62

The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural

deduction for intuitionistic logic and �-calculus.

Observe the analogy between the implicational fragment of intuitionistic
propositional logic and �!

Implicational fragment of PL �!

� 2 �

� ` � (assumption)
(x : �) 2 �

� ` x : �
(var)

�,� `  
� ` �!  

(!I)
�, x : � ` e :  

� ` (�x :�.e) : �! 
(abs)

� ` �!  � ` �
� `  (!E)

� ` a : �! � ` b : �

� ` (a b) :  
(app)
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The Curry-Howard isomorphism

The proposition-as-types interpretation establishes a precise relation
between intuitionistic logic and �-calculus:

a proposition A can be seen as a type (the type of its proofs);

and a proof of A as a term of type A.

Hence:

A is provable () A is inhabited

proof checking boils down to type checking.

This analogy between systems of formal logic and computational calculi
was first discovered by Haskell Curry and William Howard.
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Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user
types in tactics, guiding the proof development system to construct a proof-term.
At the end, this term is type checked and the type is compared with the original
goal.

In connection to proof checking there are some decision problems:

Type Checking Problem (TCP) � ` t : A ?

Type Synthesis Problem (TSP) � ` t : ?

Type Inhabitation Problem (TIP) � ` ? : A

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.

Maria João Frade (HASLab, DI-UM) Proposition as Types VF 2021/22 42 / 62

Type-theoretic approach to interactive theorem proving

provability of formula A () inhabitation of type A

proof checking () type checking
interactive theorem proving () interactive construction of a term

of a given type

So, decidability of type checking is at the core of the type-theoretic
approach to theorem proving.
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Higher-order logic and type theory

The set T of pseudo-terms is defined by

A,B,M,N ::= s | x | M N | �x :A.M | ⇧x :A.B

x 2 V (a countable set of variables) and s 2 S (a set of sorts).

Both ⇧ and � bind variables.

Both ) and 8 are generalized by a single construction ⇧.

We write A!B instead of ⇧x :A.B whenever x 62 FV(B).

The typing rules for abstraction and application became

(abs)
�, x :A ` M : B � ` (⇧x :A.B) : s

� ` (�x :A.M) : (⇧x :A.B)

(app)
� ` M : (⇧x :A.B) � ` N : A

� ` MN : B[N/x]
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Proof assistants based on type theory

The first systems of proof checking (type checking) based on the
propositions-as-types principle were the systems of the AUTOMATH project
(1967).

Modern proof assistants, aggregate to the proof checker a proof-development
system for helping the user to develop the proofs interactively.

In a proof-assistant, after formalizing the primitive notions of the theory
(under study), the user develops the proofs interactively by means of (proof)
tactics, and when a proof is finished a “proof term” (or simply a “proof
script”) is created.
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Encoding of logic in type theory

Shallow encoding (Logical Frameworks)
I The type theory is used as a logical framework, a meta system for

encoding a specific logic one wants to work with.

I Usually, the proof-assistants based on this kind of encoding do not
produce standard proof-objects, just proof-scripts.

I Examples: HOL (based on the Church’s simple type theory), Isabelle
(based on intuitionistic simple type theory).

Direct encoding
I Each logical construction have a counterpart in the type theory.

I Theorem proving consists of the (interactive) construction of a
proof-term, which can be easily checked independently.

I Examples: Coq (based on the Calculus of Inductive Constructions),
Agda (based on Martin-Lof’s type theory), Lego (based on the
Extended Calculus of Constructions), Nuprl (based on extensional
Martin-Lof’s type theory).
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The reliability of machine checked proofs

Machine assisted theorem proving:

I helps to deal with large problems;
I prevents us from overseeing details;
I does the bookkeeping of the proofs.

But, why would one believe a system that says it has verified a
proof?

The proof checker should be a very small program that can be verified by
hand, giving the highest possible reliability to the proof checker.

de Bruijn criterion
A proof assistant satisfies the de Bruijn criterion if it generates proof-

objects (of some form) that can be checked by an “easy” algorithm.
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Coq in Brief
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The Coq proof assistant

Coq is a general purpose proof management system based on a
formalism which is both a very expressive logic and a richly-typed
programming language – the Calculus of Inductive Constructions
(CIC).

I Intuitionistic logic. A proof is a process which produces witnesses for
existential statements, and e↵ective proofs for disjunction.

I The proofs-as-programs, formulas-as-types correspondence. The
language of proofs is a programming language.

I Higher-order logic and primitive inductive types. Elimination
machanisms are automatically generated from inductive definitions.

Coq has been under continuous development for more than 30 years.
Coq recieved the ACM Software System Award in 2013.

The Coq system is open source, is supported by a substantial library
and has a large and active user community.
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The Coq proof assistant

Coq allows:
I to define functions or predicates, that can be evaluated e�ciently;
I to state mathematical theorems and software specifications;
I to interactively develop formal proofs of these theorems;
I to machine-check these proofs by a small ”certification kernel”;
I to extract certified programs from the constructive proof of its formal

specification.

Coq specificities:
I Gallina is the Coq’s specification language, which allows developing

mathematical theories and to write specifications of programs.

I Vernacular is the Coq’s command language, which includes all sorts of
usefull queries and requests to the Coq system.

I Ltac is the Coq’s domain-specific language for writing proofs and
decision procedures.
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The Coq proof assistant

In CIC all objects have a type. There are

types for functions (or programs)

atomic types (especially datatypes)

types for proofs

types for the types themselves.

Types are classified by the three basic sorts

Prop (logical propositions)

Set (mathematical collections)

Type (abstract types)

which are themselves atomic abstract types.
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Coq syntax

�x :A.� y :A!B. y x fun (x:A) (y:A->B) => y x

⇧x :A.P x forall x:A, P x

Inductive types

Inductive nat :Set := O : nat
| S : nat -> nat.

This definition yields: – constructors: O and S
– eliminators: nat ind, nat rec and nat rect

General recursion and case analysis

Fixpoint double (n:nat) :nat :=
match n with

| O => O
| (S x) => S (S (double x))

end.
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Environment

In the Coq system the well typing of a term depends on an environment
which consists in a global environment and a local context.

The local context is a sequence of variable declarations, written x : A (A is
a type) and “standard” definitions, written x := t : A (that is abbreviations
for well-formed terms).

The global environment is the list of global declarations and definitions.
This includes not only assumptions and “standard” definitions, but also
definitions of inductive objects. (The global environment can be set by
loading some libraries.)

We frequently use the names constant to describe a globally defined
identifier and global variable for a globally declared identifier.

The typing judgments are as follows:

E |� ` t : A
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Declarations and definitions

The environment combines the contents of initial environment, the loaded
libraries, and all the global definitions and declarations made by the user.

Loading modules
Require Import ZArith.
This command loads the definitions and declarations of module ZArith which is
the standard library for basic relative integer arithmetic.

The Coq system has a block mechanism (similar to the one found in many
programming languages) Section id. ... End id. which allows to manipulate the
local context (by expanding and contracting it).

Declarations

Parameter max int : Z. Global variable declaration
Section Example.
Variables A B : Set. Local variable declarations
Variables Q : Prop.
Variables (b:B) (P : A->Prop).
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Declarations and definitions

Definitions

Definition min int := (1 - max int) Global definition

Let FB := B -> B. Local definition

Proof-terms

Lemma trivial : forall x:A, P x -> P x.
Proof.
intros x H.
exact H.

Qed.

Using tactics a term of type forall x:A, P x -> P x has been created.

Using the Qed command the identifier trivial is defined as this proof-term
and add to the global environment.
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Computation

Computations are performed as series of reductions. The Eval command
computes the normal form of a term with respect to some reduction rules (and
using some reduction strategy: cbv or lazy).

�-reduction for compute the value of a function for an argument:

(�x :A. a) b !� a[b/x]

�-reduction for unfolding definitions:

e ! � t if (e := t) 2 E |�

◆-reduction for primitive recursion rules, general recursion, and case analysis

⇣-reduction for local definitions: let x := a in b ! ⇣ b[a/x]

Note that the conversion rule is

E |� ` t : A E |� ` B : s

E |� ` t : B
if A =�◆�⇣ B and s 2 {Prop, Set,Type}
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Proof example

Section EX.

Variables (A:Set) (P : A->Prop).
Variable Q:Prop.

Lemma example : forall x:A, (Q -> Q -> P x) -> Q -> P x.
Proof.

intros x h g.
apply h.
assumption.
assumption.

Qed.

example = �x :A.�h :Q! Q!P x.�g :Q. h g g

Print example.

example =
fun (x : A) (h : Q -> Q -> P x) (g : Q) => h g g

: forall x : A, (Q -> Q -> P x) -> Q -> P x
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Proof example

Observe the analogy with the lambda calculus.

example = �x :A.�h :Q! Q!Px.�g :Q. h g g

A : Set, P : A!Prop, Q : Prop ` example : 8x :A, (Q ) Q ) Px) ) Q ) Px

End EX.
Print example.

example =
fun (A:Set) (P:A->Prop) (Q:Prop) (x:A) (h:Q->Q->P x) (g:Q) => h g g

: forall (A : Set) (P : A -> Prop) (Q : Prop) (x : A),
(Q -> Q -> P x) -> Q -> P x

` example : 8A :Set, 8P :A!Prop, 8Q :Prop, 8x :A, (Q ) Q ) P x) ) Q ) P x
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Tactics for first-order reasoning

Proposition (P ) Introduction Elimination (H of type P )
? elim H, contradiction
¬A intro apply H

A ^B split elim H, destruct H as [H1 H2]

A ) B intro apply H

A _B left, right elim H, destruct H as [H1|H2]

8x :A.Q intro apply H

9x :A.Q exists witness elim H, destruct H as [x H1]
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Some more tactics

Some basic tactics

intro, intros – introduction rule for ⇧ (several times)

apply – elimination rule for ⇧

assumption – match conclusion with an hypothesis

exact – gives directly the exact proof term of the goal

Some automatic tactics

trivial – tries those tactics that can solve the goal in one step.

auto – tries a combination of tactics intro, apply and assumption using
the theorems stored in a database as hints for this tactic.

tauto – useful to prove facts that are tautologies in intuitionistic PL.

intuition – useful to prove facts that are tautologies in intuitionistic PL.

firstorder – useful to prove facts that are tautologies in intuitionistic FOL.
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Coq - software, documentation, contributions, tutorials

http://coq.inria.fr/
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Exercises

Load the file lesson1.v in the Coq proof assistant. Analyse the examples
and solve the exercises proposed.

Solve the exercises presented in Coq(1).pdf.
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