SMT Solvers

Maria Joao Frade

HASLab - INESC TEC
Departamento de Informdtica, Universidade do Minho

2020/2021

Maria Jodo Frade (HASLab, DI-UM) SMT solvers VF 2020/21 1/26

Roadmap

o SMT solvers

» main features;

» SMT and SAT solvers integration: “eager” vs “lazy” approach;
» the basic “lazy offline” approach and its enhancements;

» DPLL(T) framework.

@ Practice with a SMT solver

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 2/26

The SMT problem

@ The Satisfiability Modulo Theory (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by a specific theory (i.e., it is the problem of determining, for a theory T
and given a formula ¢, whether ¢ is T-satisfiable).

@ An SMT solver is a tool for deciding satisfiability of a FOL formula with
respect to some background theory.

@ Common first-order theories SMT solvers reason about:

» Equality and uninterpreted functions
» Arithmetics: rationals, integers, reals, difference logic, ...
» Bit-vectors, arrays, ...

@ In practice, one needs to work with a combination of theories.
x4+ 2=y — f(read(write(a,z,3),y —2)) = fly —z+1)
Often decision procedures for each theory combine modularly.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 3/26

SMT solvers

@ SMT solvers have gained enormous popularity over the last several years.

@ Wide range of applications: software verification, program analysis, test case
generation, model checking, scheduling, . . .

@ Many existing off-the-shelf SMT solvers:

Z3 (Microsoft Research)

CVC4 (NYU & U. lowa, USA)
Yices 2 (SRI, USA)

Alt-Ergo (LRI, France)

MathSAT (U Trento, Italy)
Barcelogic (UP Catalunya, Spain)
Beaver (UC Berkeley, USA)
Boolector (FMV, Austria)

VY VY VY VY VY VvYY

@ SMT solving is active research topic today (see: https://smtlib.cs.uiowa.edu)

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 4/26

Solving SMT problems

@ For a lot of theories one has (efficient) decision procedures for a limited kind
of input problems: sets (or conjunctions) of literals.

@ In practice, we do not have just sets of literals.

> We have to deal with: arbitrary Boolean combinations of literals.

How to extend theory solvers to work with arbitrary quantifier-free formulas? |

@ Naive solution: convert the formula in DNF and check if any of its disjuncts
(which are conjunctions of literals) is T-satisfiable.

@ In reality, this is completely impractical: DNF conversion can yield
exponentially larger formula.

@ Current solution: exploit propositional SAT technology

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 5/26

Lifting SAT technology to SMT

How to deal efficiently with boolean complex combinations of atoms in a theory?)

@ Two main approaches:

» Eager approach

* translate into an equisatisfiable propositional formula
* feed it to any SAT solver

» Lazy approach

* abstract the input formula to a propositional one

* feed it to a (DPLL-based) SAT solver

* use a theory decision procedure to refine the formula and guide the
SAT solver

@ According to many empirical studies, lazy approach performs better than the
eager approach.

@ We will only focus on the lazy approach.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 6/26

The “eager” approach

@ Methodology:

» Translate into an equisatisfiable propositional formula.
> Feed it to any SAT solver.

@ Why “eager”? Search uses all theory information from the beginning.
@ Characteristics: Sophisticated encodings are needed for each theory.

@ Tools: UCLID, STP, Boolector, Beaver, Spear, ...

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 7/26

The “lazy” approach

@ Methodology:

» Abstract the input formula to a propositional one.

» Feed it to a (DPLL-based) SAT solver.

» Use a theory decision procedure to refine the formula and guide the
SAT solver.

@ Why “lazy”? Theory information used lazily when checking T -consistency
of propositional models.

@ Characteristics:
» SAT solver and theory solver continuously interact.

» Modular and flexible.

@ Tools: Z3, CVC4,Yices 2, MathSAT, Barcelogic, ...

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 8/26

Boolean abstraction

@ Define a bijective function prop, called boolean abstraction function, that
maps each SMT formula to a overapproximate SAT formula.

Given a formula ¢ with atoms {a1,...,a,} and a set of propositional variables
{Pi,...,P,} not occurring in 1,
@ The abstraction mapping, prop, from formulas over {a1,...,a,} to
propositional formulas over {P,..., P,}, is defined as the homomorphism

induced by prop(a;) = P;.

@ The inverse prop~*

associated atom a;.

simply replaces propositional variables P; with their

b gla) = cAf(a(@) £ FQ) Vala) =d) Ac A d
—_— — — —— =~
Py P P3 =Py
prop(¥) : P A (=P V P3) APy
Maria Jo3o Frade (HASLab, D|-UM) SMT Solvers VF 2020/21 9/26

Boolean abstraction

i gla) =cA(f(g(a)) # flc)vgla) =d) ANc#d
—_——— —— — ——
Py P Ps —Py
pI’Op(d)) 5 Pl A (_\PQ \Y Pg) VAN _|P4

@ The boolean abstraction constructed this way overapproximates satisfiability
of the formula.

» Even if ¢ is not T-satisfiable, prop(¢)) can be satisfiable.

@ However, if boolean abstraction prop(v) is unsatisfiable, then v is also
unsatisfiable.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 10/26

Boolean abstraction

For an assignment A of prop(), let the set ®(A) of first-order literals be defined
as follows

®(A) = {prop™"(P,) | A(P;) = 1} U {-prop™ '(P;) | A(P;) = 0}

b gla) =cA(flga)) # f(e)Vgla) =d) ne#d
—_——— —/— — N——~
P Py Ps Py
prop(’t/)) 5 P1 A (ﬁpg V P3) A ﬁP4

@ Consider the SAT assignment for prop(%)),
A:{Pl — 1,P2F—>0,P4|—>0}
O(A) ={g(a) = ¢, f(g(a)) # f(c),c # d} is not T-satisfiable.

@ This is because 7-atoms that may be related to each other are abstracted
using different boolean variables.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 11/26

The “lazy” approach (simplest version)

@ Given a CNF F, SAT-Solver(F') returns a tuple (1, A) where r is SAT if F
is satisfiable and UNSAT otherwise, and A is an assignment that satisfies F'
if 7 is SAT.

@ Given a set of literals S, T-Solver(S) returns a tuple (7, J) where r is SAT
if S is T-satisfiable and UNSAT otherwise, and J is a justification if r is
UNSAT.

@ Given an T-unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S. A justification J is non-redundant
(or minimal) if there is no strict subset J’ of J that is also unsatisfiable.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 12/26

The “lazy” approach (simplest version)

Basic SAT and theory solver integration

SMT-Solver () {
F < prop(1)
loop {
(r, A) < SAT-Solver(F)
if 7 = UNSAT then return UNSAT
(r,J) + T-Solver(®(A))
if - = SAT then return SAT
C ¢« Vpe; ~prop(B)
F+—FANC
}
}

y

If a valuation A satisfying F is found, but ®(.A) is T-unsatisfiable, we add to F' a
clause C' which has the effect of excluding A when the SAT solver is invoked
again in the next iteration. This clause is called a “theory lemma” or a “theory
conflict clause”.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 13/26

SMT-Solver(g(a) = c A (f(g(a)) # f(c) Vgla) =d) Ac#d)
F = prop(¢p) = Py A (=P, V P3) A =Py

SAT-Solver(F) = SAT, A= {P, — 1,P,+— 0, Py — 0}

B(4) = {9(0) = ¢, (9(0)) # S(0).c £ d}

T-Solver(®(A)) = UNSAT, J = {g(a) = ¢, f(g(a)) # f(c),c £ d}
e C=-PVPVPF

vy

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 14 /26

SMT-Solver(g(a) = c A (f(g(a)) # flc) Vgla) =d) Nc#d)
@ F =prop(y)) = Py A (—Py V P3) APy

SAT-Solver(F) = SAT, A= {P, —1,P, 50, Py s 0}

®(A) = {g(a) = ¢, f(g(a)) # f(c),c # d}

T-Solver(®(A)) = UNSAT, J = {g(a) = ¢, f(g9(a)) # f(c),c # d}

e C=-PVPVPE

) F:P1/\("PQ\/Pg)/_‘P4/\(—|P1\/Pg\/P4)

SAT-Solver(F) = SAT, A={P,— 1,P,—1,P;—1,P;— 0}

9(A) = {g(a) = ¢, f(g(a)) = f(c),9(a) = d,c # d}

T-Solver(®(A)) = UNSAT, J ={g(a) = ¢, f(g9(a)) = f(c),g(a) = d,c # d}
C=-PV-P,V-P3V Py

4

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 14 /26

SMT-Solver(g(a) = ¢ A (f(g(a)) # f(c) Vgla) =d) Ac#d)
F = prop(¢)) = Py A (—PyV P3) APy
@ SAT-Solver(F) = SAT, A={P, —1,P, 0, P, — 0}
o ©(A) = {g(a) =c, f(g(a)) # f(c),c #d}

T-Solver(®(A)) = UNSAT, J = {g(a) = ¢, f(g9(a)) # f(c),c # d}
e C=-PVPVP

e I'=P /\(_‘P2\/P3)/_‘P4/\(_‘P1 \/Pg\/P4)

SAT-Solver(F) = SAT, A={P,— 1,P,—1,P3— 1,P;— 0}
° &(A) = {g(a) = ¢, f(g(a)) = f(c),9(a) = d,c # d}

T-Solver(®(A)) = UNSAT, J ={g(a) = ¢, f(g9(a)) = f(c),g(a) = d,c # d}
(*] CZﬁP1V_|P2\/_|P3\/P4

e '=P A (_‘P2 \/Rg) A =Py N\ ("Pl V Py \/P4) N (—‘Pl V =Py \/—|P3\/P4)
SAT-Solver(F) = UNSAT

.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 14 /26

SMT-Solver(z =3 A (f(zr+vy)=flyy Vy=2)Az=y)
@ F =prop(¢)) =P1 A (PyV P3) A Py
@ SAT-Solver(F) = SAT, A={Pi— 1,P,— 0,P;+— 1,P;+— 1}

° o(A)={z=3,fz+y) # fy),y=2,v =y}
T-Solver(®(A)) = UNSAT, J ={z =3,y =2,z =y}

@ C=-P, VPV -P

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 15/26

SMT-Solver(z =3 A (f(zr+vy)=flyy Vy=2)Az=y)
@ F =prop(¢)) =P A(PyV P3) A Py
@ SAT-Solver(F) = SAT, A={P—1,P,— 0,P;+— 1,P;— 1}

°© O(A) ={z=3,flz+y) # f(¥),y =22 =y}
T-Solver(®(A)) = UNSAT, J ={z =3,y =2,z =y}

@ O =-P VPV -P

(*] F:P1/\(P2\/P3)AP4/\(ﬁP1 \/ﬁPg\/ﬁP;l)
SAT—SO'VEF(F) = SAT, A= {Pl = 1,P2 — 1,P3 P—)O,P4P—> 1}

@ d(A)={z=3,f(x+y)=f(y),y # 2,2 =y}
T-Solver(®(A)) = SAT

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 15/26

The “lazy” approach (enhancements)

Several enhancements are possible to increase efficiency of this basic algorithm:

o If ®(A) is T-unsatisfiable, identify a small justification (or unsat core) of it
and add its negation as a clause.

@ Check T-satisfiability of partial assignment A as it grows.

@ If ®(A) is T-unsatisfiable, backtrack to some point where the assignment
was still T-satisfiable.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 16 /26

Unsat cores

@ Given a T-unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S.

@ So, the easiest justification S is the set S itself.
@ However, conflict clauses obtained this way are too weak.
» Suppose ®(A) = {z =0,z =3,l1,la,...,l50}. This set is unsat.

» Theory conflict clause C = \/BE(I)(A) —prop(B) prevents that exact
same assignment. But it doesn't prevent many other bad assignments
involving x = 0 and x = 3.

» In fact, there are 2°0 unsat assignments containing = 0 and = = 3,
but C just prevents one of them!

@ Efficiency can be improved if we have a more precise justification. ldeally, a
minimal unsat core. This way we block many assignments using just one
theory conflict clause.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 17 /26

Integration with DPLL

@ Lazy SMT solvers are based on the integration of a SAT solver and one (or
more) theory solver(s).

@ The basic architectural schema described by the SMT-solver algorithm is
also called “lazy offline” approach, because the SAT solver is re-invoked
from scratch each time an assignment is found 7 -unsatisfiable.

@ Some more enhancements are possible if one does not use the SAT solver as
a “blackbox”.

» Check T -satisfiability of partial assignment A as it grows.
» If &(A) is T-unsatisfiable, backtrack to some point where the
assignment was still 7 -satisfiable.

@ To this end we need to integrate the theory solver right into the DPLL
algorithm of the SAT solver. This architectural schema is called “lazy
online” approach.

@ Combination of DPLL-based SAT solver and decision procedure for
conjunctive T formula is called DPLL(T') framework.
SMT Solvers

Maria Jodo Frade (HASLab, DI-UM) VF 2020/21 18/26

DPLL framework for SAT solvers

'

DECIDE - SAT
full
assignment
partial
assignment
A
BACKTRACK
dl >0
no)
conflict conflict ANALYZE-
BCP CONFLICT UNSAT
Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21

19/26

DPLL(T) framework for SMT solvers

'

LCIDE SAT

assignment
partial
assignment
A
no
conflict conflict ANALYZE- .
D(A) conflict clause
Theory Solver '

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 20/26

DPLL(T) framework

@ Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (Boolean Constraints Propagation, i.e. in Deduce step).

@ If no conflict detected, immediately invoke theory solver.

@ Use theory solver to decide if ®(.A) is T-unsatisfiable.

@ If ®(A) is T-unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect

conflict.

@ As before, Analyze-Conflict decides what level to backtrack to.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers

VF 2020/21

21/26

DPLL(7T) framework

@ We can go further in the integration of the theory solver into the DPLL
algorithm:

» Theory solver can communicate which literals are implied by current
partial assignment.

> These kinds of clauses implied by theory are called theory propagation
lemmas.

» Adding theory propagation lemmas prevents bad assignments to
boolean abstraction.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 22/26

DPLL(7") framework

; SAT
DECIDE ol S

assignment

partial
assignment

A

ACKTRACK

no

conflict [BCP

conflict ANALYZE-

UNSAT

no conflict, theory propagation lemma(s)

CONFLICT
o(A) conflict clause
Theory Solver '
Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 23/26

Main benefits of lazy approach

The theory solver works only with sets of literals.

Every tool does what it is good at:

» SAT solver takes care of Boolean information.
» Theory solver takes care of theory information.

Modular approach:

» SAT and theory solvers communicate via a simple API.
» SMT for a new theory only requires new theory solver.

@ Almost all competitive SMT solvers integrate theory solvers use DPLL(T)
framework.

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 24 /26

Solving SMT problems

@ The theory solver works only with sets of literals.
@ In practice, we need to deal not only with

» arbitrary Boolean combinations of literals,
» but also with formulas with quantifiers

@ Some more sophisticated SMT solvers are able to handle formulas involving
quantifiers. But usually one loses decidability...

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 25/26

Choosing a SMT solver

@ Theres are many available SMT solvers:

> some are targeted to specific theories;
» many support SMT-LIB format;
» many provide non-standard features.

@ Features to have into account:

> the efficiency of the solver for the targeted theories;
» the solver’s license;

» the ways to interface with the solver;

> the “support” (is it being actively developed?).

@ See https://smtlib.cs.uiowa.edu

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2020/21 26/26

