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I applications.
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(Classical) First-Order Logic
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Introduction

First-order logic (FOL) is a richer language than propositional logic. Its lexicon

contains not only the symbols ^, _, ¬, and ! (and parentheses) from

propositional logic, but also the symbols 9 and 8 for “there exists” and “for all”,

along with various symbols to represent variables, constants, functions, and

relations.

There are two sorts of things involved in a first-order logic formula:

terms, which denote the objects that we are talking about;

formulas, which denote truth values.

Examples:

“Not all birds can fly.”

“Every mother is older than her children.”

“John and Peter have the same maternal grandmother.”
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Syntax

The alphabet of a first-order language is organised into the following
categories.

Variables: x, y, z, . . . 2 X (arbitrary elements of an underlying domain)

Constants: a, b, c, . . . 2 C (specific elements of an underlying domain)

Functions: f, g, h, . . . 2 F (every function f has a fixed arity, ar(f))

Predicates: P,Q,R, . . . 2 P (every predicate P has a fixed arity, ar(P ))

Logical connectives: >, ?, ^, _, ¬, !, 8 (for all), 9 (there exists)

Auxiliary symbols: “.”, “(“ and “)”.

We assume that all these sets are disjoint. C, F and P are the non-logical
symbols of the language. These three sets constitute the vocabulary

V = C [ F [ P.
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Syntax

Terms
The set of terms of a first-order language over a vocabulary V is given by
the following abstract syntax

TermV 3 t ::= x | c | f(t1, . . . , tar(f))

Formulas
The set FormV , of formulas of FOL, is given by the abstract syntax

FormV 3 �, ::= P (t1, . . . , tar(P )) | ? | > | (¬�) | (� ^  ) | (� _  )
| (�!  ) | (8x.�) | (9x.�)

An atomic formula has the form ?, >, or P (t1, . . . , tar(P )). A ground term is a
term without variables. Ground formulas are formulas without variables, i.e.,
quantifier-free formulas � such that all terms occurring in � are ground terms.
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Syntax

Convention
We adopt some syntactical conventions to lighten the presentation of
formulas:

Outermost parenthesis are usually dropped.

In absence of parentheses, we adopt the following convention about
precedence. Ranging from the highest precedence to the lowest, we
have respectively: ¬, ^, _ and !. Finally we have that ! binds
more tightly than 8 and 9.

All binary connectives are right-associative.

Nested quantifications such as 8x.8y.� are abbreviated to 8x, y.�.

8x.� denotes the nested quantification 8x1, . . . , xn.�.
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Modeling with FOL

“Not all birds can fly.”

We can code this sentence assuming the two unary predicates B and F
expressing

B(x) – x is a bird
F (x) – x can fly

The declarative sentence “Not all birds can fly” can now be coded as

¬(8x.B(x) ! F (x))

or, alternatively, as
9x.B(x) ^ ¬F (x)
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Modeling with FOL

“Every mother is older than her children.”
“John and Peter have the same maternal grandmother.”
Using constants symbols j and p for John and Peter, and predicates =, mother
and older expressing that

mother(x, y) – x is mother of y
older(x, y) – x is older than y

these sentences could be expressed by

8x.8y.mother(x, y) ! older(x, y)

8x, y, u, v.mother(x, y) ^mother(y, j ) ^mother(u, v) ^mother(v, p) ! x = u

A di↵erent and more elegant encoding is to represent y’mother in a more direct
way, by using a function instead of a relation. We write m(y) to mean y’mother.
This way the two sentences above have simpler encondings.

8x. older(m(x), x) and m(m(j)) = m(m(p))
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Modeling with FOL

Assume further the following predicates and constant symbols
flower(x) – x is a flower likes(x, y) – x likes y
sport(x) – x is a sport brother(x, y) – x is brother of y
a – Anne

“Anne likes John’s brother.” 9x. brother(x, j) ^ likes(a, x)

“John likes all sports.” 8x. sports(x) ! likes(j , x)

“John’s mother likes flowers.” 8x.flower(x) ! likes(m(j ), x)

“John’s mother does not like some sports.” 9y. sport(y) ^ ¬likes(m(j ), y)

“Peter only likes sports.” 8x. likes(p, x) ! sports(x)

“Anne has two children.”

9x1, x2.mother(a, x1) ^mother(a, x2) ^ x1 6= x2 ^

8z.mother(a, z) ! z = x1 _ z = x2
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Free and bound variables

The free variables of a formula � are those variables occurring in � that are
not quantified. FV(�) denotes the set of free variables occurring in �.

The bound variables of a formula � are those variables occurring in � that
do have quantifiers. BV(�) denote the set of bound variables occurring in �.

Note that variables can have both free and bound occurrences within the same
formula. Let � be 9x.R(x, y) ^ 8y. P (y, x), then

FV(�) = {y} and BV(�) = {x, y}.

A formula � is closed (or a sentence) if it does not contain any free variables.

If FV(�) = {x1, . . . , xn}, then

I its universal closure is 8x1. . . . 8xn.�
I its existential closure is 9x1. . . . 9xn.�
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Substitution

Substitution

We define u[t/x] to be the term obtained by replacing each
occurrence of variable x in u with t.

We define �[t/x] to be the formula obtained by replacing each free
occurrence of variable x in � with t.

Care must be taken, because substitutions can give rise to undesired
e↵ects.

Given a term t, a variable x and a formula �, we say that t is free for x in

� if no free x in � occurs in the scope of 8z or 9z for any variable z
occurring in t.

From now on we will assume that all substitutions satisfy this condition.
That is when performing the �[t/x] we are always assuming that t is free
for x in �.
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Substitution

Convention

We write �(x1, . . . , xn) to denote a formula having free variables
x1, . . . , xn. We write �(t1, . . . , tn) to denote the formula obtained by
replacing each free occurrence of xi in � with the term ti. When using
this notation, it should always be assumed that each ti is free for xi in �.
Also note that when writhing �(x1, ..., xn) we do not mean that x1, ..., xn
are the only free variables of �.

A sentence of first-order logic is a formula having no free variables.

The presence of free variables distinguishes formulas from sentences.

This distinction did not exist in propositional logic.
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Semantics

V-structure
Let V be a vocabulary. A V-structure M is a pair M = (D, I) where D is a
nonempty set called the interpretation domain, and I is an interpretation function

that assigns constants, functions and predicates over D to the symbols of V as
follows:

for each constant symbol c 2 C, the interpretation of c is a constant
I(c) 2 D;

for each f 2 F , the interpretation of f is a function I(f) : Dar(f)
! D;

for each P 2 P, the interpretation of P is a function I(P ) : Dar(P )
! {0, 1}.

In particular, 0-ary predicate symbols are interpreted as truth values.

V-structures are also called models for V.
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Semantics

Assignment

An assignment for a domain D is a function ↵ : X !D.

We denote by ↵[x 7! a] the assignment which maps x to a and any other
variable y to ↵(y).

Given a V-structure M = (D, I) and given an assignment ↵ : X !D, we
define an interpretation function for terms, ↵M : TermV !D, as follows:

↵M(x) = ↵(x)
↵M(c) = I(c)
↵M(f(t1, . . . , tn)) = I(f)(↵M(t1), . . . ,↵M(tn))
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Semantics

Satisfaction relation

Given a V-structure M = (D, I) and given an assignment ↵ : X !D, we
define the satisfaction relation M,↵ |= � for each � 2 FormV as follows:

M,↵ |= >

M,↵ 6|= ?

M,↵ |= P (t1, . . . , tn) i↵ I(P )(↵M(t1), . . . ,↵M(tn)) = 1
M,↵ |= ¬� i↵ M,↵ 6|= �
M,↵ |= � ^  i↵ M,↵ |= � and M,↵ |=  
M,↵ |= � _  i↵ M,↵ |= � or M,↵ |=  
M,↵ |= �!  i↵ M,↵ 6|= � or M,↵ |=  
M,↵ |= 8x.� i↵ M,↵[x 7! a] |= � for all a 2 D
M,↵ |= 9x.� i↵ M,↵[x 7! a] |= � for some a 2 D
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Validity and satisfiability

When M,↵ |= �, we say that M satisfies � with ↵.

We write M |= � i↵ M,↵ |= � holds for every assignment ↵.

A formula � is

valid i↵ M,↵ |= � holds for all structure M and assignments ↵.
A valid formula is called a tautology. We write |= �.

satisfiable i↵ there is some structure M and some assigment ↵
such that M,↵ |= � holds.

unsatisfiable i↵ it is not satisfiable.
An unsatisfiable formula is called a contradiction.

refutable i↵ it is not valid.
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Consequence and equivalence

Given a set of formulas �, a model M and an assignment ↵, M is said to satisfy

� with ↵, denoted by M,↵ |= �, if M,↵ |= � for every � 2 �.

� entails � (or that � is a logical consequence of �), denoted by � |= �, i↵ for all
structures M and assignments ↵, whenever M,↵ |= � holds, then M,↵ |= �
holds as well.

� is logically equivalent to  , denoted by � ⌘  , i↵ {�} |=  and { } |= �.

Deduction theorem
�,� |=  i↵ � |= �!  
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Consistency

The set � is consistent or satisfiable i↵ there is a model M and an
assigment ↵ such that M,↵ |= � holds for all � 2 �.

We say that � is inconsistent i↵ it is not consistent and denote this by
� |= ?.

Proposition

{�,¬�} |= ?

If � |= ? and � ✓ �0, then �0
|= ?.

� |= � i↵ �,¬� |= ?
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Substitution

Formula  is a subformula of formula � if it occurs syntactically
within �.

Formula  is a strict subformula of � if  is a subformula of � and
 6= �

Substitution theorem
Suppose � ⌘  . Let ✓ be a formula that contains � as a subformula. Let
✓0 be the formula obtained by safe replacing (i.e., avoiding the capture of
free variables of �) some occurrence of � in ✓ with  . Then ✓ ⌘ ✓0.
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Adquate sets of connectives for FOL

Renaming of bound variables

If y is free for x in � and y 62 FV(�), then the following equivalences hold.

8x.� ⌘ 8y.�[y/x]

9x.� ⌘ 9y.�[y/x]

Lemma
The following equivalences hold in first-order logic.

8x.� ^  ⌘ (8x.�) ^ (8x. ) 9x.� _  ⌘ (9x.�) _ (9x. )

8x.� ⌘ (8x.�) ^ �[t/x] 9x.� ⌘ (9x.�) _ �[t/x]

¬8x.� ⌘ 9x.¬� ¬9x.� ⌘ 8x.¬�

As in propositional logic, there is some redundancy among the connectives
and quantifiers since 8x.� ⌘ ¬9x.¬� and 9x.� ⌘ ¬8x.¬�.
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Decidability

Given formulas � and  as input, we may ask:

Decision problems

Validity problem: “Is � valid ?”
Satisfiability problem: “Is � satisfiable ?”
Consequence problem: “Is  a consequence of � ?”
Equivalence problem: “Are � and  equivalent ?”

These are, in some sense, variations of the same problem.

� is valid i↵ ¬� is unsatisfiable
� |=  i↵ ¬(�!  ) is unsatisfiable
� ⌘  i↵ � |=  and  |= �
� is satisfiable i↵ ¬� is not valid
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Decidability

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.

A decision problem is decidable if it has a solution.

A decision problem is undecidable if it is not decidable.

In PL we could, in theory, compute a truth table to determine whether or not a

formula is satisfiable. In FOL, we would have to check every model to do this.

Theorem (Church & Turing)

The decision problem of validity in first-order logic is undecidable: no
program exists which, given any �, decides whether |= �.

The decision problem of satisfiability in first-order logic is undecidable:
no program exists which, given any �, decides whether � is satisfiable.

Maria João Frade (HASLab, DI-UM) FOL & SMT VF 2020/21 23 / 73

Semi-decidability

However, there is a procedure that halts and says “yes” if � is valid.

A decision problem is semi-decidable if exists a procedure that, given an
input,

halts and answers “yes” i↵ “yes” is the correct answer,

halts and answers “no” if “no” is the correct answer, or

does not halt if “no” is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the
correct answer is “yes”.

The decision problem of validity in first-order logic is semi-decidable.
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Normal forms

A first-order formula is in negation normal form (NNF) if the implication
connective is not used in it, and negation is only applied to atomic
formulas.

If x does not occur free in  , then the following equivalences hold.

(8x.�) ^  ⌘ 8x.� ^   ^ (8x.�) ⌘ 8x. ^ �

(8x.�) _  ⌘ 8x.� _   _ (8x.�) ⌘ 8x. _ �

(9x.�) ^  ⌘ 9x.� ^   ^ (9x.�) ⌘ 9x. ^ �

(9x.�) _  ⌘ 9x.� _   _ (9x.�) ⌘ 9x. _ �

The applicability of these equivalences can always be assured by
appropriate renaming of bound variables.
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Normal forms

A formula is in prenex form if it is of the form Q1x1.Q2x2. . . . Qnxn. 
where each Qi is a quantifier (either 8 or 9) and  is a quantifier-free
formula.

Prenex form of 8x.(8y.P (x, y) _Q(x)) ! 9z.P (x, z)

First we compute the NNF and then we go for the prenex form.

8x.(8y.P (x, y) _Q(x)) ! 9z.P (x, z) ⌘

8x.¬(8y.P (x, y) _Q(x)) _ 9z.P (x, z) ⌘

(NNF) 8x.9y.(¬P (x, y) ^ ¬Q(x)) _ 9z.P (x, z) ⌘

(prenex) 8x.9y.9z.(¬P (x, y) ^ ¬Q(x)) _ P (x, z)
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Herbrand/Skolem normal forms

Let � be a first-order formula in prenex normal form.

The Herbrandization of � (written �H) is an existential formula obtained
from � by repeatedly and exhaustively applying the following transformation:

9x1, . . . , xn.8y.  9x1, . . . , xn. [f(x1, . . . , xn)/y]

with f a fresh function symbol with arity n (i.e. f does not occur in  ).

The Skolemization of � (written �S) is a universal formula obtained from �
by repeatedly applying the transformation:

8x1, . . . , xn9y.  8x1, . . . , xn. [f(x1, . . . , xn)/y]

with f a fresh function symbol with arity n.

Herbrand normal form (resp. Skolem normal form) formulas are those
obtained by the process of Herbrandization (resp. Skolemization).
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Herbrandization/Skolemization

A formula � and its Herbrandization/Skolemization are not logically equivalent.

Proposition
Let � be a first-order formula in prenex normal form.

� is valid i↵ its Herbrandization �H is valid.

� is satisfiable i↵ its Skolemization �S is satisfiable.

It is convenient to write Herbrand and Skolem formulas using vector
notation 9x. and 8x. (with  quantifier free), respectively.

The quantifier-free sub-formula can be furthered normalised:

I Universal CNF: 8x.
V

i

W
j
lij

I Existencial DNF: 9x.
W

i

V
j
lij

where literals are either atomic predicates or negation of atomic predicates.

Herbrandization/Skolemization change the underlying vocabulary. These
additional symbols are called Herbrand/Skolem functions.
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FOL with equality

There are di↵erent conventions for dealing with equality in first-order logic.

We have follow the approach of considering equality predicate (=) as a
non-logical symbol, treated in the same way as any other predicate.
We are working with what are usually known as “first-order languages
without equality”.

An alternative approach, usually called “first-order logic with equality”,
considers equality as a logical symbol with a fixed interpretation.

In this approach the equality symbol (=) is interpreted as the equality
relation in the domain of interpretation. So we have, for a structure
M = (D, I) and an assignment ↵ : X !D, that

M,↵ |= t1 = t2 i↵ ↵M(t1) and ↵M(t2) are the same element of D
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FOL with equality

To understand the significant di↵erence between having equality with the status
of any other predicate, or with a fixed interpretation as in first-order logic with
equality, consider the formulas

9x1, x2.8y. y = x1 _ y = x2

With a fixed interpretation of equality, the validity of this formula implies
that the cardinality of the interpretation domain is at most two – the
quantifiers can actually be used to fix the cardinality of the domain, which is
not otherwise possible in first-order logic.

9x1, x2.¬(x1 = x2)
The validity of this formula implies that there exist at least two distinct
elements in the domain, thus its cardinality must be at least two.
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Many-sorted FOL

A natural variant of first-order logic that can be considered is the one that
results from allowing di↵erent domains of elements to coexist in the
framework. This allows distinct “sorts” or types of objects to be
distinguished at the syntactical level, constraining how operations and
predicates interact with these di↵erent sorts.

Having full support for di↵erent sorts of objects in the language allows for
cleaner and more natural encodings of whatever we are interested in
modeling and reasoning about.

By adding to the formalism of FOL the notion of sort, we can obtain a
flexible and convenient logic called many-sorted first-order logic, which has
the same properties as FOL.
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Many-sorted FOL

A many-sorted vocabulary (signature) is composed of a set of sorts, a set of
function symbols, and a set of predicate symbols.

I Each function symbol f has associated with a type of the form
S1 ⇥ . . .⇥ Sar(f)!S where S1, . . . , Sar(f), S are sorts.

I Each predicate symbol P has associated with it a type of the form
S1 ⇥ . . .⇥ Sar(P ).

I Each variable is associated with a sort.

The formation of terms and formulas is done only accordingly to the typing
policy, i.e., respecting the “sorts”.

The domain of discourse of any structure of a many-sorted vocabulary is
fragmented into di↵erent subsets, one for every sort.

The notions of assignment and structure for a many-sorted vocabulary, and
the interpretation of terms and formulas are defined in the expected way.
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First-Order Theories
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Introduction

When judging the validity of first-order formulas we are typically interested
in a particular domain of discourse, which in addition to a specific underlying
vocabulary includes also properties that one expects to hold.

For instance, in formal methods involving the integers, one is not interested
in showing that the formula

8x, y. x < y ! x < y + y

is true for all possible interpretations of the symbols < and +, but only for
those interpretations in which < is the usual ordering over the integers and
+ is the addition function.

We are not interested in validity in general but in validity with respect to
some background theory – a logical theory that fixes the interpretations of
certain predicates and function symbols.

Maria João Frade (HASLab, DI-UM) FOL & SMT VF 2020/21 34 / 73

Introduction

Stated di↵erently, we are often interested in moving away from pure logical
validity (i.e. validity in all models) towards a more refined notion of validity
restricted to a specific class of models.

A natural way for specifying such a class of models is by providing a set of

axioms (sentences that are expected to hold in them). Alternatively, one can
pinpoint the models of interest.

First-order theories provide a basis for the kind of reasoning just described.
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Theories - basic definitions

Let V be a vocabulary of a first-order language.

A first-order theory T is a set of V-sentences that is closed under derivability
(i.e., T |= � implies � 2 T ).

A T -structure is a V-structure that validates every formula of T .

A formula � is T -valid (resp. T -satisfiable) if every (resp. some)
T -structure validates �.

Two formulae � and  are T -equivalent if T |= �$  (i.e, for every
T -structure M, M |= � i↵ M |=  ).
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Theories - basic definitions

T is said to be a consistent theory if at least one T -structure exists.

T is said to be a complete theory if, for every V-sentence �, either T |= � or
T |= ¬�.

T is said to be a decidable theory if there exists a decision procedure for
checking T -validity.
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Theories - basic definitions

Let K be a class of V-structures. The theory of K, denoted by Th(K), is
the set of sentences valid in all members of K, i.e.,
Th(K) = {� | M |= �, for all M 2 K}.

Given a set of V-sentences �, the class of models for �, denoted by Mod(�),
is defined as Mod(�) = {M | for all � 2 �,M |= �}.

A subset A ✓ T is called an axiom set for the theory T , when T is the
deductive closure of A, i.e. � 2 T i↵ A |= �. A theory T is finitely (resp.
recursively) axiomatisable if it possesses a finite (resp. recursive) set of
axioms.

A fragment of a theory is a syntactically-restricted subset of formulae of the
theory.
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Theories

For a given V-structure M, the theory Th(M) (of a single-element class of
V-structures) is complete. These semantically defined theories are useful
when one is interested in reasoning in some specific mathematical domain
such as the natural numbers, rational numbers, etc.

However, we remark that such theory may lack an axiomatisation, which
seriously compromises its use in purely deductive reasoning.

If a theory is complete and has a recursive set of axioms, it can be shown to
be decidable.
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Theories

The decidability criterion for T -validity is crucial for mechanised reasoning in
the theory T .

It may be necessary (or convenient) to restrict the class of formulas under
consideration to a suitable fragment;

The T -validity problem in a fragment refers to the decision about whether
or not � 2 T when � belongs to the fragment under consideration.

A fragment of interest is the quantifier-free (QF) fragment.
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Equality and uninterpreted functions TE

The vocabulary of the theory of equality TE consists of

I equality (=), which is the only interpreted symbol (whose meaning is
defined via the axioms of TE);

I constant, function and predicate symbols, which are uninterpreted
(except as they relate to =).

Axioms
I reflexivity: 8x. x = x
I symmetry: 8x, y. x = y ! y = x
I transitivity: 8x, y, z. x = y ^ y = z ! x = z
I congruence for functions: for every function f 2 T with ar(f) = n,

8x, y. (x1 = y1 ^ . . . ^ xn = yn) ! f(x1, . . . , xn) = f(y1, . . . , yn)

I congruence for predicates: for every predicate P 2 T with ar(P ) = n,

8x, y. (x1 = y1 ^ . . . ^ xn = yn) ! (P (x1, . . . , xn) $ P (y1, . . . , yn))

TE-validity is undecidable, but e�ciently decidable for the QF fragment.
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Natural numbers and integers

The semantic theories of natural numbers and integers are neither axiomatizable
nor decidable.

Kurt Gödel first incompleteness theorem (1931)

Any e↵ectively generated (i.e. recursively enumerable) theory capable of
expressing elementary arithmetic cannot be both consistent and complete. In
particular, for any consistent, e↵ectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement that is true, but
not provable in the theory.

A semantic theory Th(M), where M interprets each symbol with its
standard mathematical meaning in the interpretation domain, is always a
complete theory.

Therefore, the semantic theories of natural numbers and integers cannot be
axiomatisable, not even by an infinite recursive set of axioms.
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Peano arithmetic TPA

The theory of Peano arithmetic TPA (1889) is a first-order approximation of
the theory of natural numbers.

Vocabulary: VPA = {0, 1,+,⇥,=}

Axioms:

I axioms of TE
I 8x. ¬(x+ 1 = 0) (zero)

I 8x, y. x+ 1 = y + 1 ! x = y (successor)

I 8x. x+ 0 = x (plus zero)

I 8x, y. x+ (y + 1) = (x+ y) + 1 (plus successor)

I 8x. x⇥ 0 = 0 (time zero)

I 8x, y. x⇥ (y + 1) = (x⇥ y) + x (times successor)

I for every formula � with FV(�) = {x} (axiom schema of induction)

�[0/x] ^ (8x. �! �[x+ 1/x]) ! 8x. �

TPA is incomplete and undecidable, even for the quantifier-free fragment.
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Peano arithmetic TPA

The incompleteness result is indeed striking because, at the end of the 19th
century, G. Peano had given a set of axioms that were shown to characterise
natural numbers up to isomorphism. One of these axioms – the axiom of

induction – involves quantification over arbitrary properties of natural
numbers: “for every unary predicate P , if P (0) and 8n. P (n) ! P (n+ 1)
then 8n. P (n)”, which is not a first-order axiom.

It is however important to notice that the approximation done by a
first-order axiom scheme that replaces the arbitrary property P by a
first-order formula � with a free variable x:

�[0/x] ^ (8x. �! �[x+ 1/x]) ! 8x. �

restrict reasoning to properties that are definable by first-order formulas,
which can only capture a small fragment of all possible properties of natural
number. (Recall that the set of first-order formulas is countable while the set
of arbitrary properties of natural numbers is P(N), which is uncountable.)
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Presburger arithmetic TN

The theory of Presburger arithmetic TN is the additive fragment of the
theory of Peano.

Vocabulary: VN = {0, 1,+,=}

Axioms:

I axioms of TE
I 8x. ¬(x+ 1 = 0) (zero)

I 8x, y. x+ 1 = y + 1 ! x = y (successor)

I 8x. x+ 0 = x (plus zero)

I 8x, y. x+ (y + 1) = (x+ y) + 1 (plus successor)

I for every formula � with FV(�) = {x} (axiom schema of induction)

�[0/x] ^ (8x. �! �[x+ 1/x]) ! 8x. �

TN is both complete and decidable (Presburger, 1929), but it has double
exponential complexity.
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Linear integer arithmetic TZ

Vocabulary: VZ = {. . . ,�2,�1, 0, 1, 2, . . . ,�3·,�2·, 2·, 3·, . . . ,+,�, >,=}

Each symbol is interpreted with its standard mathematical meaning in Z.
I Note: . . . ,�3·,�2·, 2·, 3·, . . . are unary functions. For example, the

intended meaning of 3 · x is x+ x+ x, and of �2 · x is �x� x.

TZ and TN have the same expressiveness

I For every formula of TZ there is an equisatisfiable formula of TN.

I For every formula of TN there is an equisatisfiable formula of TZ.

Let � be a formula of TZ and  a formula of TN. � and  are equisatisfiable if

� is TZ-satisfiable i↵  is TN-satisfiable

TZ is both complete and decidable via the rewriting of TZ-formulae into
TN-formulae.
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TZ versus TN

Consider the TZ-formula 8x, y.9z. y + 3x� 4 > �2z

For each variable v ranging over the integers, introduce two variables, vp
and vn ranging over the non-negative integers.

8xp, xn, yp, yn.9zp, zn. (yp � yn) + 3(xp � xn)� 4 > �2(zp � zn)

Eliminate negation.

8xp, xn, yp, yn.9zp, zn. yp + 3xp + 2zp > 2zn + yn + 3xn + 4

Eliminate > and numbers.

8xp, xn, yp, yn.9zp, zn.9u. ¬(u = 0) ^ yp + xp + xp + xp + zn + zp =
zn + zn + yn + xn + xn + xn + 1 + 1 + 1 + 1 + u

This is a TN-formula equisatisfiable to the original one.
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TN versus TZ

The TN-formula
8x.9y. x = y + 1

is equisatisfiable to the TZ-formula

8x. x > �1 ! 9y. y > �1 ^ x = y + 1

To decide TZ-validity for a TZ-formula �

transform ¬� to an equisatisfiable TN-formula ¬ 

decide TN-validity of  
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Linear rational arithmetic TQ

The full theory of rational numbers (with addition and multiplication) is
undecidable, since the property of being a natural number can be encoded in
it.

But the theory of linear arithmetic over rational numbers TQ is decidable,
and actually more e�ciently than the corresponding theory of integers.

Vocabulary: VQ = {0, 1,+,�,=,�}

Axioms: 10 (see Manna’s book)

Rational coe�cients can be expressed in TQ.

The formula 5
2x+ 4

3y  6 can be written as the TQ-formula

36 � 15x+ 8y

TQ is decidable and its quantifier-free fragment is e�ciently decidable.
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Reals TR

Surprisingly, the theory of reals TR is decidable even in the presence of
multiplication and quantifiers.

Vocabulary: VR = {0, 1,+,⇥,�,=,�}

Axioms: 17 (see Manna’s book)

The inclusion of multiplication allows a formula like 9x. x2 = 3 to be expressed
(x2 abbreviates x⇥ x). This formula should be TR-valid, since the assignment
x 7!

p
3 satisfies x2 = 3.

TR is decidable (Tarski, 1949). However, it has a high time complexity
(doubly exponential).
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Di↵erence arithmetic

Di↵erence logic is a fragment (a sub-theory) of linear arithmetic.

Atomic formulas have the form x� y  c, for variables x and y and
constant c.

Conjunctions of di↵erence arithmetic inequalities can be checked very
e�ciently for satisfiability by searching for negative cycles in weighted
directed graphs.

Graph representation: each variable corresponds to a node, and an inequality
of the form x� y  c corresponds to an edge from y to x with weight c.

The quantifier-free satisfiability problem is solvable in O(|V ||E|).
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Arrays TA and T
=
A

Arrays are modeled in logic as applicative data structures.

Vocabulary: VA = {read, write,=}

Axioms:
I (reflexivity), (symmetry) and (transitivity) of TE
I 8a, i, j. i = j ! read(a, i) = read(a, j)
I 8a, i, j, v. i = j ! read(write(a, i, v), j) = v
I 8a, i, j, v. ¬(i = j) ! read(write(a, i, v), j) = read(a, j)

= is only defined for array elements.

T
=
A is the theory TA plus an axiom (extensionality) to capture = on arrays.

I 8a, b. (8i. read(a, i) = read(b, i)) $ a = b

Both TA and T
=
A are undecidable. But their quantifier-free fragments are

decidable.

Alternative fragments are often preferred that subsume the quantifier-free
fragment (allowing restricted forms of index quantification).
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Other theories

Fixed-size bit-vectors

Model bit-level operations of machine words, including 2n-modular
operations (where n is the word size), shift operations, etc.
Decision procedures for the theory of fixed-size bit vectors often rely on
appropriate encodings in propositional logic.

Algebraic data structures

The theories describe data structures that are ubiquitous in programming
like lists, stacks, binary trees, etc.

These theories are built around the theory of equality with uninterpreted
functions, and are normally e�ciently decidable for the quantifier-free
fragment.

...
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Combining theories

In practice, the most of the formulae we want to check need a combination
of theories.

Checking x+ 2 = y ! f(read(write(a, x, 3), y � 2)) = f(y � x+ 1)

involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

Given theories T1 and T2 such that V1 \ V2 = {=}, the combined theory

T1 [ T2 has vocabulary V1 [ V2 and axioms A1 [A2

[Nelson&Oppen, 1979] showed that if

I satisfiability of the quantifier-free fragment of T1 is decidable,
I satisfiability of the quantifier-free fragment of T2 is decidable, and
I certain technical requirements are met,

then the satisfiability in the quantifier-free fragment of T1 [ T2 is decidable.

Most methods available are based on the Nelson-Oppen combination
method.
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Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by (a combination of) specific theories (i.e., it is the problem of determining,
for a theory T and given a formula �, whether � is T -satisfiable).

Usually SMT solvers address the issue of satisfiability of quantifier-free
first-order CNF formulas, using as building blocks:

I a propositional SAT solver, and
I state-of-the-art theory solvers.

(Next lecture we will see more about this subject.)
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SMT-solvers basic architecture
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SMT solvers

In the last two decades, SMT procedures have undergone dramatic progress.
There has been enormous improvements in e�ciency and expressiveness of
SMT procedures for the more commonly occurring theories.

I The annual competition1 for SMT procedures plays an important rule
in driving progress in this area.

I A key ingredient is SMT-LIB2, an online resource that proposes, as a
standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.

Some SMT solvers: Z3, CVC4, Alt-Ergo,Yices 2, MathSAT 5, Boolector, ...

Usually, SMT solvers accept input either in a proprietary format or in
SMT-LIB format.

1http://www.smtcomp.org
2http://smtlib.cs.uiowa.edu
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The SMT-LIB repository

Catalog of theory declarations - semi-formal specification of theories
of interest

I A theory defines a vocabulary of sorts and functions. The meaning of
the theory symbols are specified in the theory declaration.

Catalog of logic declarations - semi-formal specification of fragments
of (combinations of) theories

I A logic consists of one or more theories, together with some restrictions
on the kinds of expressions that may be used within that logic.

Library of benchmarks

Utility tools (parsers, converters, ...)

Useful links (documentation, solvers, ...)

See http://smtlib.cs.uiowa.edu
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The SMT-LIB language

Textual, command-based I/O format for SMT solvers.
I Two versions: SMT-LIB 1.0, SMT-LIB 2.0 (last version: 2.6)

Intended mostly for machine processing. (SMT solvers are typically
used for verification as backends)

All input to and output from a conforming solver is a sequence of one
or more S-expressions

hS-expi ::= htokeni | (hS-expi⇤)

SMT-LIB language expresses logical statements in a many-sorted
first-order logic. Each well-formed expression has a unique sort (type).

Typical usage:
I Asserting a series of logical statements, in the context of a given logic.
I Checking their satisfiability in the logic.
I Exploring resulting models (if SAT) or proofs (if UNSAT)
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Theorem provers / SAT checkers

� is valid i↵ ¬� is unsatisfiable

logical formula

timeout or 
memoutSMT solver

unsat + 
proof

sat + 
model

It may happen that, for a given formula, a SMT solver returns a timeout,
while another SMT solver returns a concrete answer.
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Example with SMT-LIB 2

(set-logic QF UFLIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (distinct x y z))
(assert (> (+ x y) (* 2 z)))
(assert (>= x 0))
(assert (>= y 0))
(assert (>= z 0))
(check-sat)
(get-model)
(get-value (x y z))

sat
(model (define-fun z () Int 1)

(define-fun y () Int 0)
(define-fun x () Int 3) )

( (x 3) (y 0) (z 1) )
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Example with SMT-LIB 2

(set-logic QF UFLIA)
(set-option :produce-unsat-cores true)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (! (distinct x y z) :named a1))
(assert (! (> (+ x y) (* 2 z)) :named a2))
(assert (! (>= x 0) :named a3))
(assert (! (>= y 0) :named a4))
(assert (! (>= z 0) :named a5))
(assert (! (>= z x) :named a6))
(assert (! (> x y) :named a7))
(assert (! (> y z) :named a8))
(check-sat)
(get-unsat-core)

unsat
(a7 a2 a6)
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Example with SMT-LIB 2

Logical encoding of the C program:
x = x + 1;
a[i] = x + 2;
y = a[i];

We use the logic QF AUFLIA (quantifier-free linear formulas over the theory of
integer arrays extended with free sort and function symbol).

An access to array a[i] is encoded by (select a i).

An assigment a[i] = v is encoded by (store a i v). The result is a new array
in everything equal to array a except in position i which now has the value v.

Assignments such as x = x+1 are encoded by introducing variables (e.g. x0 and
x1) which represent the value of x before and after the assignment. The logical
encoding would be in this case (= x1 (+ x0 1)).
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Example with SMT-LIB 2

(set-logic QF AUFLIA)
;; Logical encoding of the C program:
;; x = x + 1;
;; a[i] = x + 2;
;; y = a[i];
(declare-const a0 (Array Int Int))
(declare-const a1 (Array Int Int))
(declare-const i0 Int)
(declare-const x0 Int)
(declare-const x1 Int)
(declare-const y1 Int)

(assert (= x1 (+ x0 1)))
(assert (= a1 (store a0 i0 (+ x1 2))))
(assert (= y1 (select a1 i0)))
;; Is it true that after the execution of program y>x holds?
(assert (not (> y1 x1)))
(check-sat)

unsat
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Applications

SMT solvers are the core engine of many tools for

program analysis

program verification

test-cases generation

bounded model checking of SW

modeling

planning and scheduling

...
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Program verification/analysis

The general architecture of program verification/analysis tools is powered by a
Verification Conditions Generator (VCGen) that produces verification conditions
(also called “proof obligations”) that are then passed to a SMT solver to be
“discharged”. Examples of such tools: Boogie, Why3, Frama-C, ESC/JAVA2.

Verification/Analysis 
Tool

logical formula

timeout or 
memoutSMT solver

unsat + 
proof

sat + 
model

counter-example Ok

(annotated) program

VCGen
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Bounded model checking of SW

The key idea of Bounded Model Checking (BMC) is to encode bounded
behaviors of the system that enjoy some given property as a logical formula
whose models (if any) describe a system trace leading to a violation of the
property.

Preliminarily to the generation of the formula, the input program is
preprocessed (which includes the inlining of functions and procedures and
the unwinding of loops a limited number of times).

To convert a program into a logical formula:

1 Convert the program into a single-assignment form in wich multiple
indexed version of each variable are used (a new version for each
assignment made in the original variable).

2 Convert the program into conditional normal form: a sequence of
statements of the form if b then S, where S is an atomic statement.
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Bounded model checking of SW

original program
i = a[0];
if (x > 0){
if (x < 10)

x = x+ 1;
else

x = x� 1;
}

assert(y > 0 && y < 5);
a[y] = i;

=)

single assignment form
i1 = a0[0];
if (x0 > 0){

if (x0 < 10)
x1 = x0 + 1;

else
x2 = x0 � 1;

x3 = x0 < 10 ? x1 : x2;
}

x4 = x0 > 0 ? x3 : x0;
assert(y0 > 0 && y0 < 5);
a1[y0] = i1;

=)

conditional normal form
if (true) i1 = a0[0];
if (x0 > 0 && x0 < 10) x1 = x0 + 1;
if (x0 > 0 && !(x0 < 10)) x2 = x0 � 1;
if (x0 > 0 && x0 < 10) x3 = x1;
if (x0 > 0 && !(x0 < 10)) x3 = x2;
if (x0 > 0) x4 = x3; if (!(x0 > 0)) x4 = x0;
if (true) assert(y0 > 0 && y0 < 5);
if (true) a1[y0] = i1;
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Bounded model checking of SW

Now, one builds two sets of quantifier-free formulas C and P:

C containing the logical encoding of the program

P containing the properties to be checked

C = { i1 = a0[0],
(x0 > 0 ^ x0 < 10) ! x1 = x0 + 1,
(x0 > 0 ^ ¬(x0 < 10)) ! x2 = x0 � 1,
(x0 > 0 ^ x0 < 10) ! x3 = x1,
(x0 > 0 ^ ¬(x0 < 10)) ! x3 = x2,
x0 > 0 ! x4 = x3, ¬(x0 > 0) ! x4 = x0,
a1[y0] = i1

}

P = { (y0 > 0 ^ y0 < 5) }

C and P are such that, C |=T
V

P i↵ no computation path of the program
violates any assert statement in it.
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Bounded model checking of SW

Note that C |=T
V
P i↵ C [ {¬

V
P} |=T ?

i↵
V
C ^ ¬

V
P is T -unsatisfiable

The T -models of (
V
C ^ ¬

V
P) (if any) correspond to the execution

paths of the program that lead to an assertion violation.

This formula is fed to a SMT solver.

If C [ {¬
V
P} is satisfiable, a counter-example is show and the

corresponding trace is built and returned to the user for inspection.
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Program model in SMT-LIB 2

(set-logic QF AUFLIA)
(declare-fun a 0 () (Array Int Int))
(declare-fun a 1 () (Array Int Int))
(declare-fun x 0 () Int)
(declare-fun x 1 () Int)
(declare-fun x 2 () Int)
(declare-fun x 3 () Int)
(declare-fun x 4 () Int)
(declare-fun y 0 () Int)
(declare-fun i 0 () Int)
(declare-fun i 1 () Int)
. . .
(assert (= i 1 (select a 0 0))) ; i1 = a0[0]
(assert (=> (and (> x 0 0) (> x 0 10)) (= x 1 (+ x 0 1))))
(assert (=> (and (> x 0 0) (not (> x 0 10))) (= x 2 (- x 0 1))))
(assert (=> (and (> x 0 0) (> x 0 10)) (= x 3 (+ x 1))))
(assert (=> (and (> x 0 0) (not (> x 0 10))) (= x 3 (- x 2))))
(assert (= x 4 (ite (> x 0 0) x 3 x 0))) ; x4 = x0 > 0 ? x3 : x0

(assert (= a 1 (store a 0 y 0 i 1))) ; a1[y0] = i1
(assert (not (and (> y 0 0) (> y 0 5)))) ; assert(y0 > 0 && y0 > 5)
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Scheduling

Job-shop-scheduling decision problem

Consider n jobs.

Each job has m tasks of varying duration that must be performed
consecutively on m machines.

The start of a new task can be delayed as long as needed in order for a
machine to become available, but tasks cannot be interrupted once they are
started.

Given a total maximum time max and the duration of each task, the problem
consists of deciding whether there is a schedule such that the end-time of every
task is less than or equal to max time units.

Two types of constraints:

Precedence between two tasks in the same job.

Resource: a machine cannot run two di↵erent tasks at the same time.

Maria João Frade (HASLab, DI-UM) FOL & SMT VF 2020/21 72 / 73



Scheduling

dij - duration of the j-th task of the job i

tij - start-time for the j-th task of the job i

Constraints

I Precedence: for every i, j, ti j+1 � tij + dij
I Resource: for every i 6= i0, (tij � ti0j + di0j) _ (ti0j � tij + dij)
I The start time of the first task of every job i must be greater than or

equal to zero ti1 � 0
I The end time of the last task must be less than or equal to max

tim + dim  max

Find a solution for this problem

dij Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

and max = 8
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