Roadmap

First-Order Logic \& Theories

Maria João Frade

HASLab - INESC TEC
Departamento de Informática, Universidade do Minho
2020/2021

(Classical) First-Order Logic

- Classical First-Order Logic
- syntax; semantics; decision problems SAT and VAL;
normal forms; Herbrandization; Skolemization;
- FOL with equality; many-sorted FOL.
- First-Order Theories
- basic concepts; decidability issues;
- several theories: equality, integers, linear arithmetic, reals, arrays;
combining theories;
- satisfiability modulo theories; SMT solvers; SMT-LIB;
- applications.
- Practice with a SMT solver

Introduction

First-order logic (FOL) is a richer language than propositional logic. Its lexicon contains not only the symbols \wedge, \vee, \neg, and \rightarrow (and parentheses) from propositional logic, but also the symbols \exists and \forall for "there exists" and "for all", along with various symbols to represent variables, constants, functions, and relations.

There are two sorts of things involved in a first-order logic formula:

- terms, which denote the objects that we are talking about;
- formulas, which denote truth values.

Examples:
"Not all birds can fly."
"Every mother is older than her children."
"John and Peter have the same maternal grandmother."

Syntax

The alphabet of a first-order language is organised into the following categories.

- Variables: $x, y, z, \ldots \in \mathcal{X}$ (arbitrary elements of an underlying domain)
- Constants: $a, b, c, \ldots \in \mathcal{C}$ (specific elements of an underlying domain)
- Functions: $f, g, h, \ldots \in \mathcal{F}$ (every function f has a fixed arity, $\operatorname{ar}(f)$)
- Predicates: $P, Q, R, \ldots \in \mathcal{P}$ (every predicate P has a fixed arity, $\operatorname{ar}(P)$)
- Logical connectives: $\top, \perp, \wedge, \vee, \neg, \rightarrow, \forall$ (for all), \exists (there exists)
- Auxiliary symbols: ".", "(" and ")".

We assume that all these sets are disjoint. \mathcal{C}, \mathcal{F} and \mathcal{P} are the non-logical symbols of the language. These three sets constitute the vocabulary $\mathcal{V}=\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$.

Maria João Frade (HASLab, DI-UM)
 FOL \& SMT
 VF 2020/21 5/73

Syntax

Convention

We adopt some syntactical conventions to lighten the presentation of formulas:

- Outermost parenthesis are usually dropped.
- In absence of parentheses, we adopt the following convention about precedence. Ranging from the highest precedence to the lowest, we have respectively: \neg, \wedge, \vee and \rightarrow. Finally we have that \rightarrow binds more tightly than \forall and \exists.
- All binary connectives are right-associative.
- Nested quantifications such as $\forall x . \forall y . \phi$ are abbreviated to $\forall x, y . \phi$.
- $\forall \bar{x} . \phi$ denotes the nested quantification $\forall x_{1}, \ldots, x_{n} . \phi$.

Syntax

Terms

The set of terms of a first-order language over a vocabulary \mathcal{V} is given by the following abstract syntax

$$
\operatorname{Term}_{\mathcal{V}} \ni t::=x|c| f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right)
$$

Formulas

The set Form $\mathcal{V}_{\mathcal{V}}$, of formulas of FOL, is given by the abstract syntax

```
\(\operatorname{Form}_{\mathcal{V}} \ni \phi, \psi \quad::=P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)|\perp| \top|(\neg \phi)|(\phi \wedge \psi) \mid(\phi \vee \psi)\)
    \(|(\phi \rightarrow \psi)|(\forall x . \phi) \mid(\exists x . \phi)\)
```

An atomic formula has the form \perp, T, or $P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)$. A ground term is a term without variables. Ground formulas are formulas without variables, i.e., quantifier-free formulas ϕ such that all terms occurring in ϕ are ground terms.

Maria João Frade (HASLab, DI-UM) FOL \& SMT
VF 2020/21 6/73

Modeling with FOL

"Not all birds can fly."

We can code this sentence assuming the two unary predicates B and F expressing

$$
\begin{aligned}
& B(x)-x \text { is a bird } \\
& F(x)-x \text { can fly }
\end{aligned}
$$

The declarative sentence "Not all birds can fly" can now be coded as

$$
\neg(\forall x . B(x) \rightarrow F(x))
$$

or, alternatively, as

$$
\exists x . B(x) \wedge \neg F(x)
$$

Modeling with FOL

"Every mother is older than her children."

"John and Peter have the same maternal grandmother."
Using constants symbols j and p for John and Peter, and predicates $=$, mother and older expressing that

$$
\text { mother }(x, y)-x \text { is mother of } y
$$

these sentences could be expressed by

$$
\operatorname{older}(x, y)-x \text { is older than } y
$$

$$
\forall x . \forall y . \text { mother }(x, y) \rightarrow \operatorname{older}(x, y)
$$

$\forall x, y, u, v$. mother $(x, y) \wedge \operatorname{mother}(y, j) \wedge \operatorname{mother}(u, v) \wedge \operatorname{mother}(v, p) \rightarrow x=u$
A different and more elegant encoding is to represent y 'mother in a more direct way, by using a function instead of a relation. We write $m(y)$ to mean y 'mother This way the two sentences above have simpler encondings.

$$
\forall x . \operatorname{older}(m(x), x) \quad \text { and } \quad m(m(j))=m(m(p))
$$

Maria João Frade (HASLab, DI-UM)	FOL \& SMT	VF 2020/21	9/73

Free and bound variables

- The free variables of a formula ϕ are those variables occurring in ϕ that are not quantified. $\mathrm{FV}(\phi)$ denotes the set of free variables occurring in ϕ.
- The bound variables of a formula ϕ are those variables occurring in ϕ that do have quantifiers. $\mathrm{BV}(\phi)$ denote the set of bound variables occurring in ϕ.

Note that variables can have both free and bound occurrences within the same formula. Let ϕ be $\exists x . R(x, y) \wedge \forall y . P(y, x)$, then

$$
\mathrm{FV}(\phi)=\{y\} \text { and } \mathrm{BV}(\phi)=\{x, y\} .
$$

- A formula ϕ is closed (or a sentence) if it does not contain any free variables.
- If $\operatorname{FV}(\phi)=\left\{x_{1}, \ldots, x_{n}\right\}$, then
its universal closure is $\forall x_{1} \ldots . \forall x_{n} . \phi$
its existential closure is $\exists x_{1} \ldots \exists x_{n} . \phi$

Modeling with FOL

Assume further the following predicates and constant symbols

$$
\begin{array}{ll}
\text { flower }(x)-x \text { is a flower } & \operatorname{likes}(x, y)-x \text { likes } y \\
\text { sport }(x)-x \text { is a sport } \\
a-\text { Anne } & \text { brother }(x, y)-x \text { is brother of } y \\
\text { - "Anne likes John's brother." } & \exists x . \operatorname{brother}(x, j) \wedge \operatorname{likes}(a, x)
\end{array}
$$

- "John likes all sports." $\forall x \cdot \operatorname{sports}(x) \rightarrow \operatorname{likes}(j, x)$
- "John's mother likes flowers." $\forall x$. flower $(x) \rightarrow \operatorname{likes}(m(j), x)$
- "John's mother does not like some sports." $\exists y$. sport $(y) \wedge \neg \operatorname{likes}(m(j), y)$
- "Peter only likes sports." $\forall x \operatorname{likes}(p, x) \rightarrow \operatorname{sports}(x)$
- "Anne has two children."

$$
\begin{gathered}
\exists x_{1}, x_{2} . \text { mother }\left(a, x_{1}\right) \wedge \text { mother }\left(a, x_{2}\right) \wedge x_{1} \neq x_{2} \wedge \\
\forall z . \text { mother }(a, z) \rightarrow z=x_{1} \vee z=x_{2}
\end{gathered}
$$

Maria João Frade (HASLab, DI-UM)

Substitution

Substitution

- We define $u[t / x]$ to be the term obtained by replacing each occurrence of variable x in u with t
- We define $\phi[t / x]$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t.

Care must be taken, because substitutions can give rise to undesired effects.

Given a term t, a variable x and a formula ϕ, we say that t is free for x in ϕ if no free x in ϕ occurs in the scope of $\forall z$ or $\exists z$ for any variable z occurring in t.

From now on we will assume that all substitutions satisfy this condition That is when performing the $\phi[t / x]$ we are always assuming that t is free for x in ϕ.

Maria João Frade (HASLab, DI-UM) FOL \& SMT
VF 2020/21 $12 / 73$

Substitution

Convention

We write $\phi\left(x_{1}, \ldots, x_{n}\right)$ to denote a formula having free variables x_{1}, \ldots, x_{n}. We write $\phi\left(t_{1}, \ldots, t_{n}\right)$ to denote the formula obtained by replacing each free occurrence of x_{i} in ϕ with the term t_{i}. When using this notation, it should always be assumed that each t_{i} is free for x_{i} in ϕ. Also note that when writhing $\phi\left(x_{1}, \ldots, x_{n}\right)$ we do not mean that x_{1}, \ldots, x_{n} are the only free variables of ϕ.

A sentence of first-order logic is a formula having no free variables.

- The presence of free variables distinguishes formulas from sentences.
- This distinction did not exist in propositional logic.

Maria João Frade (HASLab, DI-UM) FOL \& SMT

Semantics

Assignment

An assignment for a domain D is a function $\alpha: \mathcal{X} \rightarrow D$.
We denote by $\alpha[x \mapsto a]$ the assignment which maps x to a and any other variable y to $\alpha(y)$.

Given a \mathcal{V}-structure $\mathcal{M}=(D, I)$ and given an assignment $\alpha: \mathcal{X} \rightarrow D$, we define an interpretation function for terms, $\alpha_{\mathcal{M}}: \operatorname{Term}_{\mathcal{V}} \rightarrow D$, as follows:

$$
\begin{array}{ll}
\alpha_{\mathcal{M}}(x) & =\alpha(x) \\
\alpha_{\mathcal{M}}(c) & =I(c) \\
\alpha_{\mathcal{M}}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =I(f)\left(\alpha_{\mathcal{M}}\left(t_{1}\right), \ldots, \alpha_{\mathcal{M}}\left(t_{n}\right)\right)
\end{array}
$$

Semantics

\mathcal{V}-structure

Let \mathcal{V} be a vocabulary. A \mathcal{V}-structure \mathcal{M} is a pair $\mathcal{M}=(D, I)$ where D is a nonempty set called the interpretation domain, and I is an interpretation function that assigns constants, functions and predicates over D to the symbols of \mathcal{V} as follows:

- for each constant symbol $c \in \mathcal{C}$, the interpretation of c is a constant $I(c) \in D ;$
- for each $f \in \mathcal{F}$, the interpretation of f is a function $I(f): D^{\operatorname{ar}(f)} \rightarrow D$;
- for each $P \in \mathcal{P}$, the interpretation of P is a function $I(P): D^{\operatorname{ar}(P)} \rightarrow\{0,1\}$ In particular, 0 -ary predicate symbols are interpreted as truth values.
\mathcal{V}-structures are also called models for \mathcal{V}.

Semantics

Satisfaction relation

Given a \mathcal{V}-structure $\mathcal{M}=(D, I)$ and given an assignment $\alpha: \mathcal{X} \rightarrow D$, we define the satisfaction relation $\mathcal{M}, \alpha \models \phi$ for each $\phi \in \operatorname{Form}_{\mathcal{V}}$ as follows:

$$
\begin{array}{lll}
\mathcal{M}, \alpha \models \top & \\
\mathcal{M}, \alpha \not \models \perp & & \\
\mathcal{M}, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & I(P)\left(\alpha \mathcal{M}\left(t_{1}\right), \ldots, \alpha_{\mathcal{M}}\left(t_{n}\right)\right)=1 \\
\mathcal{M}, \alpha \models \neg \phi & \text { iff } & \mathcal{M}, \alpha \not \models \phi \\
\mathcal{M}, \alpha \models \phi \wedge \psi & \text { iff } \mathcal{M}, \alpha \models \phi \text { and } \mathcal{M}, \alpha \models \psi \\
\mathcal{M}, \alpha \models \phi \vee \psi & \text { iff } \mathcal{M}, \alpha \models \phi \text { or } \mathcal{M}, \alpha \models \psi \\
\mathcal{M}, \alpha \models \phi \rightarrow \psi & \text { iff } \mathcal{M}, \alpha \not \models \phi \text { or } \mathcal{M}, \alpha \models \psi \\
\mathcal{M}, \alpha \models \forall x . \phi & \text { iff } \mathcal{M}, \alpha[x \mapsto a] \models \phi \text { for all } a \in D \\
\mathcal{M}, \alpha \models \exists x . \phi & \text { iff } & \mathcal{M}, \alpha[x \mapsto a] \models \phi \text { for some } a \in D
\end{array}
$$

Validity and satisfiability

When $\mathcal{M}, \alpha \models \phi$, we say that \mathcal{M} satisfies ϕ with α.
We write $\mathcal{M} \models \phi$ iff $\mathcal{M}, \alpha \models \phi$ holds for every assignment α.

A formula ϕ is
valid iff $\mathcal{M}, \alpha \models \phi$ holds for all structure \mathcal{M} and assignments α. A valid formula is called a tautology. We write $\models \phi$.
satisfiable iff there is some structure \mathcal{M} and some assigment α such that $\mathcal{M}, \alpha \models \phi$ holds.
unsatisfiable iff it is not satisfiable.
An unsatisfiable formula is called a contradiction.
refutable iff it is not valid.

| Maria João Frade (HASLab, DI-UM) FOL \& SMT | VF 2020/21 | 17/73 |
| :--- | :--- | :--- | :--- |

Consistency

The set Γ is consistent or satisfiable iff there is a model \mathcal{M} and an assigment α such that $\mathcal{M}, \alpha \models \phi$ holds for all $\phi \in \Gamma$.

We say that Γ is inconsistent iff it is not consistent and denote this by $\Gamma \models \perp$.

Proposition

- $\{\phi, \neg \phi\} \models \perp$
- If $\Gamma \models \perp$ and $\Gamma \subseteq \Gamma^{\prime}$, then $\Gamma^{\prime} \models \perp$.
- $\Gamma \models \phi \quad$ iff $\quad \Gamma, \neg \phi \models \perp$

Consequence and equivalence

Given a set of formulas Γ, a model \mathcal{M} and an assignment α, \mathcal{M} is said to satisfy Γ with α, denoted by $\mathcal{M}, \alpha=\Gamma$, if $\mathcal{M}, \alpha=\phi$ for every $\phi \in \Gamma$.
Γ entails ϕ (or that ϕ is a logical consequence of Γ), denoted by $\Gamma \models \phi$, iff for all structures \mathcal{M} and assignments α, whenever $\mathcal{M}, \alpha \models \Gamma$ holds, then $\mathcal{M}, \alpha \models \phi$ holds as well.
ϕ is logically equivalent to ψ, denoted by $\phi \equiv \psi$, iff $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Deduction theorem

$\Gamma, \phi \models \psi \quad$ iff $\quad \Gamma \models \phi \rightarrow \psi$

Substitution

- Formula ψ is a subformula of formula ϕ if it occurs syntactically within ϕ.
- Formula ψ is a strict subformula of ϕ if ψ is a subformula of ϕ and $\psi \neq \phi$

Substitution theorem

Suppose $\phi \equiv \psi$. Let θ be a formula that contains ϕ as a subformula. Let θ^{\prime} be the formula obtained by safe replacing (i.e., avoiding the capture of free variables of ϕ) some occurrence of ϕ in θ with ψ. Then $\theta \equiv \theta^{\prime}$.

Adquate sets of connectives for FOL

Renaming of bound variables

If y is free for x in ϕ and $y \notin \mathrm{FV}(\phi)$, then the following equivalences hold.

- $\forall x . \phi \equiv \forall y . \phi[y / x]$
- $\exists x . \phi \equiv \exists y . \phi[y / x]$

Lemma

The following equivalences hold in first-order logic.

$$
\begin{aligned}
\forall x . \phi \wedge \psi & \equiv(\forall x . \phi) \wedge(\forall x . \psi) & \exists x . \phi \vee \psi & \equiv(\exists x . \phi) \vee(\exists x . \psi) \\
\forall x . \phi & \equiv(\forall x . \phi) \wedge \phi[t / x] & \exists x . \phi & \equiv(\exists x . \phi) \vee \phi[t / x] \\
\neg \forall x . \phi & \equiv \exists x . \neg \phi & \neg \exists x . \phi & \equiv \forall x . \neg \phi
\end{aligned}
$$

As in propositional logic, there is some redundancy among the connectives and quantifiers since $\forall x . \phi \equiv \neg \exists x . \neg \phi$ and $\exists x . \phi \equiv \neg \forall x . \neg \phi$.

Maria João Frade (HASLab, DI-UM)
FOL \& SMT
VF 2020/21 21/73

Decidability

A solution to a decision problem is a program that takes problem instances as input and always terminates, producing a correct "yes" or "no" output.

- A decision problem is decidable if it has a solution.
- A decision problem is undecidable if it is not decidable.

In PL we could, in theory, compute a truth table to determine whether or not a formula is satisfiable. In FOL, we would have to check every model to do this.

Theorem (Church \& Turing)

- The decision problem of validity in first-order logic is undecidable: no program exists which, given any ϕ, decides whether $\vDash \phi$.
- The decision problem of satisfiability in first-order logic is undecidable: no program exists which, given any ϕ, decides whether ϕ is satisfiable.

Decidability

Given formulas ϕ and ψ as input, we may ask:

Decision problems

Validity problem:
Satisfiability problem:
Consequence problem: "Is ψ a consequence of ϕ ?"
Equivalence problem: "Are ϕ and ψ equivalent ?"

These are, in some sense, variations of the same problem.

ϕ is valid	iff	$\neg \phi$ is unsatisfiable
$\phi \models \psi$	iff	$\neg(\phi \rightarrow \psi)$ is unsatisfiable
$\phi \equiv \psi$	iff	$\phi \models \psi$ and $\psi \models \phi$
ϕ is satisfiable	iff	$\neg \phi$ is not valid

Maria João Frade (HASLab, DI-UM)
FOL \& SMT
VF 2020/21 22/73

Semi-decidability

However, there is a procedure that halts and says "yes" if ϕ is valid.

A decision problem is semi-decidable if exists a procedure that, given an input,

- halts and answers "yes" iff "yes" is the correct answer,
- halts and answers "no" if "no" is the correct answer, or
- does not halt if "no" is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the correct answer is "yes".

The decision problem of validity in first-order logic is semi-decidable.

Normal forms

A first-order formula is in negation normal form (NNF) if the implication connective is not used in it, and negation is only applied to atomic formulas.

If x does not occur free in ψ, then the following equivalences hold.

$$
\begin{array}{ll}
(\forall x \cdot \phi) \wedge \psi \equiv \forall x \cdot \phi \wedge \psi & \psi \wedge(\forall x \cdot \phi) \equiv \forall x \cdot \psi \wedge \phi \\
(\forall x \cdot \phi) \vee \psi \equiv \forall x . \phi \vee \psi & \psi \vee(\forall x \cdot \phi) \equiv \forall x \cdot \psi \vee \phi \\
(\exists x \cdot \phi) \wedge \psi \equiv \exists x . \phi \wedge \psi & \psi \wedge(\exists x . \phi) \equiv \exists x \cdot \psi \wedge \phi \\
(\exists x \cdot \phi) \vee \psi \equiv \exists x . \phi \vee \psi & \psi \vee(\exists x \cdot \phi) \equiv \exists x \cdot \psi \vee \phi
\end{array}
$$

The applicability of these equivalences can always be assured by appropriate renaming of bound variables.

Maria João Frade (HASLab, DI-UM)	FOL \& SMT	VF 2020/21	$25 / 73$

Herbrand/Skolem normal forms

Let ϕ be a first-order formula in prenex normal form

- The Herbrandization of ϕ (written ϕ^{H}) is an existential formula obtained from ϕ by repeatedly and exhaustively applying the following transformation:

$$
\exists x_{1}, \ldots, x_{n} \cdot \forall y . \psi \rightsquigarrow \exists x_{1}, \ldots, x_{n} \cdot \psi\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]
$$

with f a fresh function symbol with arity n (i.e. f does not occur in ψ).

- The Skolemization of ϕ (written ϕ^{S}) is a universal formula obtained from ϕ by repeatedly applying the transformation:

$$
\forall x_{1}, \ldots, x_{n} \exists y \cdot \psi \rightsquigarrow \forall x_{1}, \ldots, x_{n} \cdot \psi\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]
$$

with f a fresh function symbol with arity n.

- Herbrand normal form (resp. Skolem normal form) formulas are those obtained by the process of Herbrandization (resp. Skolemization).

Normal forms

A formula is in prenex form if it is of the form $Q_{1} x_{1} \cdot Q_{2} x_{2} \ldots Q_{n} x_{n} \cdot \psi$ where each Q_{i} is a quantifier (either \forall or \exists) and ψ is a quantifier-free formula.

Prenex form of $\forall x .(\forall y \cdot P(x, y) \vee Q(x)) \rightarrow \exists z \cdot P(x, z)$

First we compute the NNF and then we go for the prenex form.

$$
\begin{array}{lll}
& \forall x \cdot(\forall y \cdot P(x, y) \vee Q(x)) \rightarrow \exists z \cdot P(x, z) & \equiv \\
& \forall x \cdot \neg(\forall y \cdot P(x, y) \vee Q(x)) \vee \exists z \cdot P(x, z) & \equiv \\
\text { (NNF) } & \forall x . \exists y \cdot(\neg P(x, y) \wedge \neg Q(x)) \vee \exists z \cdot P(x, z) & \equiv \\
\text { (prenex) } & \forall x . \exists y \cdot \exists z \cdot(\neg P(x, y) \wedge \neg Q(x)) \vee P(x, z)
\end{array}
$$

Maria João Frade (HASLab, DI-UM) FOL \& SMT

Herbrandization/Skolemization

A formula ϕ and its Herbrandization/Skolemization are not logically equivalent.

Proposition

Let ϕ be a first-order formula in prenex normal form.

- ϕ is valid iff its Herbrandization ϕ^{H} is valid.
- ϕ is satisfiable iff its Skolemization ϕ^{S} is satisfiable.
- It is convenient to write Herbrand and Skolem formulas using vector notation $\exists \bar{x} . \psi$ and $\forall \bar{x} . \psi$ (with ψ quantifier free), respectively.
- The quantifier-free sub-formula can be furthered normalised:
- Universal CNF: $\forall \bar{x} . \bigwedge_{i} \bigvee_{j} l_{i j}$
- Existencial DNF: $\exists \bar{x} . \bigvee_{i} \bigwedge_{j} l_{i j}$
where literals are either atomic predicates or negation of atomic predicates.
- Herbrandization/Skolemization change the underlying vocabulary. These additional symbols are called Herbrand/Skolem functions.

FOL with equality

There are different conventions for dealing with equality in first-order logic.

- We have follow the approach of considering equality predicate $(=)$ as a non-logical symbol, treated in the same way as any other predicate. We are working with what are usually known as "first-order languages without equality".
- An alternative approach, usually called "first-order logic with equality", considers equality as a logical symbol with a fixed interpretation.

In this approach the equality symbol $(=)$ is interpreted as the equality relation in the domain of interpretation. So we have, for a structure $\mathcal{M}=(D, I)$ and an assignment $\alpha: \mathcal{X} \rightarrow D$, that

$$
\mathcal{M}, \alpha \models t_{1}=t_{2} \quad \text { iff } \quad \alpha_{\mathcal{M}}\left(t_{1}\right) \text { and } \alpha_{\mathcal{M}}\left(t_{2}\right) \text { are the same element of } D
$$

Many-sorted FOL

- A natural variant of first-order logic that can be considered is the one that results from allowing different domains of elements to coexist in the framework. This allows distinct "sorts" or types of objects to be distinguished at the syntactical level, constraining how operations and predicates interact with these different sorts.
- Having full support for different sorts of objects in the language allows for cleaner and more natural encodings of whatever we are interested in modeling and reasoning about.
- By adding to the formalism of FOL the notion of sort, we can obtain a flexible and convenient logic called many-sorted first-order logic, which has the same properties as FOL.

FOL with equality

To understand the significant difference between having equality with the status of any other predicate, or with a fixed interpretation as in first-order logic with equality, consider the formulas

- $\exists x_{1}, x_{2} . \forall y . y=x_{1} \vee y=x_{2}$

With a fixed interpretation of equality, the validity of this formula implies that the cardinality of the interpretation domain is at most two - the quantifiers can actually be used to fix the cardinality of the domain, which is not otherwise possible in first-order logic.

- $\exists x_{1}, x_{2} \neg\left(x_{1}=x_{2}\right)$

The validity of this formula implies that there exist at least two distinct elements in the domain, thus its cardinality must be at least two.

Many-sorted FOL

- A many-sorted vocabulary (signature) is composed of a set of sorts, a set of function symbols, and a set of predicate symbols.
- Each function symbol f has associated with a type of the form $S_{1} \times \ldots \times S_{\operatorname{ar}(f)} \rightarrow S$ where $S_{1}, \ldots, S_{\operatorname{ar}(f)}, S$ are sorts.
- Each predicate symbol P has associated with it a type of the form $S_{1} \times \ldots \times S_{\operatorname{ar}(P)}$.
- Each variable is associated with a sort.
- The formation of terms and formulas is done only accordingly to the typing policy, i.e., respecting the "sorts" .
- The domain of discourse of any structure of a many-sorted vocabulary is fragmented into different subsets, one for every sort.
- The notions of assignment and structure for a many-sorted vocabulary, and the interpretation of terms and formulas are defined in the expected way.

Introduction

- Stated differently, we are often interested in moving away from pure logical validity (i.e. validity in all models) towards a more refined notion of validity restricted to a specific class of models.
- A natural way for specifying such a class of models is by providing a set of axioms (sentences that are expected to hold in them). Alternatively, one can pinpoint the models of interest.
- First-order theories provide a basis for the kind of reasoning just described.

Introduction

- When judging the validity of first-order formulas we are typically interested in a particular domain of discourse, which in addition to a specific underlying vocabulary includes also properties that one expects to hold
- For instance, in formal methods involving the integers, one is not interested in showing that the formula

$$
\forall x, y . x<y \rightarrow x<y+y
$$

is true for all possible interpretations of the symbols < and +, but only for those interpretations in which $<$ is the usual ordering over the integers and + is the addition function.

- We are not interested in validity in general but in validity with respect to some background theory - a logical theory that fixes the interpretations of certain predicates and function symbols.

Maria João Frade (HASLab, DI-UM)

Theories - basic definitions

Let \mathcal{V} be a vocabulary of a first-order language.

- A first-order theory \mathcal{T} is a set of \mathcal{V}-sentences that is closed under derivability (i.e., $\mathcal{T} \models \phi$ implies $\phi \in \mathcal{T}$).
- A \mathcal{T}-structure is a \mathcal{V}-structure that validates every formula of \mathcal{T}
- A formula ϕ is \mathcal{T}-valid (resp. \mathcal{T}-satisfiable) if every (resp. some) \mathcal{T}-structure validates ϕ.
- Two formulae ϕ and ψ are \mathcal{T}-equivalent if $\mathcal{T} \models \phi \leftrightarrow \psi$ (i.e, for every \mathcal{T}-structure $\mathcal{M}, \mathcal{M} \models \phi$ iff $\mathcal{M} \models \psi$).

Theories - basic definitions

- \mathcal{T} is said to be a consistent theory if at least one \mathcal{T}-structure exists.
- \mathcal{T} is said to be a complete theory if, for every \mathcal{V}-sentence ϕ, either $\mathcal{T} \models \phi$ or $\mathcal{T}=\neg \phi$
- \mathcal{T} is said to be a decidable theory if there exists a decision procedure for checking \mathcal{T}-validity

Theories

- For a given \mathcal{V}-structure \mathcal{M}, the theory $\operatorname{Th}(\mathcal{M})$ (of a single-element class of \mathcal{V}-structures) is complete. These semantically defined theories are useful when one is interested in reasoning in some specific mathematical domain such as the natural numbers, rational numbers, etc.
- However, we remark that such theory may lack an axiomatisation, which seriously compromises its use in purely deductive reasoning.
- If a theory is complete and has a recursive set of axioms, it can be shown to be decidable.

Theories - basic definitions

- Let K be a class of \mathcal{V}-structures. The theory of K, denoted by $\operatorname{Th}(K)$, is the set of sentences valid in all members of K, i.e., $\operatorname{Th}(K)=\{\phi \mid \mathcal{M} \models \phi$, for all $\mathcal{M} \in K\}$.
- Given a set of \mathcal{V}-sentences Γ, the class of models for Γ, denoted by $\operatorname{Mod}(\Gamma)$, is defined as $\operatorname{Mod}(\Gamma)=\{\mathcal{M} \mid$ for all $\phi \in \Gamma, \mathcal{M} \models \phi\}$.
- A subset $\mathcal{A} \subseteq \mathcal{T}$ is called an axiom set for the theory \mathcal{T}, when \mathcal{T} is the deductive closure of \mathcal{A}, i.e. $\phi \in \mathcal{T}$ iff $\mathcal{A} \models \phi$. A theory \mathcal{T} is finitely (resp. recursively) axiomatisable if it possesses a finite (resp. recursive) set of axioms.
- A fragment of a theory is a syntactically-restricted subset of formulae of the theory.

Maria Joäo Frade (HASLab, DI-UM)

FOL \& SMT
VF 2020/21 38/73

Theories

- The decidability criterion for \mathcal{T}-validity is crucial for mechanised reasoning in the theory \mathcal{T}.
- It may be necessary (or convenient) to restrict the class of formulas under consideration to a suitable fragment;
- The \mathcal{T}-validity problem in a fragment refers to the decision about whether or not $\phi \in \mathcal{T}$ when ϕ belongs to the fragment under consideration.
- A fragment of interest is the quantifier-free (QF) fragment.

Equality and uninterpreted functions \mathcal{T}_{E}

- The vocabulary of the theory of equality \mathcal{T}_{E} consists of
- equality ($=$), which is the only interpreted symbol (whose meaning is defined via the axioms of \mathcal{T}_{E});
- constant, function and predicate symbols, which are uninterpreted (except as they relate to $=$).
- Axioms
reflexivity: $\quad \forall x . x=x$
symmetry: $\quad \forall x, y, x=y \rightarrow y=x$
transitivity: $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
congruence for functions: for every function $f \in \mathcal{T}$ with $\operatorname{ar}(f)=n$,

$$
\forall \bar{x}, \bar{y} .\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

congruence for predicates: for every predicate $P \in \mathcal{T}$ with $\operatorname{ar}(P)=n$,

$$
\forall \bar{x}, \bar{y} \cdot\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)
$$

- $\mathcal{T}_{\text {E }}$-validity is undecidable, but efficiently decidable for the QF fragment.

Peano arithmetic $\mathcal{T}_{\text {PA }}$

- The theory of Peano arithmetic $\mathcal{T}_{\text {PA }}(1889)$ is a first-order approximation of the theory of natural numbers.
- Vocabulary: $\mathcal{V}_{\mathrm{PA}}=\{0,1,+, \times,=\}$
- Axioms:
- axioms of \mathcal{T}_{E}
- $\forall x . \neg(x+1=0)$
- $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
(successor)
- $\forall x \cdot x+0=x$ (plus zero)
- $\forall x, y \cdot x+(y+1)=(x+y)+1$ (plus successor)
- $\forall x . x \times 0=0$
(time zero)
- $\forall x, y \cdot x \times(y+1)=(x \times y)+x$
(times successor)
- for every formula ϕ with $\operatorname{FV}(\phi)=\{x\}$
(axiom schema of induction)

$$
\phi[0 / x] \wedge(\forall x . \phi \rightarrow \phi[x+1 / x]) \rightarrow \forall x . \phi
$$

- $\mathcal{T}_{\text {PA }}$ is incomplete and undecidable, even for the quantifier-free fragment.

Natural numbers and integers

The semantic theories of natural numbers and integers are neither axiomatizable nor decidable.

Kurt Gödel first incompleteness theorem (1931)

Any effectively generated (i.e. recursively enumerable) theory capable of expressing elementary arithmetic cannot be both consistent and complete. In particular, for any consistent, effectively generated formal theory that proves certain basic arithmetic truths, there is an arithmetical statement that is true, but not provable in the theory.

- A semantic theory $\operatorname{Th}(\mathcal{M})$, where \mathcal{M} interprets each symbol with its standard mathematical meaning in the interpretation domain, is always a complete theory.
- Therefore, the semantic theories of natural numbers and integers cannot be axiomatisable, not even by an infinite recursive set of axioms.

Maria João Frade (HASLab, DI-UM)

FOL \& SMT
VF 2020/21 $42 / 73$

Peano arithmetic $\mathcal{T}_{\text {PA }}$

- The incompleteness result is indeed striking because, at the end of the 19th century, G. Peano had given a set of axioms that were shown to characterise natural numbers up to isomorphism. One of these axioms - the axiom of induction - involves quantification over arbitrary properties of natural numbers: "for every unary predicate P, if $P(0)$ and $\forall n . P(n) \rightarrow P(n+1)$ then $\forall n . P(n)$ ", which is not a first-order axiom.
- It is however important to notice that the approximation done by a first-order axiom scheme that replaces the arbitrary property P by a first-order formula ϕ with a free variable x :

$$
\phi[0 / x] \wedge(\forall x . \phi \rightarrow \phi[x+1 / x]) \rightarrow \forall x . \phi
$$

restrict reasoning to properties that are definable by first-order formulas, which can only capture a small fragment of all possible properties of natural number. (Recall that the set of first-order formulas is countable while the set of arbitrary properties of natural numbers is $\mathcal{P}(\mathbb{N})$, which is uncountable.)

Presburger arithmetic $\mathcal{T}_{\mathbb{N}}$

- The theory of Presburger arithmetic $\mathcal{T}_{\mathbb{N}}$ is the additive fragment of the theory of Peano.
- Vocabulary: $\mathcal{V}_{\mathbb{N}}=\{0,1,+,=\}$
- Axioms:
- axioms of \mathcal{T}_{E}
- $\forall x . \neg(x+1=0)$
- $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
- $\forall x . x+0=x$ (plus zero)
- $\forall x, y \cdot x+(y+1)=(x+y)+1$
(plus successor)
- for every formula ϕ with $\mathrm{FV}(\phi)=\{x\} \quad$ (axiom schema of induction)

$$
\phi[0 / x] \wedge(\forall x . \phi \rightarrow \phi[x+1 / x]) \rightarrow \forall x . \phi
$$

- $\mathcal{T}_{\mathbb{N}}$ is both complete and decidable (Presburger, 1929), but it has double exponential complexity.

Maria João Frade (HASLab, DI-UM)

$\mathcal{T}_{\mathbb{Z}}$ versus $\mathcal{T}_{\mathbb{N}}$

Consider the $\mathcal{T}_{\mathbb{Z}}$-formula $\quad \forall x, y . \exists z . y+3 x-4>-2 z$

- For each variable v ranging over the integers, introduce two variables, v_{p} and v_{n} ranging over the non-negative integers.

$$
\forall x_{p}, x_{n}, y_{p}, y_{n} \cdot \exists z_{p}, z_{n} \cdot\left(y_{p}-y_{n}\right)+3\left(x_{p}-x_{n}\right)-4>-2\left(z_{p}-z_{n}\right)
$$

- Eliminate negation

$$
\forall x_{p}, x_{n}, y_{p}, y_{n} \cdot \exists z_{p}, z_{n} \cdot y_{p}+3 x_{p}+2 z_{p}>2 z_{n}+y_{n}+3 x_{n}+4
$$

- Eliminate $>$ and numbers.

$$
\begin{gathered}
\forall x_{p}, x_{n}, y_{p}, y_{n} \cdot \exists z_{p}, z_{n} \cdot \exists u . \neg(u=0) \wedge y_{p}+x_{p}+x_{p}+x_{p}+z_{n}+z_{p}= \\
z_{n}+z_{n}+y_{n}+x_{n}+x_{n}+x_{n}+1+1+1+1+u
\end{gathered}
$$

Linear integer arithmetic $\mathcal{T}_{\mathbb{Z}}$

- Vocabulary: $\mathcal{V}_{\mathbb{Z}}=\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,>,=\}$
- Each symbol is interpreted with its standard mathematical meaning in \mathbb{Z}.
- Note: ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions. For example, the intended meaning of $3 \cdot x$ is $x+x+x$, and of $-2 \cdot x$ is $-x-x$.

$\mathcal{T}_{\mathbb{Z}}$ and $\mathcal{T}_{\mathbb{N}}$ have the same expressiveness

For every formula of $\mathcal{T}_{\mathbb{Z}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{N}}$.
For every formula of $\mathcal{T}_{\mathbb{N}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{Z}}$.

Let ϕ be a formula of $\mathcal{T}_{\mathbb{Z}}$ and ψ a formula of $\mathcal{T}_{\mathbb{N}}$. ϕ and ψ are equisatisfiable if

$$
\phi \text { is } \mathcal{T}_{\mathbb{Z}} \text {-satisfiable } \quad \text { iff } \quad \psi \text { is } \mathcal{T}_{\mathbb{N}} \text {-satisfiable }
$$

- $\mathcal{T}_{\mathbb{Z}}$ is both complete and decidable via the rewriting of $\mathcal{T}_{\mathbb{Z}}$-formulae into $\mathcal{T}_{\mathbb{N}}$-formulae.

Maria João Frade (HASLab, DI-UM)
FOL \& SMT
VF 2020/21 46/73

$\mathcal{T}_{\mathbb{N}}$ versus $\mathcal{T}_{\mathbb{Z}}$

The $\mathcal{T}_{\mathbb{N}}$-formula

$$
\forall x . \exists y . x=y+1
$$

is equisatisfiable to the $\mathcal{T}_{\mathbb{Z}}$-formula

$$
\forall x . x>-1 \rightarrow \exists y . y>-1 \wedge x=y+1
$$

To decide $\mathcal{T}_{\mathbb{Z}}$-validity for a $\mathcal{T}_{\mathbb{Z}}$-formula ϕ

- transform $\neg \phi$ to an equisatisfiable $\mathcal{T}_{\mathbb{N}}$-formula $\neg \psi$
- decide $\mathcal{T}_{\mathbb{N}}$-validity of ψ

This is a $\mathcal{T}_{\mathbb{N}}$-formula equisatisfiable to the original one.

Linear rational arithmetic $\mathcal{T}_{\mathbb{Q}}$

- The full theory of rational numbers (with addition and multiplication) is undecidable, since the property of being a natural number can be encoded in it.
- But the theory of linear arithmetic over rational numbers $\mathcal{T}_{\mathbb{Q}}$ is decidable, and actually more efficiently than the corresponding theory of integers.
- Vocabulary: $\mathcal{V}_{\mathbb{Q}}=\{0,1,+,-,=, \geq\}$
- Axioms: 10 (see Manna's book)
- Rational coefficients can be expressed in $\mathcal{T}_{\mathbb{Q}}$.

The formula $\frac{5}{2} x+\frac{4}{3} y \leq 6$ can be written as the $\mathcal{T}_{\mathbb{Q}}$-formula

$$
36 \geq 15 x+8 y
$$

- $\mathcal{T}_{\mathbb{Q}}$ is decidable and its quantifier-free fragment is efficiently decidable.

Difference arithmetic

- Difference logic is a fragment (a sub-theory) of linear arithmetic.
- Atomic formulas have the form $x-y \leq c$, for variables x and y and constant c.
- Conjunctions of difference arithmetic inequalities can be checked very efficiently for satisfiability by searching for negative cycles in weighted directed graphs.
Graph representation: each variable corresponds to a node, and an inequality of the form $x-y \leq c$ corresponds to an edge from y to x with weight c.
- The quantifier-free satisfiability problem is solvable in $\mathcal{O}(|V||E|)$.

Reals $\mathcal{T}_{\mathbb{R}}$

- Surprisingly, the theory of reals $\mathcal{T}_{\mathbb{R}}$ is decidable even in the presence of multiplication and quantifiers.
- Vocabulary: $\mathcal{V}_{\mathbb{R}}=\{0,1,+, \times,-,=, \geq\}$
- Axioms: 17 (see Manna's book)

The inclusion of multiplication allows a formula like $\exists x . x^{2}=3$ to be expressed (x^{2} abbreviates $x \times x$). This formula should be $\mathcal{T}_{\mathbb{R}}$-valid, since the assignment $x \mapsto \sqrt{3}$ satisfies $x^{2}=3$.

- $\mathcal{T}_{\mathbb{R}}$ is decidable (Tarski, 1949). However, it has a high time complexity (doubly exponential).

Maria João Frade (HASLab, DI-UM)

FOL \& SMT
VF 2020/21 50/73

Arrays \mathcal{T}_{A} and $\mathcal{T}_{\mathrm{A}}^{=}$

- Arrays are modeled in logic as applicative data structures.
- Vocabulary: $\mathcal{V}_{\mathrm{A}}=\{$ read, write,$=\}$
- Axioms:
- (reflexivity), (symmetry) and (transitivity) of \mathcal{T}_{E}
- $\forall a, i, j . i=j \rightarrow \operatorname{read}(a, i)=\operatorname{read}(a, j)$
- $\forall a, i, j, v . i=j \rightarrow \operatorname{read}(\operatorname{write}(a, i, v), j)=v$
- $\forall a, i, j, v . \neg(i=j) \rightarrow \operatorname{read}(w r i t e(a, i, v), j)=\operatorname{read}(a, j)$
- = is only defined for array elements.
- $\mathcal{T}_{\mathrm{A}}=$ is the theory \mathcal{T}_{A} plus an axiom (extensionality) to capture $=$ on arrays.
- $\forall a, b$. $(\forall i . \operatorname{read}(a, i)=\operatorname{read}(b, i)) \leftrightarrow a=b$
- Both \mathcal{T}_{A} and $\mathcal{T}_{\mathrm{A}}=$ are undecidable. But their quantifier-free fragments are decidable.
- Alternative fragments are often preferred that subsume the quantifier-free fragment (allowing restricted forms of index quantification).

Other theories

- Fixed-size bit-vectors

Model bit-level operations of machine words, including 2^{n}-modular operations (where n is the word size), shift operations, etc
Decision procedures for the theory of fixed-size bit vectors often rely on appropriate encodings in propositional logic.

- Algebraic data structures

The theories describe data structures that are ubiquitous in programming like lists, stacks, binary trees, etc.
These theories are built around the theory of equality with uninterpreted functions, and are normally efficiently decidable for the quantifier-free fragment.

Satisfiability Modulo Theories

- The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT problem for first-order logic, with the interpretation of symbols constrained by (a combination of) specific theories (i.e., it is the problem of determining, for a theory \mathcal{T} and given a formula ϕ, whether ϕ is \mathcal{T}-satisfiable).
- Usually SMT solvers address the issue of satisfiability of quantifier-free first-order CNF formulas, using as building blocks:
- a propositional SAT solver, and
- state-of-the-art theory solvers.
(Next lecture we will see more about this subject.)

Combining theories

- In practice, the most of the formulae we want to check need a combination of theories.

Checking $\quad x+2=y \rightarrow f(\operatorname{read}(\operatorname{write}(a, x, 3), y-2))=f(y-x+1)$ involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

- Given theories \mathcal{T}_{1} and \mathcal{T}_{2} such that $\mathcal{V}_{1} \cap \mathcal{V}_{2}=\{=\}$, the combined theory $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ has vocabulary $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ and axioms $A_{1} \cup A_{2}$
- [Nelson\&Oppen, 1979] showed that if
- satisfiability of the quantifier-free fragment of \mathcal{T}_{1} is decidable,
- satisfiability of the quantifier-free fragment of \mathcal{T}_{2} is decidable, and
- certain technical requirements are met,
then the satisfiability in the quantifier-free fragment of $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is decidable.
- Most methods available are based on the Nelson-Oppen combination method.

SMT-solvers basic architecture

Basic architecture

SMT solvers

- In the last two decades, SMT procedures have undergone dramatic progress. There has been enormous improvements in efficiency and expressiveness of SMT procedures for the more commonly occurring theories.
- The annual competition ${ }^{1}$ for SMT procedures plays an important rule in driving progress in this area.
- A key ingredient is SMT-LIB², an online resource that proposes, as a standard, a unified notation and a collection of benchmarks for performance evaluation and comparison of tools.
- Some SMT solvers: Z3, CVC4, Alt-Ergo,Yices 2, MathSAT 5, Boolector, ...
- Usually, SMT solvers accept input either in a proprietary format or in SMT-LIB format

${ }^{1}$ http://www.smtcomp.org
 ${ }^{2}$ http://smtlib.cs.uiowa.edu

Maria João Frade (HASLab, DI-UM) FOL \& SMT
VF 2020/21 57/73

The SMT-LIB language

- Textual, command-based I/O format for SMT solvers.
- Two versions: SMT-LIB 1.0, SMT-LIB 2.0 (last version: 2.6)
- Intended mostly for machine processing. (SMT solvers are typically used for verification as backends)
- All input to and output from a conforming solver is a sequence of one or more S-expressions

$$
\langle\text { S-exp }\rangle::=\langle\text { token }\rangle \mid\left(\langle\text { S-exp }\rangle^{*}\right)
$$

- SMT-LIB language expresses logical statements in a many-sorted first-order logic. Each well-formed expression has a unique sort (type).
- Typical usage:
- Asserting a series of logical statements, in the context of a given logic
- Checking their satisfiability in the logic.
- Exploring resulting models (if SAT) or proofs (if UNSAT)

The SMT-LIB repository

- Catalog of theory declarations - semi-formal specification of theories of interest
- A theory defines a vocabulary of sorts and functions. The meaning of the theory symbols are specified in the theory declaration
- Catalog of logic declarations - semi-formal specification of fragments of (combinations of) theories
- A logic consists of one or more theories, together with some restrictions on the kinds of expressions that may be used within that logic.
- Library of benchmarks
- Utility tools (parsers, converters, ...)
- Useful links (documentation, solvers, ...)
- See http://smtlib.cs.uiowa.edu

Theorem provers / SAT checkers

ϕ is valid iff $\quad \neg \phi$ is unsatisfiable

It may happen that, for a given formula, a SMT solver returns a timeout, while another SMT solver returns a concrete answer.

Example with SMT-LIB 2

(set-logic QF_UFLIA)
(declare-fun $\times() \operatorname{lnt}$)
(declare-fun y () Int)
(declare-fun $z() \operatorname{lnt})$
(assert (distinct x y z))
(assert (> (+xy) (* 2 z$)$))
(assert $(>=x 0)$)
(assert ($>=\mathrm{y} 0$))
(assert (>= z 0))
(check-sat)
(get-model)
(get-value (x y z))
sat
(model (define-fun z () Int 1)
(define-fun y () Int 0)
(define-fun $x()$ Int 3))
$((x 3)(y 0)(z 1))$
Maria João Frade (HASLab, DI-UM)
FOL \& SMT
VF 2020/21 $61 / 73$

Example with SMT-LIB 2

Logical encoding of the C program:

$$
\begin{aligned}
& x=x+1 ; \\
& a[i]=x+2 ; \\
& y=a[i] ;
\end{aligned}
$$

- We use the logic QF_AUFLIA (quantifier-free linear formulas over the theory of integer arrays extended with free sort and function symbol).
- An access to array a[i] is encoded by (select a i).
- An assigment $a[i]=v$ is encoded by (store a i v). The result is a new array in everything equal to array a except in position i which now has the value v.
- Assignments such as $x=x+1$ are encoded by introducing variables (e.g. $x 0$ and x 1) which represent the value of x before and after the assignment. The logical encoding would be in this case (= x1 (+ x0 1)).

Example with SMT-LIB 2

(set-logic QF_UFLIA)
(set-option :produce-unsat-cores true)
(declare-fun $\times() \mathrm{Int})$
(declare-fun y () Int)
(declare-fun z () Int)
(assert (! (distinct xyz) :named a1))
(assert $(!(>(+x y)(* 2 z)):$ named a2))
(assert (! (>=x0) :named a3))
(assert (! (>=y 0) :named a4))
(assert (! (>=z0) :named a5))
(assert (! (>=zx) :named a6))
(assert (! (>xy) :named a7))
(assert (! (>y z) :named a8))
(check-sat)
(get-unsat-core)
unsat
(a7 a2 a6)
Maria João Frade (HASLab, DI-UM) FOL \& SMT

Example with SMT-LIB 2

(set-logic QF_AUFLIA)

;; Logical encoding of the C program:

$\ddot{;}$	$x=x+1 ;$
$\ddot{;}$	$a[i]=x+2 ;$
.	$y=[i]$

(declare-const a0 (Array Int Int))
(declare-const a1 (Array Int Int))
(declare-const i0 Int)
(declare-const $\times 0 \mathrm{Int}$)
(declare-const x1 Int)
(declare-const y1 Int)
(assert (=x1 (+x01)))
(assert (= a1 (store a0 i0 (+ x1 2))))
(assert (=y1 (select a1 i0)))
;; Is it true that after the execution of program $\mathrm{y}>\mathrm{x}$ holds?
(assert (not (>y1 x1)))
(check-sat)
unsat
Maria João Frade (HASLab, DI-UM) FOL \& SMT
VF 2020/21 $64 / 73$

Applications

SMT solvers are the core engine of many tools for

- program analysis
- program verification
- test-cases generation
- bounded model checking of SW
- modeling
- planning and scheduling
-.

Bounded model checking of SW

- The key idea of Bounded Model Checking (BMC) is to encode bounded behaviors of the system that enjoy some given property as a logical formula whose models (if any) describe a system trace leading to a violation of the property.
- Preliminarily to the generation of the formula, the input program is preprocessed (which includes the inlining of functions and procedures and the unwinding of loops a limited number of times).
- To convert a program into a logical formula:
(1) Convert the program into a single-assignment form in wich multiple indexed version of each variable are used (a new version for each assignment made in the original variable).
(2) Convert the program into conditional normal form: a sequence of statements of the form if b then S, where S is an atomic statement.

Program verification/analysis

The general architecture of program verification/analysis tools is powered by a Verification Conditions Generator (VCGen) that produces verification conditions (also called "proof obligations") that are then passed to a SMT solver to be "discharged". Examples of such tools: Boogie, Why3, Frama-C, ESC/JAVA2.

Maria João Frade (HASLab, DI-UM)

FOL \& SMT
VF 2020/21 66/73

Bounded model checking of SW

$$
\begin{aligned}
& \text { original program } \\
& \mathrm{i}=\mathrm{a}[0] \text {; } \\
& \text { if }(x>0)\{ \\
& \text { if }(x<10) \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \text { else } \\
& \mathrm{x}=\mathrm{x}-1 \text {; } \\
& \text { \} } \\
& \text { assert (} \mathrm{y}>0 \text { \&\& } \mathrm{y}<5 \text {); } \\
& \mathrm{a}[\mathrm{y}]=\mathrm{i} ; \quad \text { conditional normal form } \\
& \text { if (true) } i_{1}=a_{0}[0] \text {; } \\
& \text { if }\left(x_{0}>0 \text { \&\& } x_{0}<10\right) \quad x_{1}=x_{0}+1 \text {; } \\
& \text { if }\left(x_{0}>0 \text { \&\& }!\left(x_{0}<10\right)\right) x_{2}=x_{0}-1 \text {; } \\
& \Longrightarrow \quad \text { if }\left(x_{0}>0 \text { \&\& } x_{0}<10\right) x_{3}=x_{1} \text {; } \\
& \text { if }\left(x_{0}>0 \text { \&\& }!\left(x_{0}<10\right)\right) x_{3}=x_{2} \text {; } \\
& \text { if (} \mathrm{x}_{0}>0 \text {) } \mathrm{x}_{4}=\mathrm{x}_{3} ; \quad \text { if }\left(!\left(\mathrm{x}_{0}>0\right)\right) \mathrm{x}_{4}=\mathrm{x}_{0} \\
& \text { if (true) assert (} \mathrm{y}_{0}>0 \text { \&\& } \mathrm{y}_{0}<5 \text {); } \\
& \text { if (true) } \mathrm{a}_{1}\left[\mathrm{y}_{0}\right]=\mathrm{i}_{1} \text {; }
\end{aligned}
$$

Maria João Frade (HASLab, DI-UM) FOL \& SMT

Bounded model checking of SW

Now, one builds two sets of quantifier-free formulas \mathcal{C} and \mathcal{P} :

- \mathcal{C} containing the logical encoding of the program
- \mathcal{P} containing the properties to be checked

$$
\begin{aligned}
\mathcal{C}=\{ & i_{1}=a_{0}[0], \\
& \left(x_{0}>0 \wedge x_{0}<10\right) \rightarrow x_{1}=x_{0}+1, \\
& \left(x_{0}>0 \wedge \neg\left(x_{0}<10\right)\right) \rightarrow x_{2}=x_{0}-1, \\
& \left(x_{0}>0 \wedge x_{0}<10\right) \rightarrow x_{3}=x_{1}, \\
& \left(x_{0}>0 \wedge \neg\left(x_{0}<10\right)\right) \rightarrow x_{3}=x_{2}, \\
& x_{0}>0 \rightarrow x_{4}=x_{3}, \quad \neg\left(x_{0}>0\right) \rightarrow x_{4}=x_{0}, \\
& a_{1}\left[y_{0}\right]=i_{1} \\
\mathcal{P}=\{ & \left.\left(y_{0}>0 \wedge y_{0}<5\right)\right\}
\end{aligned}
$$

$$
\mathcal{C} \text { and } \mathcal{P} \text { are such that, } \mathcal{C} \not \models \mathcal{T} \bigwedge \mathcal{P} \quad \text { iff } \quad \text { no computation path of the program }
$$ violates any assert statement in it.

Program model in SMT-LIB 2

```
(set-logic QF_AUFLIA)
(declare-fun a_0 () (Array Int Int))
(declare-fun a_1 () (Array Int Int))
(declare-fun x_0 () Int)
(declare-fun x_1 () Int)
(declare-fun x_2 () Int)
(declare-fun x_3 () Int)
(declare-fun x_4 () Int)
(declare-fun y_0 () Int)
(declare-fun i_0 () Int)
(declare-fun i_1 () Int)
(assert (= i_1 (select a_0 0)))}\quad;\mp@subsup{i}{1}{}=\mp@subsup{a}{0}{}[0
(assert (=> (and (> x_0 0) (> x_0 10)) (= x_1 (+ x_0 1))))
(assert (=> (and (> x_0 0) (not (> x_0 10))) (= x_2 (- x_0 1))))
(assert (=> (and (> x_0 0) (> x_0 10)) (= x_3 (+ x_1))))
(assert (=> (and (> x_0 0) (not (> x_0 10))) (= x_3 (- x_2))))
```



```
(assert (= a_1 (store a_0 y_0 i_1))) ; a [ [y0] = ic
(assert (not (and (> y_0 0) (> y_0 5)))) ; assert( (y0>0 && y0>5)
```


Bounded model checking of SW

- Note that $\mathcal{C} \models_{\mathcal{T}} \bigwedge \mathcal{P} \quad$ iff $\quad \mathcal{C} \cup\{\neg \bigwedge \mathcal{P}\} \models_{\mathcal{T}} \perp$
iff $\bigwedge \mathcal{C} \wedge \neg \wedge \mathcal{P}$ is \mathcal{T}-unsatisfiable
- The \mathcal{T}-models of $(\bigwedge \mathcal{C} \wedge \neg \bigwedge \mathcal{P})$ (if any) correspond to the execution paths of the program that lead to an assertion violation.
- This formula is fed to a SMT solver.
- If $\mathcal{C} \cup\{\neg \bigwedge \mathcal{P}\}$ is satisfiable, a counter-example is show and the corresponding trace is built and returned to the user for inspection.

Maria João Frade (HASLab, DI-UM)

FOL \& SMT
VF 2020/21 $70 / 73$

Scheduling

Job-shop-scheduling decision problem

- Consider n jobs.
- Each job has m tasks of varying duration that must be performed consecutively on m machines.
- The start of a new task can be delayed as long as needed in order for a machine to become available, but tasks cannot be interrupted once they are started.

Given a total maximum time max and the duration of each task, the problem consists of deciding whether there is a schedule such that the end-time of every task is less than or equal to max time units.

Two types of constraints:

- Precedence between two tasks in the same job.
- Resource: a machine cannot run two different tasks at the same time.

Scheduling

- $d_{i j}$ - duration of the j-th task of the job i
- $t_{i j}$-start-time for the j-th task of the job i
- Constraints
- Precedence: for every $i, j, \quad t_{i j+1} \geq t_{i j}+d_{i j}$
- Resource: for every $i \neq i^{\prime}, \quad\left(t_{i j} \geq t_{i^{\prime} j}+d_{i^{\prime} j}\right) \vee\left(t_{i^{\prime} j} \geq t_{i j}+d_{i j}\right)$
- The start time of the first task of every job i must be greater than or equal to zero $t_{i 1} \geq 0$
- The end time of the last task must be less than or equal to max $t_{i m}+d_{i m} \leq \max$

Find a solution for this problem

$d_{i j}$	Machine 1	Machine 2		
Job 1	2	1	and	$\max =8$
Job 2	3	1		
Job 3	2	3		

