
Calculus of Communicating Systems

Renato Neves

The three ingredients of cyber-physical systems

Concurrency

Communication

Hybrid interaction

Renato Neves 2 / 20

Table of Contents

Syntax and semantics

A simple concurrent language and its semantics

Putting things into practice

Renato Neves Syntax and semantics 3 / 20

Sprinkles of linguistics

We will face two linguistic concepts that every programmer
ought to know

• syntax - determines whether a sentence is (in)valid
• semantics - the meaning of valid sentences

This statement is false !

Renato Neves Syntax and semantics 4 / 20

Sprinkles of linguistics

Example (syntax)
The sentence (program) x := p ; q is forbidden by most
programming languages

Example (semantics)
The sentence (program) x := 1 has the meaning “writes 1 in
the memory address of x”

Renato Neves Syntax and semantics 5 / 20

The need for semantics in programming

How can one prove that a program is correct if its semantics
(i.e. its meaning) is not established a priori?

Renato Neves Syntax and semantics 6 / 20

Transition systems as semantic providers

Transition systems are an ubiquitous mechanism for defining
semantics of programming languages

We will use them to define the semantics of a simple (but
powerful !!) concurrent language …

and then base on this learning step to tackle Dijkstra’s

Dining Philosophers Problem (circa 1965)

Renato Neves Syntax and semantics 7 / 20

Table of Contents

Syntax and semantics

A simple concurrent language and its semantics

Putting things into practice

Renato Neves A simple concurrent language and its semantics 8 / 20

Calculus of communicating systems

Syntax
P,Q ::= X | a.P |

∑
i∈I Pi | P ∥ Q | P\L | . . .

X is a process name

a.P communicates via channel a and proceeds as P∑
i∈I Pi non-deterministic choice between processes Pi

P ∥ Q parallel composition between processes P and Q

P\L makes channels in L private ‘outside’ of P

Renato Neves A simple concurrent language and its semantics 9 / 20

First steps with CCS

Conventions

• 0 =
∑

i∈∅ Pi (denotes a terminating process)
• ā denotes outgoing information via channel a
• τ denotes an invisible action

Examples (processes in CCS)
• a.0 ∥ ā.0 - two processes connected via channel a;
information flows in one direction

• a.b̄.0 ∥ ā.b.0 - info. flows in one direction via a and then in
the inverse direction via b

• (a.b̄.0 ∥ ā.b.0)\{a,b} - both channels a,b now private

Renato Neves A simple concurrent language and its semantics 10 / 20

First steps with CCS

Which of these expressions are valid sentences in CCS?

1. a.b.P+ Q
2. a+ b
3. P.a
4. (P+ Q).a
5. a.0 + b.0
6. P.Q

Renato Neves A simple concurrent language and its semantics 11 / 20

CCS and cyclic behaviour

We now add the construct rec X. P to the syntax of CCS

Example
rec X. a.b.X - receive communication through a and then
through b; after that repeat protocol

Example (the coffee machine and the student)
(rec X. coin.coffee.X) || (rec Y. coin.coffee.wrk.Y)

Write down a coffee machine that fails to deliver coffee
sometimes

Renato Neves A simple concurrent language and its semantics 12 / 20

Semantics of CCS

Every process yields a transition system according to the rules

a.P a−→ P
(pr) Pi

a−→ Q∑
i∈I Pi

a−→ Q
(ch) P a−→ P′

P\L a−→ P′\L
(res)a,a ̸∈ L

P a−→ P′

P ∥ Q a−→ P′ ∥ Q
(coml) Q a−→ Q′

P ∥ Q a−→ P ∥ Q′
(comr)

P a−→ P′ Q ā−→ Q′

P ∥ Q τ−→ P′ ∥ Q′
(com)

P[rec X. P/X] a−→ P′

rec X. P a−→ P′
(rec)

Substitution of X in P by rec X. P

Renato Neves A simple concurrent language and its semantics 13 / 20

First steps with CCS

What are the semantics of the following processes?

1. a.b.0
2. a.b.0 + c.d.0
3. a.b.0 ∥ c.d.0
4. rec X. a.b.X

Renato Neves A simple concurrent language and its semantics 14 / 20

Table of Contents

Syntax and semantics

A simple concurrent language and its semantics

Putting things into practice

Renato Neves Putting things into practice 15 / 20

CCS at work

With the syntax and semantics of CCS
now in place, we put on our working
hats and start to formally analyse
communication and synchronisation
mechanisms

Renato Neves Putting things into practice 16 / 20

Starvation and Mutual Exclusion in CCS

We define three recursive processes

S = rec X. start.finish.X (the semaphore)
P1 = rec Y. start.a1.b1.finish.Y (process 1)
P2 = rec Z. start.a2.b2.finish.Z (process 2)

and then write down (S ∥ P1 ∥ P2)\{start, finish}

Question: will we ever observe a sequence of actions
x1 . . . xn . . . such that xi = a1 and xi+1 = a2?

think of ai as writing on a critical region and of bi as ending this process

Renato Neves Putting things into practice 17 / 20

Dining Philosophers Problem

Two philosophers sitting at the table in front of each other
…thinking …

They will wish to eat and for that effect there are precisely two
forks on the table, at their left and right-hand sides

When Philosopher 1 wishes to eat he picks the fork on his left
and then the one on his right

Phil. 2 picks the fork on her left and then the fork on her right

Write down this system in CCS and discover whether it is
possible that both philosophers can no longer eat

Renato Neves Putting things into practice 18 / 20

Going beyond the Dining Philosophers Problem …

Detection of deadlocks and similar problems in

• Driving systems
• Pacemakers
• at the LHC
• …

See details at https://www.mcrl2.org/web/index.html

Renato Neves Putting things into practice 19 / 20

https://www.mcrl2.org/web/index.html

…and beyond CCS

Different extensions of CCS to the

• probabilistic
• quantum
• and timed

domains, among others

Stay tuned!

Renato Neves Putting things into practice 20 / 20

Robin Milner, A calculus of communicating systems,
Springer, 1980.

Renato Neves Putting things into practice 20 / 20

	Syntax and semantics
	A simple concurrent language and its semantics
	Putting things into practice

