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The three ingredients of cyber-physical systems

Concurrency

Communication

Hybrid interaction
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Sprinkles of linguistics

We will face two linguistic concepts that every programmer
ought to know

• syntax - determines whether a sentence is (in)valid
• semantics - the meaning of valid sentences

This statement is false !
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Sprinkles of linguistics

Example (syntax)
The sentence (program) x := p ; q is forbidden by most
programming languages

Example (semantics)
The sentence (program) x := 1 has the meaning “writes 1 in
the memory address of x”
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The need for semantics in programming

How can one prove that a program is correct if its semantics
(i.e. its meaning) is not established a priori?
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Transition systems as semantic providers

Transition systems are an ubiquitous mechanism for defining
semantics of programming languages

We will use them to define the semantics of a simple (but
powerful !!) concurrent language …

and then base on this learning step to tackle Dijkstra’s

Dining Philosophers Problem (circa 1965)
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Calculus of communicating systems

Syntax
P,Q ::= X | a.P |

∑
i∈I Pi | P ∥ Q | P\L | . . .

X is a process name

a.P communicates via channel a and proceeds as P∑
i∈I Pi non-deterministic choice between processes Pi

P ∥ Q parallel composition between processes P and Q

P\L makes channels in L private ‘outside’ of P
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First steps with CCS

Conventions

• 0 =
∑

i∈∅ Pi (denotes a terminating process)
• ā denotes outgoing information via channel a
• τ denotes an invisible action

Examples (processes in CCS)
• a.0 ∥ ā.0 - two processes connected via channel a;
information flows in one direction

• a.b̄.0 ∥ ā.b.0 - info. flows in one direction via a and then in
the inverse direction via b

• (a.b̄.0 ∥ ā.b.0)\{a,b} - both channels a,b now private
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First steps with CCS

Which of these expressions are valid sentences in CCS?

1. a.b.P+ Q
2. a+ b
3. P.a
4. (P+ Q).a
5. a.0 + b.0
6. P.Q
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CCS and cyclic behaviour

We now add the construct rec X. P to the syntax of CCS

Example
rec X. a.b.X - receive communication through a and then
through b; after that repeat protocol

Example (the coffee machine and the student)
(rec X. coin.coffee.X) || (rec Y. coin.coffee.wrk.Y)

Write down a coffee machine that fails to deliver coffee
sometimes
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Semantics of CCS

Every process yields a transition system according to the rules

a.P a−→ P
(pr) Pi

a−→ Q∑
i∈I Pi

a−→ Q
(ch) P a−→ P′

P\L a−→ P′\L
(res)a,a ̸∈ L

P a−→ P′

P ∥ Q a−→ P′ ∥ Q
(coml) Q a−→ Q′

P ∥ Q a−→ P ∥ Q′
(comr)

P a−→ P′ Q ā−→ Q′

P ∥ Q τ−→ P′ ∥ Q′
(com)

P[rec X. P/X] a−→ P′

rec X. P a−→ P′
(rec)

Substitution of X in P by rec X. P
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First steps with CCS

What are the semantics of the following processes?

1. a.b.0
2. a.b.0 + c.d.0
3. a.b.0 ∥ c.d.0
4. rec X. a.b.X
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CCS at work

With the syntax and semantics of CCS
now in place, we put on our working
hats and start to formally analyse
communication and synchronisation
mechanisms
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Starvation and Mutual Exclusion in CCS

We define three recursive processes

S = rec X. start.finish.X (the semaphore)
P1 = rec Y. start.a1.b1.finish.Y (process 1)
P2 = rec Z. start.a2.b2.finish.Z (process 2)

and then write down (S ∥ P1 ∥ P2)\{start, finish}

Question: will we ever observe a sequence of actions
x1 . . . xn . . . such that xi = a1 and xi+1 = a2?

think of ai as writing on a critical region and of bi as ending this process
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Dining Philosophers Problem

Two philosophers sitting at the table in front of each other
…thinking …

They will wish to eat and for that effect there are precisely two
forks on the table, at their left and right-hand sides

When Philosopher 1 wishes to eat he picks the fork on his left
and then the one on his right

Phil. 2 picks the fork on her left and then the fork on her right

Write down this system in CCS and discover whether it is
possible that both philosophers can no longer eat
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Going beyond the Dining Philosophers Problem …

Detection of deadlocks and similar problems in

• Driving systems
• Pacemakers
• at the LHC
• …

See details at https://www.mcrl2.org/web/index.html
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…and beyond CCS

Different extensions of CCS to the

• probabilistic
• quantum
• and timed

domains, among others

Stay tuned!
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Robin Milner, A calculus of communicating systems,
Springer, 1980.
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