Algebraic Lambda-calculus

Renato Neves

Universidade do Minho

Table of Contents

Background

Background 2 e

Recalling Lambda-calculus

x:Ael . rFv:AxB

MEx:A MNeEx*:1 MEmv: A

MrM=v:A M-u:B Mx:AFv:B
N=(v,u) : AxB IEXx:Av:A—B

FrMN-v:A—=B TFu:A
N~vu:B

Background 5 e

Sequential Composition Revisited

A “native” deductive rule

MrM-v:A x:AFu:B
lEx<+—v;u:B

It reads “bind the computation v to x and then run u”

Interpretation is defined as

[FTEv:A]l=f [x: AFu:B] =g
MTEx«viu:B)l=g-f

Background Ay

Table of Contents

Algebraic Operations in Lambda-calculus

SR Y o 5 /2

Signature
A set ¥ = {(o1,n),(02,m),...} of operations o; paired with
the of inputs n; they are supposed to receive

These constitute the aforementioned

Examples
= Exceptions : {(e,0)}
= Read a bit from the environment : {(read,2)}
- : {(waitp, 1) | n € N}
= Non-deterministic choice : {(+,2)}

Al lres Gt 9 el e

Algebraic Operations in Lambda-calculus

We take a signature ¥ of operations and introduce a new rule

(o,n) e X Vi<i<n TEm:A
Meo(my,...,mp): A

SR J S - e

= x: A wait;(x) : A — adds delay of one second to returning x

= [Fe(): A —raises an exception e

» [+ write,(m): A — writes v in memory and then runs m

x A X AFread(m x,m x) : A — receives a bit: if 0 returns

71 x and 7 x otherwise

SR J S

8 /33

Exercise

Define a A\-term with variable x that requests a bit from the user
and depending on the value read it returns x with either one or
two seconds of delay.

SR J S e

Table of Contents

Semantics

The Million-Dollar Question

How to provide semantics to such programming languages ?
The short answer: via monads !!

The long answer: see the next slides :-) ...

The Core Idea

Programs I' - v : A interpreted as functions

[TEv:A]:[F] — [A]
. and there exists only one function of type
' — [1]
Problem: it is then necessarily the case that
[TEx:1] =l F waiti(x) : 1]

despite these programs having different execution times

The Core Idea

Interpreted I = v : A as a function
[TEv:A]:[T] — [A]

But values now come with effects ...

Instead of having [A] as set of outputs, we will have a set T[A] of

effectful values

[TEm:A]:[I] — T[A]

T should thus be a set-constructor: given a set of outputs X it
returns a set of effectful values TX over X

For wait calls, the corresponding set-constructor T is defined as
X—=NxX

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as
X = X+ {e}

i.e. values in X plus an element e representing the exception

Another Problem

This idea of a set-constructor T looks good, but ...

. it breaks sequential composition

[FTEm:A] : [T] — T[A]
[x:AFn:B] : [A] — T[B]

Another Problem

This idea of a set-constructor T looks good, but ...

. it breaks sequential composition

[FTEm:A] : [T] — T[A]
[x:AFn:B] : [A] — T[B]

We'll need convert a function h: X — TY into one of type

h*:TX = TY

There are set-constructors T for which this is possible

In the case of wait-calls

f:X—=TY=NxY
F(n,x) = (n+ m, y) where £(x) = (m,)

In the case of exceptions

F:X>TY=Y+{e}
FEO=F0) (o=

Testing the Idea ...

[x:1F y + waiti(x); waita(y) : 1]
= [y : 1k waita(y) : 1]* - [x : 1+ waity(x) : 1]
= (v—=(2,v))" - (v—(1,v))

= v—(3,v)

Yet Another Problem

Idea of interpreting A-terms ' = m : A as functions
[TEm:A]:[I] — T[A]

looks good but it presupposes that all terms invoke effects

Some terms do not do this, e.g.
[x:AtFx:A]:[A] — [A]
Solution
T[A] should include values, and we should have
nap : [Al — TA]

which maps a value to its effect-free representation

In the case of wait-calls

TX=Nx X
nx(x) = (0,x)
(i.e. no wait call invoked)
In the case of exceptions
TX = X + {e}
nx(x) = x

(i.e. no exception e raised)

Monads Unlocked !!

Previous analysis leads to the notion of a

Monad

Triple (T,n,(—)*) where T is a set-constructor, 1 a function
nx : X — TX for each set X, and (—)* an operation

f: X—=>TY
f*:TX—>TY

s.t. the following laws hold: n* =id, f*-n=1f, (f*-g)* =f*-g*

These laws are required to forbid “weird” computational behaviour

Exercises

Show that the set-constructor
X—=NxX

can be equipped with a monadic structure

Show that the set-constructor
X—=X+1

can be equipped with a monadic structure

Exercises

Show that the set-constructor
X—={U|UCX}

can be equipped with a monadic structure

Show that the set-constructor
X = {u|p: X —10,1] a distribution}

can be equipped with a monadic structure

To Keep In Mind

Recall that,

= we fixed a signature ¥ of algebraic operations
= we now have monads at our disposal

= Programs [= v : A can be seen either as functions of type
Il — [A] or of type [I'] — T[A]

Semantics

Types A interpreted as sets [A]

[1] = {*} [AxB]=[A]x[B] [A — B]=(T[B])"

Typing contexts I interpreted as

I =10x: A1, x s Ay] = [A1]x -+ x [AL]

For each (o, n) € ¥ and set X we postulate the existence of a map

[olx: (TX)" — TX

Semantics

xi:AeT [TEv:A]=f [TFu:B]=g
IFrEx] = [TE«] =! [TEA(v,u): AxB] =({f,g)
[Mx:AFcm:B]=f [TEv:AxB]=f
[TEXx:A.m:A—B] =X [TEmv:Al=m-f

[TEv:A]l=f [TEem:A]=f [x:AFcn:B]l=g
[TFcreturnv: Al =n-f [TEex<«m;n:B]=g"-f

[TEv:A—=B]=f [TFu:Al=g
[THevu:B] =app-(f,g)

(o,n) e X Vi<i<n[lkem:Al=f
III— Fe J(mlv"‘m"):A]] = IIU]]|[A]'<ﬂ7~--7f">

Table of Contents

Sharing Contexts

Sharing Contexts 528

Exercise

Build a A\-term that receives a function f : A — A, a value x : A,
and applies f to x twice

In classical A-calculus such would be defined as

f:A—>Ax:AFf(fx):A

Sharing Contexts 7 28

Sharing Contexts

It will be useful to have two programs in sequential composition
that are able share contexts

l.e. it will be useful to have the following rule for seq. composition

[Fem: A [x:AF.n:B
[Fex+< m;n:B

Sharing Contexts 28

Sharing Contexts

It will be useful to have two programs in sequential composition
that are able share contexts

l.e. it will be useful to have the following rule for seq. composition

[Fem: A [x:AF.n:B
[Fex+< m;n:B

This would allow us to solve the previous exercise quite easily

frA—-Ax: Ay« f(x);f(y): A

Sharing Contexts 28

Sharing Contexts

Natural way of interpreting the rule

[TEecm:A] =1 [Mx:AFcn:B]l =g
[TEex <« m;n:B] =g*-(id,f)

but (id,) : [T] — [[xT[A] and g*: T([I]x[A]) — T[B]

Need to find a suitable function

str: [[Ix T[A] — T([F]x[A])

Sharing Contexts 28

Sharing Contexts

Natural way of interpreting the rule

[TEecm:A] =1 [Mx:AFcn:B]l =g
[TEex <« m;n:B] =g*-(id,f)

but (id,) : [T] — [[xT[A] and g*: T([I]x[A]) — T[B]

Need to find a suitable function
str: [F]x T[A] — T([T]1x[A])

. and there is actually a natural way of doing such !

Sharing Contexts 28

Tensorial Strength

For every monad T and function f : X — Y we can build

TF=(n-f)*:TX—>TY

Moreover for every x € X we can define

idy: Y > X XY, y—(xy)

From these we define the strength of T

str: X X TY = T(X X Y), (x,t)— (Tidy)(t)

[TEem:A] =f [T,x:AbFcn:B] =g
[TEex <+ m;n:B] =g*-str-(id,f)

Sharing Contexts 2028

Exercises

Given an explicit definition for the tensorial strength of

= the monad of exceptions,
= the monad of durations,
= the powerset monad,

= the distributions monad

Sharing Contexts a2

Exercises

Consider the A-term
f:A—Ax: Ay« f(x);f(y): A
What is its execution time when

f is given by (v — (1,v))

Sharing Contexts 528

Semantics

xi:AeT [TEv:A]=f [TFu:B]=g
IFrEx] = [TE«] =! [TEA(v,u): AxB] =({f,g)
[Mx:AFcm:B]=f [TEv:AxB]=f
[TEXx:A.m:A—B] =X [TEmv:Al=m-f
[TEv:A]l=f [TEem:A]=f [T,x:AkFcn:Bl=g
[TFcreturnv: Al =n-f [T x <« m;n:B]=g*-str-(id,f)

[TEv:A—=B]=f [TFu:Al=g
[THevu:B] =app-(f,g)

(o,n) e X Vi<i<n[lkem:Al=f
III— Fe J(mlv"‘m"):A]] = IIU]]|[A]'<ﬂ7~--7f">

Sharing Contexts -

	Background
	Algebraic Operations in Lambda-calculus
	Semantics
	Sharing Contexts

