
Simply Typed Lambda-calculus

Renato Neves

Table of Contents

The Calculus

Denotational Semantics

Renato Neves The Calculus 2 / 20

Deductive Reasoning

The essence
Knowledge obtained via assumptions and logical rules

Studied since Aristotle . . .

. . . long before the age of artificial computers

What does it have to do with programming ?

Renato Neves The Calculus 3 / 20

Deductive Reasoning

The essence
Knowledge obtained via assumptions and logical rules

Studied since Aristotle . . .

. . . long before the age of artificial computers

What does it have to do with programming ?

Renato Neves The Calculus 3 / 20

A Basic Deductive System

A,B . . . denote propositions and
1 a proposition that always holds

If A and B are propositions then

• A × B is a proposition – conjunction of A and B

• A → B is a proposition – implication of B from A

Renato Neves The Calculus 4 / 20

A Basic Deductive System

Γ denotes a list of propositions (often called context)

Γ ⊢ A reads “if the propositions in Γ hold then A also holds”

A ∈ Γ
Γ ⊢ A (ass) Γ ⊢ 1 (trv) Γ ⊢ A × B

Γ ⊢ A (π1) Γ ⊢ A × B
Γ ⊢ B (π2)

Γ ⊢ A Γ ⊢ B
Γ ⊢ A × B (prd) Γ,A ⊢ B

Γ ⊢ A → B (cry) Γ ⊢ A → B Γ ⊢ A
Γ ⊢ B (app)

Exercise
Show that A × B ⊢ B × A

Renato Neves The Calculus 5 / 20

New Knowledge From Old

The rules below are derivable from the previous system

Γ,A,B, ∆ ⊢ C
Γ,B,A, ∆ ⊢ C (exchange) Γ ⊢ A

Γ,B ⊢ A (weakening)

Γ,A ⊢ B Γ ⊢ A
Γ ⊢ B (cut elimination)

Renato Neves The Calculus 6 / 20

Exercises

Derive the following judgements

• A → B,B → C ⊢ A → C

• A → B,A → C ⊢ A → B × C

Renato Neves The Calculus 7 / 20

Back to programming . . .

The Bare Essentials of Programming

We should think of what are the basic features of programming . . .

• variables
• function application and creation
• pairing . . .

and base our study on the simplest language with such features . . .

Simply-typed λ-calculus

The basis of Haskell, ML, Eff, F#, Agda, Elm and many other
programming languages

Renato Neves The Calculus 9 / 20

Simply-typed λ-Calculus

Types are defined by A ::= 1 | A × A | A → A

Γ now a non-repetitive list of typed variables (x1 : A1 . . . xn : An)

Programs built according to the following deduction rules

x : A ∈ Γ
Γ ⊢ x : A (ass) Γ ⊢ ∗ : 1 (triv) Γ ⊢ t : A × B

Γ ⊢ π1 t : A (π1)

Γ ⊢ t : A Γ ⊢ s : B
Γ ⊢ ⟨t, s⟩ : A × B

(prd) Γ, x : A ⊢ t : B
Γ ⊢ λx : A. t : A → B (cry)

Γ ⊢ t : A → B Γ ⊢ s : A
Γ ⊢ t s : B (app)

Renato Neves The Calculus 10 / 20

Examples of λ-terms

x : A ⊢ x : A (identity)

x : A ⊢ ⟨x , x⟩ : A × A (duplication)

x : A × B ⊢ ⟨π2 x , π1 x⟩ : B × A (swap)

f : A → B, g : B → C ⊢ λx : A. g(f x) : A → C (composition)

Renato Neves The Calculus 11 / 20

Exercises

Recall the derivations that lead to the judgement

A → B,A → C ⊢ A → B × C

Build the corresponding program

Derive as well the judgement

A → B ⊢ A × C → B × C

and subsequently build the corresponding program

Renato Neves The Calculus 12 / 20

Table of Contents

The Calculus

Denotational Semantics

Renato Neves Denotational Semantics 13 / 20

A Semantics for Simply Typed λ-calculus

We wish to assign a mathematical meaning to λ-terms

[[−]] : λ-terms −→ ...

so that we can reason about them rigorously, and take advantage
of known mathematical theories

This is the goal of the next slides. But first . . .

Renato Neves Denotational Semantics 14 / 20

A Semantics for Simply Typed λ-calculus

We wish to assign a mathematical meaning to λ-terms

[[−]] : λ-terms −→ ...

so that we can reason about them rigorously, and take advantage
of known mathematical theories

This is the goal of the next slides. But first . . .

Renato Neves Denotational Semantics 14 / 20

Functions: Basic Facts

For every set X there exists a ‘trivial’ function

! : X −→ {⋆} = 1 ! (x) = ⋆

We can always pair two functions into f : X → A, g : X → B

⟨f , g⟩ : X → A × B ⟨f , g⟩(x) = (f x , g x)

There exist projection functions

π1 : X × Y → X π1(x , y) = x
π2 : X × Y → Y π2(x , y) = y

Renato Neves Denotational Semantics 15 / 20

Functions: Basic Facts

We can always ‘curry’ a function f : X × Y → Z into

λf : X → ZY λf (x) = (y 7→ f (x , y))

Consider sets X , Y , Z . There exists an application function

app : ZY × Y → Z app(f , y) = f y

Renato Neves Denotational Semantics 16 / 20

Denotational Semantics

Types A interpreted as sets [[A]]

[[1]] = {⋆}
[[A × B]] = [[A]]×[[B]]

[[A → B]] = [[B]][[A]]

Typing contexts Γ interpreted as Cartesian products

[[Γ]] = [[x1 : A1, . . . , xn : An]] = [[A1]]× · · · × [[An]]

λ-terms Γ ⊢ t : A interpreted as functions

[[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

Renato Neves Denotational Semantics 17 / 20

Denotational Semantics

λ-term Γ ⊢ t : A interpreted as a function

[[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

xi : A ∈ Γ
[[Γ ⊢ xi : A]]= πi [[Γ ⊢ ∗ : 1]] = !

[[Γ ⊢ t : A × B]]= f
[[Γ ⊢ π1t : A]]= π1 · f

[[Γ ⊢ t : A]] = f [[Γ ⊢ s : B]] = g
[[Γ ⊢ ⟨t, s⟩ : A × B]] = ⟨f , g⟩

[[Γ, x : A ⊢ t : B]] = f
[[Γ ⊢ λx : A. t : A → B]] = λf

[[Γ ⊢ t : A → B]] = f [[Γ ⊢ s : A]] = g
[[Γ ⊢ t s : B]] = app · ⟨f , g⟩

Renato Neves Denotational Semantics 18 / 20

The Unravelling

[[x ⊢ ⟨π2 x , π1 x⟩]] = . . .

[[− ⊢ λx . ⟨π2 x , π1 x⟩]] = . . .

[[f , g , x ⊢ g f x]] = . . .

[[f , g ⊢ λx . g f x]] = . . .

[[f , x ⊢ ⟨f π1 x , π2 x⟩]] = . . .

[[f ⊢ λx . ⟨f π1 x , π2 x⟩]] = . . .

[[− ⊢ λf . λx . ⟨f π1 x , π2 x⟩]] = . . .

(N.B. all types omitted for simplicity)

Renato Neves Denotational Semantics 19 / 20

More exercises

Show that the following equations hold

[[x , y ⊢ π1⟨x , y⟩]] = [[x , y ⊢ x]]

[[Γ ⊢ t]] = [[Γ ⊢ ⟨π1 t, π2 t⟩]]

[[x ⊢ (λy . ⟨x , y⟩) x]] = [[x ⊢ ⟨x , x⟩]]

Renato Neves Denotational Semantics 20 / 20

	The Calculus
	Denotational Semantics

