Simply Typed Lambda-calculus

Renato Neves

Universidade do Minho

The Calculus

Denotational Semantics

The essence

Knowledge obtained via assumptions and logical rules

The essence

Knowledge obtained via assumptions and logical rules

Studied since Aristotle

... long before the age of artificial computers

What does it have to do with programming ?

 $\mathbb{A},\mathbb{B}\dots$ denote propositions and 1 a proposition that always holds

If $\mathbb A$ and $\mathbb B$ are propositions then

- $\mathbb{A}\times\mathbb{B}$ is a proposition conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \to \mathbb{B}$ is a proposition implication of \mathbb{B} from \mathbb{A}

 Γ denotes a list of propositions (often called context)

 $\Gamma \vdash \mathbb{A}$ reads "if the propositions in Γ hold then \mathbb{A} also holds"

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash 1}{\Gamma \vdash 1} \text{ (trv)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (}\pi_1\text{)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (}\pi_2\text{)}$$
$$\frac{\Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \qquad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

Exercise

Show that $\mathbb{A}\times\mathbb{B}\vdash\mathbb{B}\times\mathbb{A}$

The rules below are derivable from the previous system

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}} \text{ (exchange)} \qquad \qquad \frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}} \text{ (weakening)}$$

$$\frac{\Gamma, \mathbb{A} \vdash \mathbb{B} \quad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (cut elimination)}$$

Derive the following judgements

- $\bullet \ \mathbb{A} \to \mathbb{B}, \mathbb{B} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{C}$
- $\bullet \ \mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$

Back to programming

We should think of what are the basic features of programming ...

- variables
- function application and creation
- pairing ...

and base our study on the simplest language with such features ...

Simply-typed λ -calculus

The basis of <u>Haskell</u>, ML, Eff, F#, Agda, Elm and many other programming languages

Types are defined by $\mathbb{A}::=1\mid\mathbb{A}\times\mathbb{A}\mid\mathbb{A}\to\mathbb{A}$

 Γ now a <u>non-repetitive</u> list of typed variables $(x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n)$ Programs built according to the following <u>deduction rules</u>

$$\frac{x : \mathbb{A} \in \Gamma}{\Gamma \vdash x : \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash t : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash x : \mathbb{A}} \text{ (triv)} \qquad \frac{\Gamma \vdash t : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_1 t : \mathbb{A}} \text{ (}\pi_1\text{)}$$
$$\frac{\Gamma \vdash t : \mathbb{A}}{\Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$
$$\frac{\Gamma \vdash t : \mathbb{A} \to \mathbb{B}}{\Gamma \vdash t s : \mathbb{B}} \text{ (app)}$$

$x : \mathbb{A} \vdash x : \mathbb{A}$	(identity)
$x : \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A}$	(duplication)
$x: \mathbb{A} \times \mathbb{B} \vdash \langle \pi_2 \ x, \pi_1 \ x \rangle : \mathbb{B} \times \mathbb{A}$	(swap)
$f: \mathbb{A} \to \mathbb{B}, g: \mathbb{B} \to \mathbb{C} \vdash \lambda x : \mathbb{A}, g(f x) : \mathbb{A} \to \mathbb{C}$	(composition)

Recall the derivations that lead to the judgement

$$\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$$

Build the corresponding program

Derive as well the judgement

$$\mathbb{A} \to \mathbb{B} \vdash \mathbb{A} \times \mathbb{C} \to \mathbb{B} \times \mathbb{C}$$

and subsequently build the corresponding program

The Calculus

Denotational Semantics

Renato Neves

Denotational Semantics

We wish to assign a mathematical meaning to λ -terms

 $\llbracket - \rrbracket : \lambda \text{-terms} \longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

We wish to assign a mathematical meaning to λ -terms

 $\llbracket - \rrbracket : \lambda \text{-terms} \longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

This is the goal of the next slides. But first

For every set X there exists a 'trivial' function

$$!: X \longrightarrow \{\star\} = 1$$
 $!(x) = \star$

We can always pair two functions into $f: X \rightarrow A, g: X \rightarrow B$

$$\langle f,g\rangle: X \to A \times B \qquad \langle f,g\rangle(x) = (f x,g x)$$

There exist projection functions

$$\pi_1: X \times Y \to X$$
 $\pi_1(x, y) = x$
 $\pi_2: X \times Y \to Y$ $\pi_2(x, y) = y$

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$\lambda f: X \to Z^Y \qquad \lambda f(x) = (y \mapsto f(x, y))$$

Consider sets X, Y, Z. There exists an application function

$$\operatorname{app}: Z^Y \times Y \to Z \qquad \operatorname{app}(f, y) = f y$$

Types \mathbbm{A} interpreted as \underline{sets} [[\mathbbm{A}]]

$$\llbracket 1 \rrbracket = \{\star\}$$
$$\llbracket \mathbb{A} \times \mathbb{B} \rrbracket = \llbracket \mathbb{A} \rrbracket \times \llbracket \mathbb{B} \rrbracket$$
$$\llbracket \mathbb{A} \to \mathbb{B} \rrbracket = \llbracket \mathbb{B} \rrbracket^{\llbracket \mathbb{A} \rrbracket}$$

Typing contexts $\boldsymbol{\Gamma}$ interpreted as Cartesian products

$$\llbracket \llbracket \rrbracket \rrbracket = \llbracket x_1 : \mathbb{A}_1, \dots, x_n : \mathbb{A}_n \rrbracket = \llbracket \mathbb{A}_1 \rrbracket \times \dots \times \llbracket \mathbb{A}_n \rrbracket$$

 λ -terms $\Gamma \vdash t : \mathbb{A}$ interpreted as <u>functions</u>

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

λ -term $\Gamma \vdash t : \mathbb{A}$ interpreted as a function

 $\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$

$$\frac{x_i : \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_i : \mathbb{A} \rrbracket = \pi_i} \qquad \qquad \frac{\llbracket \Gamma \vdash t : \mathbb{A} \times \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash \pi_1 t : \mathbb{A} \rrbracket = \pi_1 \cdot f}$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{B} \rrbracket = g}{\llbracket \Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle} \quad \frac{\llbracket \Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f}$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \to \mathbb{B}\rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{A}\rrbracket = g}{\llbracket \Gamma \vdash t s : \mathbb{B}\rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

 $[x \vdash \langle \pi_2 x, \pi_1 x \rangle]$ = ... $\llbracket - \vdash \lambda x. \langle \pi_2 x, \pi_1 x \rangle \rrbracket$ = ... $[f, g, x \vdash g f x]$ = ... $[f, g \vdash \lambda x. g f x]$ = ... $\llbracket f, x \vdash \langle f \pi_1 x, \pi_2 x \rangle \rrbracket$ = ... $\llbracket f \vdash \lambda x. \langle f \pi_1 x, \pi_2 x \rangle \rrbracket$ = ... $\llbracket - \vdash \lambda f. \, \lambda x. \, \langle f \, \pi_1 \, x, \, \pi_2 \, x \rangle \rrbracket$ = ...

(N.B. all types omitted for simplicity)

Renato Neves

Denotational Semantics

Show that the following equations hold

$$\llbracket x, y \vdash \pi_1 \langle x, y \rangle \rrbracket = \llbracket x, y \vdash x \rrbracket$$
$$\llbracket \Gamma \vdash t \rrbracket = \llbracket \Gamma \vdash \langle \pi_1 \ t, \pi_2 \ t \rangle \rrbracket$$
$$\llbracket x \vdash (\lambda y, \langle x, y \rangle) \ x \rrbracket = \llbracket x \vdash \langle x, x \rangle \rrbracket$$