Hybrid Programming

Renato Neves

Universidade do Minho

Overview

Semantics

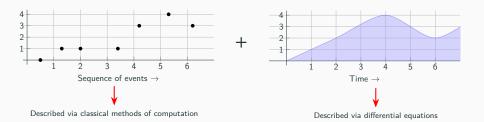
Design Patterns

Conclusions

Renato Neves

Explored a simple language (CCS) and its semantics Used it to design <u>communicating</u> systems Expanded this study to the <u>timed</u> setting Used this to save us all from zombies !!

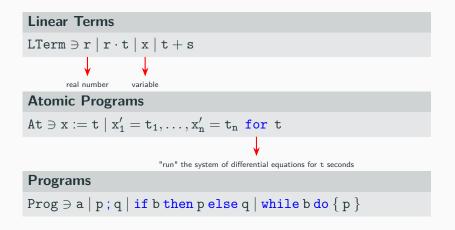
Going Beyond the Timed Setting



Computational devices now interact with <u>arbitrary</u> physical processes (and not just time)

This time we explore a simple, <u>imperative language</u> No concurrency and no communication

... languages with such features are still underdeveloped Perhaps some of you would like to improve them :-)



First we tackle a while-language without differential equations

Then move to the hybrid case and see how semantics aids in the analysis of hybrid programs

Throughout this journey, we will:

- write implementations in HASKELL
- do analyses in LINCE

Overview

Semantics

Design Patterns

Conclusions

Renato Neves

Linear Terms

 $\texttt{LTerm} \ni \texttt{r} \mid \texttt{r} \cdot \texttt{t} \mid \texttt{x} \mid \texttt{t} + \texttt{s}$

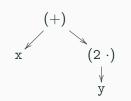
Let $\sigma: X \to \mathbb{R}$ denote a memory

Expression $\langle t, \sigma \rangle \Downarrow r$ tells that t outputs r if current memory is σ

$$\frac{\langle \mathbf{t}, \sigma \rangle \Downarrow \mathbf{r}}{\langle \mathbf{s} \cdot \mathbf{t}, \sigma \rangle \Downarrow \mathbf{r}} \quad (\mathsf{var}) \qquad \frac{\langle \mathbf{t}_1, \sigma \rangle \Downarrow \mathbf{r}}{\langle \mathbf{t}_1, \sigma \rangle \Downarrow \mathbf{r}_1} \quad (\mathsf{con})$$

$$\frac{\langle \mathbf{t}, \sigma \rangle \Downarrow \mathbf{r}_1}{\langle \mathbf{s} \cdot \mathbf{t}, \sigma \rangle \Downarrow \mathbf{s} \cdot \mathbf{r}} \quad (\mathsf{scl}) \qquad \frac{\langle \mathbf{t}_1, \sigma \rangle \Downarrow \mathbf{r}_1}{\langle \mathbf{t}_1 + \mathbf{t}_2, \sigma \rangle \Downarrow \mathbf{r}_1 + \mathbf{r}_2} \quad (\mathsf{add})$$

Linear term $x + 2 \cdot y$ corresponds to the 'syntax tree'



Equations $\sigma(x) = 3$ and $\sigma(y) = 4$ yield the 'semantic tree'

$$\frac{\langle \mathtt{x}, \sigma \rangle \Downarrow \mathtt{3}}{\langle \mathtt{x} + \mathtt{2} \cdot \mathtt{y}, \sigma \rangle \Downarrow \mathtt{4}} \frac{\langle \mathtt{y}, \sigma \rangle \Downarrow \mathtt{4}}{\langle \mathtt{2} \cdot \mathtt{y}, \sigma \rangle \Downarrow \mathtt{8}}$$

Write down the corresponding derivation trees for

- $2 \cdot x + 2 \cdot y$
- $3 \cdot (2 \cdot x) + 2 \cdot (y + z)$

Write down the corresponding derivation trees for

- $2 \cdot x + 2 \cdot y$
- $3 \cdot (2 \cdot x) + 2 \cdot (y + z)$

Boring computations? If so why not implement the semantics?

The previous semantics yields the following notion of equivalence t \sim s if for all memories σ

 $\langle \mathtt{t}, \sigma \rangle \Downarrow \mathtt{r} \text{ iff } \langle \mathtt{s}, \sigma \rangle \Downarrow \mathtt{r}$

Examples of equivalent terms:

- $\mathbf{r} \cdot (\mathbf{x} + \mathbf{y}) \sim \mathbf{r} \cdot \mathbf{x} + \mathbf{r} \cdot \mathbf{y}$
- $0 \cdot x \sim 0$
- $(\mathbf{r} \cdot \mathbf{s}) \cdot \mathbf{x} \sim \mathbf{r} \cdot (\mathbf{s} \cdot \mathbf{x})$

A Language of Boolean Terms and its Semantics

Boolean Terms

 $\texttt{BTerm} \ni \texttt{t}_1 \leq \texttt{t}_2 \mid \texttt{b} \land \texttt{c} \mid \neg\texttt{b}$

Expression $\langle b, \sigma \rangle \Downarrow v$ tells that b outputs v if the memory is σ

$$\frac{\langle \mathtt{t}_1, \sigma \rangle \Downarrow \mathtt{r}_1 \quad \langle \mathtt{t}_2, \sigma \rangle \Downarrow \mathtt{r}_2 \qquad \mathtt{r}_1 \leq \mathtt{r}_2}{\langle \mathtt{t}_1 \leq \mathtt{t}_2, \sigma \rangle \Downarrow \mathtt{t} \mathtt{t}} \text{ (leq)}$$

$$\frac{\langle \mathtt{t}_1, \sigma \rangle \Downarrow \mathtt{r}_1 \quad \langle \mathtt{t}_2, \sigma \rangle \Downarrow \mathtt{r}_2 \qquad \mathtt{r}_1 \not\leq \mathtt{r}_2}{\langle \mathtt{t}_1 \leq \mathtt{t}_2, \sigma \rangle \Downarrow \mathtt{ff}} \text{ (gtr)}$$

$$\frac{\langle \mathbf{b}, \sigma \rangle \Downarrow \mathbf{v}}{\langle \neg \mathbf{b}, \sigma \rangle \Downarrow \neg \mathbf{v}} \text{ (not)} \qquad \frac{\langle \mathbf{b}_1, \sigma \rangle \Downarrow \mathbf{v}_1}{\langle \mathbf{b}_1, \mathbf{b}_2, \sigma \rangle \Downarrow \mathbf{v}_2} \langle \mathbf{and} \rangle$$

A While-language and its Semantics

While-Programs

 $\texttt{Prog} \ni \texttt{x} := \texttt{t} \mid \texttt{p} \texttt{;} \texttt{q} \mid \texttt{if} \texttt{ b} \texttt{then} \texttt{ p} \texttt{else} \texttt{q} \mid \texttt{while} \texttt{ b} \texttt{do} \Set{p}$

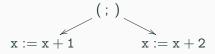
$$\frac{\langle \mathtt{t}, \sigma \rangle \Downarrow \mathtt{r}}{\langle \mathtt{x} := \mathtt{t}, \sigma \rangle \Downarrow \sigma[\mathtt{r}/\mathtt{x}]} \text{ (asg) } \qquad \frac{\langle \mathtt{p}, \sigma \rangle \Downarrow \sigma' \langle \mathtt{q}, \sigma' \rangle \Downarrow \sigma''}{\langle \mathtt{p}; \mathtt{q}, \sigma \rangle \Downarrow \sigma''} \text{ (seq)}$$

$$\frac{\langle \mathbf{b}, \sigma \rangle \Downarrow \mathsf{tt}}{\langle \mathsf{if} \, \mathsf{b} \, \mathsf{then} \, \, \mathsf{p} \, \mathsf{else} \, \mathsf{q}, \sigma \rangle \Downarrow \sigma'} (\mathsf{if1}) \qquad \frac{\langle \mathbf{b}, \sigma \rangle \Downarrow \mathsf{ff}}{\langle \mathsf{if} \, \mathsf{b} \, \mathsf{then} \, \, \mathsf{p} \, \mathsf{else} \, \mathsf{q}, \sigma \rangle \Downarrow \sigma'} (\mathsf{if2})$$

 $\frac{\langle \mathbf{b}, \sigma \rangle \Downarrow \mathtt{tt} \quad \langle \mathbf{p}, \sigma \rangle \Downarrow \sigma' \quad \langle \mathtt{while} \, \mathtt{b} \, \mathtt{do} \, \{ \, \mathbf{p} \, \}, \sigma' \rangle \Downarrow \sigma''}{\langle \mathtt{while} \, \mathtt{b} \, \mathtt{do} \, \{ \, \mathbf{p} \, \}, \sigma \rangle \Downarrow \sigma''} \; (\mathsf{wh1})$

$$\frac{\langle \mathbf{b}, \sigma \rangle \Downarrow \mathtt{ff}}{\langle \mathtt{while } \mathbf{b} \, \mathtt{do} \, \{ \, \mathtt{p} \, \}, \sigma \rangle \Downarrow \sigma} \; (\mathsf{wh2})$$

Program x := x + 1; x := x + 2 corresponds to the 'syntax tree'



Memory $\sigma = x \mapsto 3$ yields the '<u>semantic</u> tree'

$$\frac{\langle \mathbf{x} + 1, \mathbf{x} \mapsto 3 \rangle \Downarrow 4}{\langle \mathbf{x} := \mathbf{x} + 1, \mathbf{x} \mapsto 3 \rangle \Downarrow \mathbf{x} \mapsto 4} \qquad \frac{\langle \mathbf{x} + 2, \mathbf{x} \mapsto 4 \rangle \Downarrow 6}{\langle \mathbf{x} := \mathbf{x} + 2, \mathbf{x} \mapsto 4 \rangle \Downarrow \mathbf{x} \mapsto 6}$$

The previous semantics yields the following notion of equivalence $\mathbf{p}\sim\mathbf{q}$ if for all environments σ

$$\langle \mathbf{p}, \sigma \rangle \Downarrow \sigma' \text{ iff } \langle \mathbf{q}, \sigma \rangle \Downarrow \sigma'$$

Examples of equivalent programs

- $(p;q);r \equiv p;(q;r)$
- (if b then p else q); $r \equiv if b$ then p; r else q; r

We designed our first programming language ... and used its semantics to <u>prove</u> program properties Which program features would you like to add next ?

From our end we will add differential operations

Systems of diff. eqs. $\mathbf{x}'_1 = \mathbf{t}_1, \dots, \mathbf{x}'_n = \mathbf{t}_n$ have unique solutions $\phi : \mathbb{R}^n \times [0, \infty) \longrightarrow \mathbb{R}^n$

Obtained via Linear Algebra

Example (Continuous Dynamics of a Vehicle) p' = v, v' = a admits the solution $\phi((x_0, v_0), t) = (x_0 + v_0t + \frac{1}{2}at^2, v_0 + at)$

Initial position and initial velocity

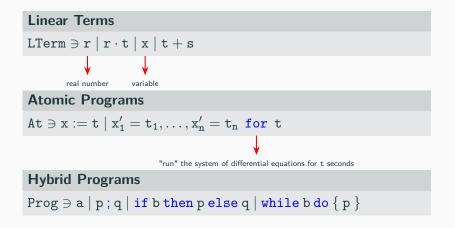
Often abbreviate a list v_1, \ldots, v_n to \vec{v}

 $\sigma[\vec{v}/\vec{x}]$ denotes the memory that maps each x_i in \vec{x} to v_i in \vec{v} and all other variables the same way as σ

Example

$$\sigma[v_1, v_2/x_1, x_2](y) = \begin{cases} v_1 & \text{if } y = x_1 \\ v_2 & \text{if } y = x_2 \\ \sigma(y) & \text{otherwise} \end{cases}$$

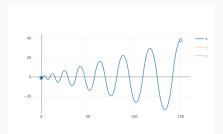
Often treat $\sigma: \{x_1, \dots, x_n\} \to \mathbb{R}$ as a list $[\sigma(x_1), \dots, \sigma(x_n)]$



Evaluation of programs is now time-dependent

 $\langle \mathbf{p}, \sigma, \mathbf{t} \rangle \Downarrow \sigma'$

LINCE relies on such semantics: evaluation of $\langle p, \sigma, t_i \rangle$ for a "big" sequence t_1, \ldots, t_k yields a trajectory, such as



The Semantic Rules pt. I

$$\begin{aligned} \frac{\langle \mathbf{s}, \sigma \rangle \Downarrow \mathbf{r} & t < \mathbf{r}}{\langle \vec{\mathbf{x}}' = \vec{\mathbf{t}} \text{ for } \mathbf{s}, \sigma, t \rangle \Downarrow \text{ stop}, \sigma[\phi(\sigma, t)/\vec{x}]} \\ \frac{\langle \mathbf{s}, \sigma \rangle \Downarrow \mathbf{r} & t = \mathbf{r}}{\langle \vec{\mathbf{x}}' = \overline{\mathbf{t}} \text{ for } \mathbf{s}, \sigma, t \rangle \Downarrow \text{ skip}, \sigma[\phi(\sigma, t)/\vec{x}]} \end{aligned}$$

$$\frac{\langle \mathtt{t}, \sigma \rangle \Downarrow \mathtt{r}}{\langle \mathtt{x} := \mathtt{t}, \sigma, 0 \rangle \Downarrow \mathtt{skip}, \sigma[\mathtt{r}/\mathtt{x}]} \qquad \qquad \frac{\langle \mathtt{p}, \sigma, t \rangle \Downarrow \mathtt{stop}, \sigma'}{\langle \mathtt{p}; \mathtt{q}, \sigma, t \rangle \Downarrow \mathtt{stop}, \sigma'}$$

$$\frac{\langle \mathbf{p}, \sigma, t \rangle \Downarrow \mathtt{skip}, \sigma' \quad \langle \mathbf{q}, \sigma, t' \rangle \Downarrow \mathtt{s}, \sigma''}{\langle \mathbf{p} \, ; \, \mathbf{q}, \sigma, t + t' \rangle \Downarrow \mathtt{s}, \sigma''}$$

$$\frac{\langle 1, (\mathbf{x} \mapsto 2) \rangle \Downarrow 1 \qquad \frac{1}{2} < 1}{\langle \mathbf{x}' = 0 \text{ for } 1, (\mathbf{x} \mapsto 2), \frac{1}{2} \rangle \Downarrow \text{ stop}, (\mathbf{x} \mapsto 2)}$$

$$\overline{\langle (\mathbf{x}' = 0 \text{ for } 1); (\mathbf{x}' = 1 \text{ for } 1), (\mathbf{x} \mapsto 2), \frac{1}{2} \rangle \Downarrow \text{ stop}, (\mathbf{x} \mapsto 2)}$$

$$= (\mathbf{x} \mapsto 2)[\phi(2, \frac{1}{2})/\mathbf{x}]$$

$$\frac{\dots}{\langle \mathbf{x}' = 0 \text{ for } 1, (\mathbf{x} \mapsto 2), 1 \rangle \Downarrow \text{ skip}, (\mathbf{x} \mapsto 2)} \qquad \overline{\langle \mathbf{x}' = 1 \text{ for } 1, (\mathbf{x} \mapsto 2), \frac{1}{2} \rangle \Downarrow \text{ stop}, (\mathbf{x} \mapsto 2 + \frac{1}{2})}$$

$$\langle (\mathbf{x}' = 0 \text{ for } 1); (\mathbf{x}' = 1 \text{ for } 1), (\mathbf{x} \mapsto 2), 1 + \frac{1}{2} \rangle \Downarrow \text{ stop}, (\mathbf{x} \mapsto 2 + \frac{1}{2})$$

$$= (\mathbf{x} \mapsto 2)[\phi(2, \frac{1}{2})/\mathbf{x}] = (\mathbf{x} \mapsto 2)[2 + \frac{1}{2}/\mathbf{x}] = \mathbf{x} \mapsto 2 + \frac{1}{2}$$

Write down the corresponding derivation trees for

- (x' = 1 for 1); (x' = -1 for 1) at time instant $\frac{1}{2}$
- (x' = 1 for 1); (x' = -1 for 1) at time instant 2

$$\begin{array}{c} \langle \mathbf{b}, \sigma \rangle \Downarrow \mathtt{tt} & \langle \mathbf{p}, \sigma, t \rangle \Downarrow \mathbf{s}, \sigma' \\ \langle \mathtt{if} \, \mathtt{b} \, \mathtt{then} \, \, \mathtt{p} \, \mathtt{else} \, \mathtt{q}, \sigma, t \rangle \Downarrow \mathbf{s}, \sigma' \end{array} \quad \begin{array}{c} \langle \mathbf{b}, \sigma \rangle \Downarrow \mathtt{ff} & \langle \mathbf{q}, \sigma, t \rangle \Downarrow \mathbf{s}, \sigma' \\ \hline \langle \mathtt{if} \, \mathtt{b} \, \mathtt{then} \, \, \mathtt{p} \, \mathtt{else} \, \mathtt{q}, \sigma, t \rangle \Downarrow \mathbf{s}, \sigma' \end{array}$$

$$\begin{array}{c|c} \langle \mathtt{b}, \sigma \rangle \Downarrow \mathtt{tt} & \langle \mathtt{p} \, ; \, \mathtt{while} \, \mathtt{b} \, \mathtt{do} \, \{ \, \mathtt{p} \, \}, \sigma, t \rangle \Downarrow \mathtt{s}, \sigma' \\ \hline & \langle \mathtt{while} \, \mathtt{b} \, \mathtt{do} \, \{ \, \mathtt{p} \, \}, \sigma, t \rangle \Downarrow \mathtt{s}, \sigma' \end{array}$$

$$\frac{\langle \texttt{b}, \sigma \rangle \Downarrow \texttt{ff}}{\langle \texttt{while b do } \{\texttt{p}\}, \sigma, \texttt{0} \rangle \Downarrow \texttt{skip}, \sigma}$$

The previous semantics yields the following notion of equivalence: $p \sim q$ if for all environments σ and time instants t,

$$\langle \mathtt{p}, \sigma, t
angle \Downarrow \mathtt{s}, \sigma' ext{ iff } \langle \mathtt{q}, \sigma, t
angle \Downarrow \mathtt{s}, \sigma'$$

Examples of equivalent terms:

- $(x' = 1 ext{ for } 1)$; $(x' = 1 ext{ for } 1) \sim x' = 1 ext{ for } 2$
- $(p;q);r \sim p;(q;r)$

- Cruise controller (speed regulation)
- Landing system
- Bouncing Ball
- Moving a particle from point A to B
- Following a leader

Overview

Semantics

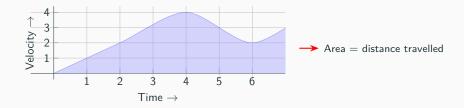
Design Patterns

Conclusions

Renato Neves

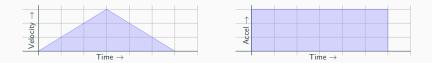
Design Patterns

We explore the last two (ubiquituous) scenarios Tackle them via Analytic Geometry



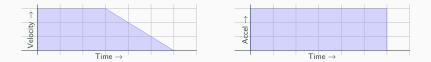
What should be the function's shape?

We accelerate and then brake



$$\begin{cases} \operatorname{dist} = \frac{1}{2} \cdot b \cdot h \\ h = \frac{1}{2} \cdot b \cdot \operatorname{accel} \end{cases} \implies b = \sqrt{\frac{4 \cdot \operatorname{dist}}{\operatorname{accel}}}$$

We maintain velocity and then brake



$$\begin{cases} \operatorname{dist} = v \cdot b_1 + \frac{1}{2} \cdot v \cdot b_2 \\ v = b_2 \cdot \operatorname{accel} \end{cases} \implies b_1 = \frac{2 \cdot \operatorname{dist} - \frac{v^2}{a}}{2 \cdot v}$$

Renato Neves

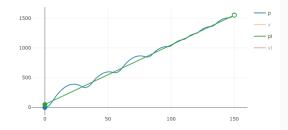
Design Patterns

We accelerate, maintain velocity, and then brake

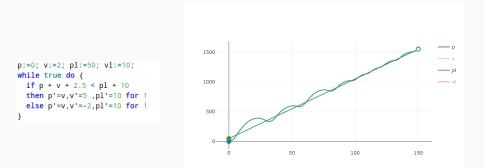
. . .

Following the leader pt. I

```
p:=0; v:=2; pl:=50; vl:=10;
while true do {
    if p + v + 2.5 < pl + 10
    then p'=v,v'=5 ,pl'=10 for 1
    else p'=v,v'=-2,pl'=10 for 1
}
```



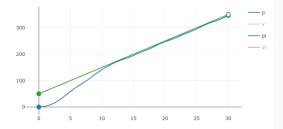
Following the leader pt. I



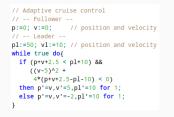
Problem: Even if behind the leader in the next iteration, we might generate a velocity so high that we won't brake in time

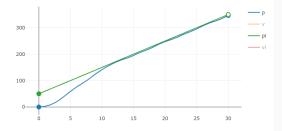
Following the leader pt. II

```
// Adaptive cruise control
// -- Follower --
pi=0; v:e; // position and velocity
// -- Leader --
pl:=50; vl:=10; // position and velocity
while true do{
    if (p+v+2.5 < pl+10) &&
        ((v-5)^2 +
        4*(p+v+2.5-pl+10) < 0)
    then p'=v,v'=5,pl'=10 for 1;
    else p'=v,v'=-2,pl'=10 for 1;
}
```



Following the leader pt. II





Conditional arises from solving the equation for t

$$x_0 + v_0 t + \frac{1}{2}(-2)t^2 = y_0 + 10t$$

No solutions, means no collisions!!

Renato Neves

Overview

Semantics

Design Patterns

Conclusions

Renato Neves

Conclusions

Studied fundamentals of program semantics

Visited a zoo of hybrid programs – which improved our ability to recognise them in the wild

Saw how to design hybrid programs formally

Studied fundamentals of program semantics

Visited a zoo of hybrid programs – which improved our ability to recognise them in the wild

Saw how to design hybrid programs formally

What next?

Movement in *n*-dimensions

Trajectory correction

Orbital dynamics

. . .

Integration of uncertainty, concurrency, and communication

A logical verification framework

A proper handle of exact real-number computation