Timed Automata

Renato Neves

Last lecture

Visited concepts of syntax and semantics

Explored a simple concurrent language (CCS) and its semantics

Analysed central ideas of concurrency and synchronisation

We will now see how time fits in the items above

Renato Neves 2 / 28

Table of Contents

Motivation

Motivation 3 / 28

Motivation

Saying that an airbag in a car crash eventually inflates is insufficient – it would be better to say that

in a car crash the airbag inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Renato Neves Motivation 4 / 28

Examples of time-critical systems

Network-based traffic lights

Lights activate at specific time intervals

Bounded retransmission protocol

Communication of large files between a remote unit and a video/audio equipment. Correctness relies on

- transmission and synchronisation delays
- time-out values

Many others

pacemakers, autonomous driving, electric grids . . .

Renato Neves Motivation 5 / 28

This chapter

We will explore an automaton-based formalism with an explicit notion of clock

Emphasis on the reachability problem for showing (in)correctness

Associated tool

• UPPAAL [Behrmann, David, Larsen, 04]

Motivation 6 / 28 $\mathrm{UppAAL} = \left(\begin{array}{c} \mathsf{Uppsala} \ \mathsf{University} + \mathsf{Aalborg} \ \mathsf{University} \right) [1995]$

- A toolbox for modelling and analysis of timed systems
- Systems modelled as networks of timed automata enriched with integer variables and channel synchronisations
- Properties specified in a subset of CTL

https://uppaal.org/

Renato Neves Motivation 7 / 28

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

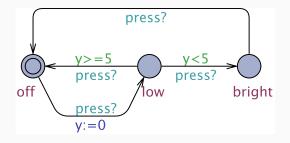
Semantics

Timed Automata

Finite-state machines equipped with real-valued clocks

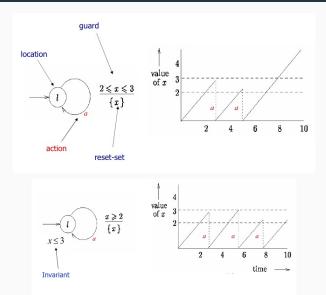
- clocks can only be read or
- reset to zero (after which they start increasing their value again as time progresses)
- a clock's value corresponds to time elapsed since its last reset
- all clocks proceed synchronously (i.e. at the same rate)

Example: the lamp interrupt



(extracted from UPPAAL)

Guards, updates, and invariants



Timed Automata

A timed automaton is a tuple $\langle L, L_0, Act, C, Tr, Inv \rangle$

- L a set of locations and $L_0 \subseteq L$ set of initial locations
- Act set of actions (channels) and C set of clocks
- Tr \subseteq L \times C(C) \times Act \times P(C) \times L is a transition relation

$$\ell_1 \stackrel{g,a,U}{\longrightarrow} \ell_2$$

transition from location ℓ_1 to ℓ_2 , labelled by a, enabled if guard g holds; when performed resets the set U of clocks

- Inv : L $\longrightarrow \mathcal{C}(\mathbf{C})$ assignment of invariants to locations
- $\mathcal{C}(\mathbf{C})$ denotes the set of clock constraints over a set \mathcal{C} of clocks

Clock constraints

Each constraint is formed according to

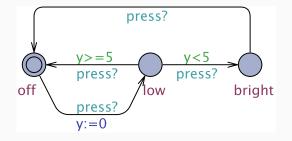
$$g ::= x \square n \mid x - y \square n \mid g \wedge g \mid true$$

where
$$x, y \in C, n \in \mathbb{N}$$
 and $\square \in \{<, \leq, >, \geq, =\}$

This is used in

- transitions (enabling conditions) a transition cannot occur if its guard is false
- locations (safety conditions) a location must be left before its invariant becomes false

A revisit of the lamp interrupt



Exercise: define $\langle L, L_0, Act, C, Tr, Inv \rangle$

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Parallel composition of timed automata

Action labels as channels

Communication mechanism analogous to CCS

Shared clocks

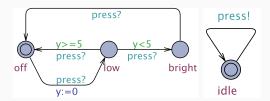
Let $H = Act_1 \cap Act_2$. The parallel composition of ta_1 and ta_2 synchronising on H is the timed automaton

$$ta_1 \parallel_H ta_2 := \langle L_1 \times L_2, L_{0,1} \times L_{0,2}, \mathbf{Act}, C_1 \cup C_2, \mathbf{Tr}, \mathbf{Inv} \rangle$$

- $Act = ((Act_1 \cup Act_2) H) \cup \{\tau\}$
- $\operatorname{Inv}(\ell_1, \ell_2) = \operatorname{Inv}_1(\ell_1) \wedge \operatorname{Inv}_2(\ell_2)$
- **Tr** is given by:
 - $(\ell_1, \ell_2) \xrightarrow{g,a,U} (\ell'_1, \ell_2)$ if $a \notin H \land \ell_1 \xrightarrow{g,a,U} \ell'_1$
 - $(\ell_1, \ell_2) \stackrel{g,a,U}{\longrightarrow} (\ell_1, \ell_2')$ if $a \notin H \land \ell_2 \stackrel{g,a,U}{\longrightarrow} \ell_2'$
 - $(\ell_1, \ell_2) \xrightarrow{g, \tau, U} (\ell'_1, \ell'_2)$ if $a \in H \land \ell_1 \xrightarrow{g_1, a, U_1} \ell'_1 \land \ell_2 \xrightarrow{g_2, \overline{a}, U_2} \ell'_2$ with $g = g_1 \land g_2$ and $U = U_1 \cup U_2$

Renato Neves Parallel Composition 17 / 28

Example: (re)revisiting the lamp interrupt

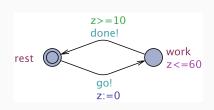


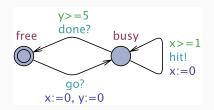
In Uppaal

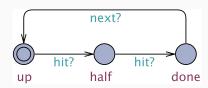
- Complementary actions marked by ? and ! annotations)
- All channels in H are private

Renato Neves Parallel Composition 18 / 28

Write down the parallel composition of the following automata







Renato Neves Parallel Composition 19 / 28

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Renato Neves Semantics 20 / 28

Semantics of timed automata

Syntax	Semantics
How to write	How to execute LTS
Timed Automaton	TLTS (Timed LTS)

Timed LTS

Introduce delay transitions to capture the passage of time

 $s \stackrel{a}{\longrightarrow} s'$ for $a \in Act$, are ordinary transitions due to action occurrence

 $s \stackrel{d}{\longrightarrow} s'$ for $d \in \mathbb{R}_{\geq 0}$, are delay transitions

subject to sanity constraints . . .

Renato Neves Semantics 21 / 28

Timed LTS pt. II

1. Time additivity

$$(s \xrightarrow{d} s' \land 0 \le d' \le d) \Rightarrow s \xrightarrow{d'} s'' \xrightarrow{d-d'} s'$$
 for some state s''

2. Delay transitions are deterministic

$$(s \xrightarrow{d} s' \land s \xrightarrow{d} s'') \Rightarrow s' = s''$$

Semantics 22 / 28

The semantics

Every TA ta defines a TLTS

$$\mathcal{T}(ta)$$

whose states are pairs

(location, clocks valuations)

Semantics 23 / 28

Clock valuation

Definition

A clock valuation η for a set of clocks C is a function

$$\eta: C \longrightarrow \mathbb{R}_{\geq 0}$$

assigning to each clock $x \in C$ its current value ηx

Satisfaction of Clock Constraints

$$\eta \models x \square n \Leftrightarrow \eta x \square n$$

$$\eta \models x - y \square n \Leftrightarrow (\eta x - \eta y) \square n$$

$$\eta \models g_1 \land g_2 \Leftrightarrow \eta \models g_1 \land \eta \models g_2$$

Semantics 24 / 28

Operations on clock valuations

Delay

For each $d \in \mathbb{R}_{\geq_0}$, valuation $\eta + d$ is given by

$$(\eta + d)x = \eta x + d$$

Reset

For each $R \subseteq C$, valuation $\eta[R]$ is given by

$$\begin{cases} \eta[R] x = \eta x & \text{if } x \notin R \\ \eta[R] x = 0 & \text{if } x \in R \end{cases}$$

Renato Neves Semantics 25 / 28

From ta to T(ta)

Let $ta = \langle L, L_0, Act, C, Tr, Inv \rangle$

$$\mathcal{T}(ta) = \langle S, S_0 \subseteq S, N, T \rangle$$

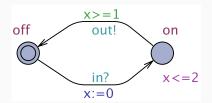
where

- $S = \{(I, \eta) \in L \times (\mathbb{R}_{\geq 0})^C \mid \eta \models Inv(I)\}$
- $S_0 = \{(\ell_0, \eta) \mid \ell_0 \in L_0 \land \eta x = 0 \text{ for all } x \in C\}$
- $N = Act + \mathbb{R}_{\geq 0}$ (i.e., transitions can be labelled by actions or delays)
- $T \subseteq S \times N \times S$ is given by

$$(I, \eta) \stackrel{a}{\longrightarrow} (I', \eta')$$
 if $\exists_{I \stackrel{g,a,U}{\longrightarrow} I' \in Tr} \eta \models g \land \eta' = \eta[U] \land \eta' \models Inv(I')$
 $(I, \eta) \stackrel{d}{\longrightarrow} (I, \eta + d)$ if $\eta + d \models Inv(I)$

Renato Neves Semantics 26 / 28

Example: the simple switch pt. I



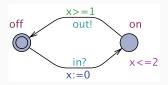
$\mathcal{T}(\mathsf{Simple}\;\mathsf{switch})$

$$S = \{(off, t) \mid t \in \mathbb{R}_{>0}\} \cup \{(on, t) \mid 0 \le t \le 2\}$$

where t is a shorthand for η such that $\eta x = t$

Renato Neves Semantics 27 / 28

Example: the simple switch pt. II



$\mathcal{T}(Simple switch)$

$$(off,t) \xrightarrow{d} (off,t+d)$$
 for all $t,d \ge 0$ $(off,t) \xrightarrow{in?} (on,0)$ for all $t \ge 0$ $(on,t) \xrightarrow{d} (on,t+d)$ for all $t,d \ge 0$ and $t+d \le 2$ $(on,t) \xrightarrow{out!} (off,t)$ for all $1 \le t \le 2$

Renato Neves Semantics 28 / 28