Algebraic operations and λ-calculus

Renato Neves

Table of Contents

Background

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Recalling λ-Calculus

$$
\mathbb{A} \ni 1|\mathbb{A} \times \mathbb{A}| \mathbb{A} \rightarrow \mathbb{A}
$$

$$
\frac{x: \mathbb{A} \in \Gamma}{\Gamma \vdash x: \mathbb{A}} \quad \overline{\Gamma \vdash *: 1} \quad \frac{\Gamma \vdash V: \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1} V: \mathbb{A}}
$$

$$
\frac{\Gamma \vdash V: \mathbb{A} \quad \Gamma \vdash U: \mathbb{B}}{\Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B}}
$$

$$
\frac{\Gamma, x: \mathbb{A} \vdash V: \mathbb{B}}{\Gamma \vdash \lambda x: \mathbb{A} \cdot V: \mathbb{A} \rightarrow \mathbb{B}}
$$

$$
\frac{\Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B} \quad \Gamma \vdash U: \mathbb{A}}{\Gamma \vdash V U: \mathbb{B}}
$$

Sequential Composition

A "new" deductive rule

$$
\frac{\Gamma \vdash V: \mathbb{A} \quad x: \mathbb{A} \vdash U: \mathbb{B}}{\Gamma \vdash x \leftarrow V ; U: \mathbb{B}}
$$

It reads as "bind the computation V to x and then run U "

Interpretation defined as

$$
\frac{\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket=f \quad \llbracket x: \mathbb{A} \vdash U: \mathbb{B} \rrbracket=g}{\llbracket \Gamma \vdash x \leftarrow V ; U: \mathbb{B} \rrbracket=g \cdot f}
$$

Table of Contents

Background

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Signatures

Signature

A set $\Sigma=\left\{\left(\sigma_{1}, n_{1}\right),\left(\sigma_{2}, n_{2}\right), \ldots\right\}$ of operations σ_{i} paired with the number of inputs n_{i} they are supposed to receive

Signatures will later be integrated in λ-calculus
They constitute the aforementioned algebraic operations

Examples

- Exceptions: $\{(\mathrm{e}, 0)\}$
- Read a bit from the environment: $\{($ read, 2$)\}$
- Wait calls: $\left\{\left(\right.\right.$ wait $\left.\left._{n}, 1\right) \mid n \in \mathbb{N}\right\}$
- Non-deterministic choice: $\{(+, 2)\}$

Algebraic operations in λ-calculus

We choose a signature Σ of algebraic operations and introduce a new deductive rule

$$
\frac{(\sigma, n) \in \Sigma \quad \forall i \leq n . \Gamma \vdash M_{i}: \mathbb{A}}{\Gamma \vdash \sigma\left(M_{1}, \ldots, M_{n}\right): \mathbb{A}}
$$

Examples of effectful λ-terms

- $x: \mathbb{A} \vdash$ wait $_{1}(x): \mathbb{A}$ - adds delay of one second to returning x
- 「 $\vdash \mathrm{e}(): \mathbb{A}$ - raises an exception e
- $\Gamma \vdash \operatorname{write}_{v}(M): \mathbb{A}-$ writes v in memory and then runs M
- $x: \mathbb{A} \times \mathbb{A} \vdash \operatorname{read}\left(\pi_{1} x, \pi_{2} x\right): \mathbb{A}-$ receives a bit: if the bit is 0 it returns $\pi_{1} \times$ otherwise it returns $\pi_{2} X$

Examples of effectful λ-terms

- $x: \mathbb{A} \vdash$ wait $_{1}(x): \mathbb{A}$ - adds delay of one second to returning x
- 「 $\vdash \mathrm{e}(): \mathbb{A}$ - raises an exception e
- $\Gamma \vdash \operatorname{write}_{v}(M): \mathbb{A}$ - writes v in memory and then runs M
- $x: \mathbb{A} \times \mathbb{A} \vdash \operatorname{read}\left(\pi_{1} x, \pi_{2} x\right): \mathbb{A}-$ receives a bit: if the bit is 0 it returns $\pi_{1} \times$ otherwise it returns $\pi_{2} x$

Exercise

Define a λ-term $x: \mathbb{A} \vdash$?: \mathbb{A} that requests a bit from the user and depending on the value read it returns x with either one or two seconds of delay.

Table of Contents

Background

Integration of algebraic operations in λ-calculus

Semantics of λ-calculus with algebraic operations

Semantics of λ-Calculus with algebraic Operations

How to provide semantics to these programming languages?
Short answer: via monads
Long answer: see the next slides ...

The core idea

Programs $\Gamma \vdash V: \mathbb{A}$ interpreted as functions

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

... and there exists only one function of type

$$
\llbracket\ulcorner\rrbracket \longrightarrow \llbracket 1 \rrbracket
$$

Problem: it is then necessarily the case that

$$
\llbracket\left\ulcorner\vdash x: 1 \rrbracket=\llbracket\left\ulcorner\vdash \operatorname{wait}_{1}(x): 1 \rrbracket\right.\right.
$$

despite these programs having different execution times

The core idea pt．II

Interpreted a program $\Gamma \vdash V: \mathbb{A}$ as a function

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

which returns values in 【A』．But values now come with effects．．．
Instead of having 【A \rrbracket as set of outputs，we will have a set $T \llbracket \mathbb{A} \rrbracket$ of effectful values

$$
\llbracket\ulcorner\vdash M: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow T \llbracket \mathbb{A} \rrbracket
$$

T should thus be a set－constructor：given a set of outputs X it returns a set of effectful values $T X$ over X

The core idea pt. III

For wait calls, the corresponding set-constructor T is defined as

$$
X \mapsto \mathbb{N} \times X
$$

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as

$$
X \mapsto X+\{e\}
$$

i.e. values in X plus an element e representing the exception

Another problem

This idea of a set-constructor T seems good, but it breaks sequential composition

$$
\begin{array}{r}
\llbracket \Gamma \vdash M: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \rightarrow T \llbracket \mathbb{A} \rrbracket \\
\llbracket x: \mathbb{A} \vdash N: \mathbb{B} \rrbracket: \llbracket \mathbb{A} \rrbracket \rightarrow T \llbracket \mathbb{B} \rrbracket
\end{array}
$$

We need a way to convert a function $h: X \rightarrow T Y$ into a function of the type

$$
h^{\star}: T X \rightarrow T Y
$$

Another problem pt. II

There are set-constructors T for which this is possible

In the case of wait-calls

$$
\frac{f: X \rightarrow T Y=\mathbb{N} \times Y}{f^{\star}(n, x)=(n+m, y) \text { where } f(x)=(m, y)}
$$

In the case of exceptions

$$
\frac{f: X \rightarrow T Y=Y+\{e\}}{f^{\star}(x)=f(y) \quad f^{\star}(e)=e}
$$

Testing the idea. . .

$$
\begin{aligned}
& \llbracket x: 1 \vdash y \leftarrow \operatorname{wait}_{1}(x) ; \operatorname{wait}_{2}(y): 1 \rrbracket \\
& =\llbracket y: 1 \vdash \operatorname{wait}_{2}(y): 1 \rrbracket^{*} \cdot \llbracket x: 1 \vdash \operatorname{wait}_{1}(x): 1 \rrbracket \\
& =(v \mapsto(2, v))^{*} \cdot(v \mapsto(1, v)) \\
& =v \mapsto(3, v)
\end{aligned}
$$

Yet another problem

Idea of interpreting λ-terms $\Gamma \vdash M: \mathbb{A}$ as functions

$$
\llbracket\ulcorner\vdash M: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow T \llbracket \mathbb{A} \rrbracket
$$

looks good but it presupposes that all terms invoke effects
Some terms do not do this, e.g.

$$
\llbracket x: \mathbb{A} \vdash x: \mathbb{A} \rrbracket: \llbracket \mathbb{A} \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

Solution

$T \llbracket \mathbb{A} \rrbracket$ should include effect-free values, and we should have

$$
\eta_{\llbracket \mathbb{A} \rrbracket}: \llbracket \mathbb{A} \rrbracket \longrightarrow T \llbracket \mathbb{A} \rrbracket
$$

which maps a value to its effect-free representation

Yet another problem pt. II

Again there are set-constructors T for which this is possible:

In the case of wait-calls

$$
\frac{T X=\mathbb{N} \times X}{\eta_{X}(x)=(0, x)}
$$

(i.e. no wait call was invoked)

In the case of exceptions

$$
\frac{T X=X+\{e\}}{\eta_{X}(x)=x}
$$

(i.e. the exception e was never raised)

Monads unlocked!!

Our previous analysis naturally leads to the notion of a monad

Monad

A triple $\left(T, \eta,(-)^{\star}\right)$ where T is a set-constructor, η a function $\eta_{X}: X \rightarrow T X$ for each set X, and $(-)^{\star}$ an operation

$$
\frac{f: X \rightarrow T Y}{f^{\star}: T X \rightarrow T Y}
$$

s.t. the following laws hold: $\eta^{\star}=\mathrm{id}, f^{\star} \cdot \eta=f,\left(f^{\star} \cdot g\right)^{\star}=f^{\star} \cdot g^{\star}$

These laws are required to forbid "weird" computational behaviour

Exercise

Show that the set-constructor

$$
X \mapsto \mathbb{N} \times X
$$

can be equipped with a monadic structure

Show that the set-constructor

$$
X \mapsto X+1
$$

can be equipped with a monadic structure

