Simply-typed λ-calculus: a brief overview

Renato Neves

The Four Chapters of this course

Design and analysis of communicating systems
Extension to the real-time setting
Going full cyber-physical
Programming with algebraic effects...
a uniform approach to the previous chapters

Overview

Modern programming typically involves different effects

- (internal) state manipulation
- communication
- probabilistic operations
- cyber-physical behaviour

We will study the mathematical foundations of

> Programming with effects

Deductive reasoning

Deductive reasoning

Assumptions + rules $=$ new knowledge

Example

If P implies Q and Q implies R then P implies R
Deductive reasoning has been studied since Aristotle ... long before the age of artificial computers

So what does it have to do with programming?

A basic deductive system pt. I

Let $\mathbb{A}, \mathbb{B} \ldots$ denote propositions (a property or a statement) and
1 denote a proposition that always holds. If \mathbb{A} and \mathbb{B} are propositions then

- $\mathbb{A} \times \mathbb{B}$ is a proposition - it denotes the conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \rightarrow \mathbb{B}$ is a proposition - it tells that \mathbb{A} implies \mathbb{B}

A basic deductive system pt. II

Γ denotes a list of propositions. $\Gamma \vdash \mathbb{A}$ means "if the propositions in Γ hold then (we deduce that) \mathbb{A} also holds"

$$
\begin{aligned}
& \frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text { (ass) } \quad \frac{\Gamma \vdash 1}{}(\text { trv }) \quad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}}\left(\pi_{1}\right) \quad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}}\left(\pi_{2}\right) \\
& \frac{\Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}}(\mathrm{Prd}) \quad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{B} \rightarrow \mathbb{B}}(\text { cry }) \quad \frac{\Gamma \vdash \mathbb{A} \rightarrow \mathbb{B} \quad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}}(\mathrm{app})
\end{aligned}
$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

Building new rules from the original ones

The following rules are derivable from the previous system

$$
\frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}} \quad \frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}}
$$

Exercise

Prove that $\mathbb{A} \rightarrow \mathbb{B}, \mathbb{B} \rightarrow \mathbb{C} \vdash \mathbb{A} \rightarrow \mathbb{C}$ and also that
$\mathbb{A} \rightarrow \mathbb{B}, \mathbb{A} \rightarrow \mathbb{C} \vdash \mathbb{A} \rightarrow \mathbb{B} \times \mathbb{C}$. Are these deductions familiar?

Going back to programming ...

The essentials of programming

In order to study effectful programming, we should think of what are the basic features of (higher-order) programming ...

- variables
- function application and abstraction
- pairing...
and base our study on the simplest programming language containing these features...

Simply-typed λ-calculus

The basis of Haskell, ML, Eff, F\#, Agda, Elm and many other programming languages

Simply-typed λ-Calculus

Types $\mathbb{A} \ni 1|\mathbb{A} \times \mathbb{A}| \mathbb{A} \rightarrow \mathbb{A}$
Γ is now a non-repetitive list of typed variables $x_{1}: \mathbb{A}_{1} \ldots x_{n}: \mathbb{A}_{n}$
Programs are built according to the previous deduction rules

$$
\begin{gathered}
\frac{x: \mathbb{A} \in \Gamma}{\Gamma \vdash x: \mathbb{A}} \text { (ass) } \quad \overline{\Gamma \vdash *: 1} \text { (triv) } \quad \frac{\Gamma \vdash V: \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1} V: \mathbb{A}}\left(\pi_{1}\right) \\
\frac{\Gamma \vdash V: \mathbb{A}}{\Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B}}(\operatorname{prd}) \quad \frac{\Gamma, x: \mathbb{A} \vdash V: \mathbb{B}}{\Gamma \vdash \lambda x: \mathbb{A} \cdot V: \mathbb{A} \rightarrow \mathbb{B}}(\text { cry }) \\
\frac{\Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B} \quad \Gamma \vdash U: \mathbb{A}}{\Gamma \vdash V U: \mathbb{B}}(\operatorname{app})
\end{gathered}
$$

Examples of λ-terms

```
x:\mathbb{A}\vdashx:\mathbb{A (identity)}
x:\mathbb{A}\vdash\langlex,x\rangle:\mathbb{A}\times\mathbb{A}\mathrm{ (duplication)}
x:\mathbb{A}\times\mathbb{B}\vdash\langle\mp@subsup{\pi}{2}{}x,\mp@subsup{\pi}{1}{}x\rangle:\mathbb{B}\times\mathbb{A}(swap)
f:\mathbb{A}->\mathbb{B},g:\mathbb{B}->\mathbb{C}\vdash\lambdax:\mathbb{A}.g(fx):\mathbb{A}->\mathbb{C}(composition)
```


Exercise

Build a λ-term $f: \mathbb{A} \rightarrow \mathbb{B}, g: \mathbb{A} \rightarrow \mathbb{C} \vdash ?: \mathbb{A} \rightarrow \mathbb{B} \times \mathbb{C}$ that pairs the outputs given by f and g

Semantics for simply-typed λ-calculus

We wish to assign a mathematical meaning to λ-terms

$$
\llbracket-\rrbracket: \lambda \text {-terms } \longrightarrow \ldots
$$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

Semantics for simply-typed λ-calculus

We wish to assign a mathematical meaning to λ-terms

$$
\llbracket-\rrbracket: \lambda \text {-terms } \longrightarrow \ldots
$$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret λ-terms as functions. But first ...

Basic facts about functions

For every set X, there is a 'trivial' function

$$
!: X \longrightarrow\{\star\}=1, \quad!(x)=\star
$$

We can always pair two functions $f: X \rightarrow A, g: X \rightarrow B$ into

$$
\langle f, g\rangle: X \rightarrow A \times B, \quad\langle f, g\rangle(x)=(f x, g x)
$$

Consider two sets X, Y. There exist 'projection' functions

$$
\begin{array}{ll}
\pi_{1}: X \times Y \rightarrow X, & \pi_{1}(x, y)=x \\
\pi_{2}: X \times Y \rightarrow Y, & \pi_{2}(x, y)=y
\end{array}
$$

Basic facts about functions

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$
\lambda f: X \rightarrow Z^{Y}, \quad \lambda f(x)=(y \mapsto f(x, y))
$$

Consider sets X, Y, Z. There exists an 'application' function

$$
\operatorname{app}: Z^{Y} \times Y \rightarrow Z, \quad \operatorname{app}(f, y)=f y
$$

Functional semantics for the simply-typed λ-calculus

Types \mathbb{A} are interpreted as sets $\llbracket \mathbb{A} \rrbracket$

$$
\begin{aligned}
\llbracket 1 \rrbracket & =\{\star\} \\
\llbracket \mathbb{A} \times \mathbb{B} \rrbracket & =\llbracket \mathbb{A} \rrbracket \times \llbracket \mathbb{B} \rrbracket \\
\llbracket \mathbb{A} \rightarrow \mathbb{B} \rrbracket & =\llbracket \mathbb{B} \rrbracket^{\llbracket \mathbb{A} \rrbracket}
\end{aligned}
$$

A typing context Γ is interpreted as

$$
\llbracket\left\ulcorner\rrbracket=\llbracket x_{1}: \mathbb{A}_{1} \times \cdots \times x_{n}: \mathbb{A}_{n} \rrbracket=\llbracket \mathbb{A}_{1} \rrbracket \times \cdots \times \llbracket \mathbb{A}_{n} \rrbracket\right.
$$

A λ-term $\Gamma \vdash V: \mathbb{A}$ is interpreted as a function

$$
\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

Functional semantics for the simply-typed λ-calculus

A λ-term $\Gamma \vdash V: \mathbb{A}$ is interpreted as a function

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

in the following way

$$
\begin{aligned}
& \frac{x_{i}: \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_{i}: \mathbb{A} \rrbracket=\pi_{i}} \\
& \overline{\llbracket \vdash \vdash *: 1 \rrbracket=!} \\
& \frac{\llbracket\ulcorner\vdash V: \mathbb{A} \times \mathbb{B} \rrbracket=f}{\llbracket\left\ulcorner\vdash \pi_{1} V: \mathbb{A} \rrbracket=\pi_{1} \cdot f\right.} \\
& \frac{\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket=f \quad \llbracket \Gamma \vdash U: \mathbb{B} \rrbracket=g}{\llbracket \Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B} \rrbracket=\langle f, g\rangle} \quad \frac{\llbracket \Gamma, x: \mathbb{A} \vdash V: \mathbb{B} \rrbracket=f}{\llbracket \Gamma \vdash \lambda x: \mathbb{A} . V: \mathbb{A} \rightarrow \mathbb{B} \rrbracket=\lambda f} \\
& \frac{\llbracket \Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B} \rrbracket=f \quad \llbracket \Gamma \vdash U: \mathbb{A} \rrbracket=g}{\llbracket \Gamma \vdash V U: \mathbb{B} \rrbracket=\operatorname{app} \cdot\langle f, g\rangle}
\end{aligned}
$$

Exercises

Show that the following equations hold.

$$
\begin{aligned}
\llbracket x: \mathbb{A}, y: \mathbb{B} \vdash \pi_{1}\langle x, y\rangle: \mathbb{A} \rrbracket & =\llbracket x: \mathbb{A}, y: \mathbb{B} \vdash x: \mathbb{A} \rrbracket \\
\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket & =\llbracket\left\ulcorner\vdash\left\langle\pi_{1} V, \pi_{2} V\right\rangle: \mathbb{A} \rrbracket\right. \\
\llbracket x: \mathbb{A} \vdash(\lambda y \cdot\langle x, y\rangle) x: \mathbb{A} \times \mathbb{A} \rrbracket & =\llbracket x: \mathbb{A} \vdash\langle x, x\rangle: \mathbb{A} \times \mathbb{A} \rrbracket
\end{aligned}
$$

