Simply-typed λ -calculus: a brief overview

Renato Neves

The Four Chapters of this course

Design and analysis of communicating systems

Extension to the real-time setting

Going full cyber-physical

Programming with algebraic effects . . .

a uniform approach to the previous chapters

Overview

Modern programming typically involves different effects

- (internal) state manipulation
- communication
- probabilistic operations
- cyber-physical behaviour

We will study the mathematical foundations of

Programming with effects

Deductive reasoning

Deductive reasoning

Assumptions + rules = new knowledge

Example

If P implies Q and Q implies R then P implies R

Deductive reasoning has been studied since Aristotle . . . long before the age of artificial computers

So what does it have to do with programming?

A basic deductive system pt. I

Let $\mathbb{A}, \mathbb{B} \dots$ denote propositions (a property or a statement) and 1 denote a proposition that always holds. If \mathbb{A} and \mathbb{B} are propositions then

- $\mathbb{A} \times \mathbb{B}$ is a proposition it denotes the conjunction of \mathbb{A} and \mathbb{B}
- $lack A o \mathbb B$ is a proposition it tells that $\mathbb A$ implies $\mathbb B$

A basic deductive system pt. II

 Γ denotes a list of propositions. $\Gamma \vdash \mathbb{A}$ means "if the propositions in Γ hold then (we deduce that) \mathbb{A} also holds"

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (π_1)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (π_2)}$$

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \quad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \quad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B} \quad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

Building new rules from the original ones

The following rules are derivable from the previous system

$$\frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}}$$

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}}$$

Exercise

Prove that $\mathbb{A} \to \mathbb{B}, \mathbb{B} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{C}$ and also that $\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$. Are these deductions familiar?

Going back to programming ...

The essentials of programming

In order to study effectful programming, we should think of what are the basic features of (higher-order) programming . . .

- variables
- function application and abstraction
- pairing . . .

and base our study on the simplest programming language containing these features . . .

Simply-typed λ -calculus

The basis of Haskell, ML, Eff, F#, Agda, Elm and many other programming languages

Simply-typed λ -Calculus

Types
$$\mathbb{A} \ni 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$$

 Γ is now a non-repetitive list of typed variables $x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n$

Programs are built according to the previous deduction rules

$$\frac{x : \mathbb{A} \in \Gamma}{\Gamma \vdash x : \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash V : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1}V : \mathbb{A}} \text{ (}\pi_{1}\text{)}$$

$$\frac{\Gamma \vdash V : \mathbb{A} \qquad \Gamma \vdash U : \mathbb{B}}{\Gamma \vdash \langle V, U \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash V : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot V : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$

$$\frac{\Gamma \vdash V : \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash U : \mathbb{A}}{\Gamma \vdash V U : \mathbb{B}} \text{ (app)}$$

C

Examples of λ -terms

- $x: \mathbb{A} \vdash x: \mathbb{A}$ (identity) $x: \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A}$ (duplication)
- $x : \mathbb{A} \times \mathbb{B} \vdash \langle \pi_2 \ x, \pi_1 \ x \rangle : \mathbb{B} \times \mathbb{A} \text{ (swap)}$
- $f: \mathbb{A} \to \mathbb{B}, g: \mathbb{B} \to \mathbb{C} \vdash \lambda x: \mathbb{A}. g(f x): \mathbb{A} \to \mathbb{C}$ (composition)

Exercise

Build a λ -term $f: \mathbb{A} \to \mathbb{B}, g: \mathbb{A} \to \mathbb{C} \vdash ?: \mathbb{A} \to \mathbb{B} \times \mathbb{C}$ that pairs the outputs given by f and g

Semantics for simply-typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

Semantics for simply-typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret λ -terms as functions. But first . . .

Basic facts about functions

For every set X, there is a 'trivial' function

$$!: X \longrightarrow \{\star\} = 1,$$
 $!(x) = \star$

We can always pair two functions $f: X \to A$, $g: X \to B$ into

$$\langle f, g \rangle : X \to A \times B, \qquad \langle f, g \rangle (x) = (f \times g \times g)$$

Consider two sets X, Y. There exist 'projection' functions

$$\pi_1: X \times Y \to X,$$
 $\pi_1(x, y) = x$
 $\pi_2: X \times Y \to Y,$ $\pi_2(x, y) = y$

Basic facts about functions

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$\lambda f: X \to Z^Y, \qquad \lambda f(x) = (y \mapsto f(x, y))$$

Consider sets X, Y, Z. There exists an 'application' function

$$\operatorname{app}: Z^Y \times Y \to Z, \qquad \operatorname{app}(f, y) = f y$$

Functional semantics for the simply-typed λ -calculus

Types \mathbb{A} are interpreted as sets $[\![\mathbb{A}]\!]$

$$\begin{bmatrix} 1 \end{bmatrix} = \{ \star \}$$

$$\begin{bmatrix} \mathbb{A} \times \mathbb{B} \end{bmatrix} = [\mathbb{A}] \times [\mathbb{B}]$$

$$\begin{bmatrix} \mathbb{A} \to \mathbb{B} \end{bmatrix} = [\mathbb{B}]^{[\mathbb{A}]}$$

A typing context Γ is interpreted as

$$\llbracket \Gamma \rrbracket = \llbracket x_1 : \mathbb{A}_1 \times \cdots \times x_n : \mathbb{A}_n \rrbracket = \llbracket \mathbb{A}_1 \rrbracket \times \cdots \times \llbracket \mathbb{A}_n \rrbracket$$

A λ -term $\Gamma \vdash V : \mathbb{A}$ is interpreted as a function

$$\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

Functional semantics for the simply-typed λ -calculus

A λ -term $\Gamma \vdash V : \mathbb{A}$ is interpreted as a function

$$\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

in the following way

$$\frac{x_i : \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_i : \mathbb{A} \rrbracket = \pi_i} \qquad \frac{\llbracket \Gamma \vdash V : \mathbb{A} \times \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash \pi_1 V : \mathbb{A} \rrbracket = \pi_1 \cdot f}$$

$$\frac{ \llbracket \Gamma \vdash V : \mathbb{A} \rrbracket = f \quad \llbracket \Gamma \vdash U : \mathbb{B} \rrbracket = g }{ \llbracket \Gamma \vdash \langle V, U \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle } \quad \frac{ \llbracket \Gamma, x : \mathbb{A} \vdash V : \mathbb{B} \rrbracket = f }{ \llbracket \Gamma \vdash \lambda x : \mathbb{A} \cdot V : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f }$$

$$\frac{\llbracket \Gamma \vdash V : \mathbb{A} \to \mathbb{B} \rrbracket = f \quad \llbracket \Gamma \vdash U : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash V U : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

Exercises

Show that the following equations hold.

$$\begin{bmatrix} x : \mathbb{A}, y : \mathbb{B} \vdash \pi_1 \langle x, y \rangle : \mathbb{A} \end{bmatrix} = \begin{bmatrix} x : \mathbb{A}, y : \mathbb{B} \vdash x : \mathbb{A} \end{bmatrix} \\
 \begin{bmatrix} \Gamma \vdash V : \mathbb{A} \end{bmatrix} = \begin{bmatrix} \Gamma \vdash \langle \pi_1 V, \pi_2 V \rangle : \mathbb{A} \end{bmatrix} \\
 \begin{bmatrix} x : \mathbb{A} \vdash (\lambda y. \langle x, y \rangle) x : \mathbb{A} \times \mathbb{A} \end{bmatrix} = \begin{bmatrix} x : \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A} \end{bmatrix}$$