
Hybrid Programming

Renato Neves

Table of Contents

Overview

Semantics

Design Patterns

Conclusions

Renato Neves Overview 2 / 39

Last Lectures

Explored a simple language (ccs) and its semantics

Used it to design communicating systems

Expanded this study to the timed setting

Used it to save us all from zombies!!

Renato Neves Overview 3 / 39

Going Beyond the Timed Setting

1 2 3 4 5 6

1
2
3
4

Sequence of events →

+
1 2 3 4 5 6

1
2
3
4

Time →

Computational devices now interact with arbitrary physical
processes (and not just time)

Described via differential equationsDescribed via classical methods of computation

Renato Neves Overview 4 / 39

Which language?

This time we explore a simple, imperative language

No concurrency and no communication (languages with such
features are still underdeveloped)

Perhaps some of you would like to improve them :-)

Renato Neves Overview 5 / 39

The Hybrid While-Language

Linear Terms
LTerm ∋ r | r · t | x | t + s

Atomic Programs
At ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog ∋ a | p ; q | if b then p else q | while b do { p }

real number variable

"run" the system of differential equations for t seconds

Renato Neves Overview 6 / 39

Overview

First we tackle a while-language without differential equations

Then move to the hybrid case and see how semantics aids in the
analysis of hybrid programs

Throughout this journey, we will:

• write implementations in haskell
• do analyses in lince

Renato Neves Overview 7 / 39

Table of Contents

Overview

Semantics

Design Patterns

Conclusions

Renato Neves Semantics 8 / 39

A Language of Linear Terms and its Semantics

Linear Terms
LTerm ∋ r | r · t | x | t + s

Let σ : X → R denote a memory

Expression ⟨t, σ⟩ ⇓ r tells that t outputs r if current memory is σ

⟨x, σ⟩ ⇓ σ(x) (var) ⟨r, σ⟩ ⇓ r
(con)

⟨t, σ⟩ ⇓ r
⟨s · t, σ⟩ ⇓ s · r

(scl) ⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2

⟨t1 + t2, σ⟩ ⇓ r1 + r2
(add)

Renato Neves Semantics 9 / 39

The Semantics at Work

Linear term x + 2 · y corresponds to the ‘syntax tree’

(+)
�� ##

x (2 ·)
��
y

Equations σ(x) = 3 and σ(y) = 4 yield the ’semantic tree’

⟨x, σ⟩ ⇓ 3
⟨y, σ⟩ ⇓ 4

⟨2 · y, σ⟩ ⇓ 8
⟨x + 2 · y, σ⟩ ⇓ 11

Renato Neves Semantics 10 / 39

Exercises

Write down the corresponding derivation trees for

• 2 · x + 2 · y

• 3 · (2 · x) + 2 · (y + z)

Boring computations? If so why not implement the semantics?

Renato Neves Semantics 11 / 39

Exercises

Write down the corresponding derivation trees for

• 2 · x + 2 · y

• 3 · (2 · x) + 2 · (y + z)

Boring computations? If so why not implement the semantics?

Renato Neves Semantics 11 / 39

Equivalence of Linear Terms

The previous semantics yields the following notion of equivalence
t ∼ s if for all memories σ

⟨t, σ⟩ ⇓ r iff ⟨s, σ⟩ ⇓ r

Examples of equivalent terms:

• r · (x + y) ∼ r · x + r · y

• 0 · x ∼ 0

• (r · s) · x ∼ r · (s · x)

Renato Neves Semantics 12 / 39

A Language of Boolean Terms and its Semantics

Boolean Terms
BTerm ∋ t1 ≤ t2 | b ∧ c | ¬b

Expression ⟨b, σ⟩ ⇓ v tells that b outputs v if the memory is σ

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ tt
(leq)

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ̸≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ ff
(gtr)

⟨b, σ⟩ ⇓ v
⟨¬b, σ⟩ ⇓ ¬v

(not) ⟨b1, σ⟩ ⇓ v1 ⟨b2, σ⟩ ⇓ v2

⟨b1 ∧ b2, σ⟩ ⇓ v1 ∧ v2
(and)

Renato Neves Semantics 13 / 39

A While-language and its Semantics

While-Programs
Prog ∋ x := t | p ; q | if b then p else q | while b do { p }

⟨t, σ⟩ ⇓ r
⟨x := t, σ⟩ ⇓ σ[r/x] (asg)

⟨p, σ⟩ ⇓ σ′ ⟨q, σ′⟩ ⇓ σ′′

⟨p ; q, σ⟩ ⇓ σ′′ (seq)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ σ′

⟨if b then p else q, σ⟩ ⇓ σ′ (if1) ⟨b, σ⟩ ⇓ ff ⟨q, σ⟩ ⇓ σ′

⟨if b then p else q, σ⟩ ⇓ σ′ (if2)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ σ′ ⟨while b do { p }, σ′⟩ ⇓ σ′′

⟨while b do { p }, σ⟩ ⇓ σ′′ (wh1)

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ⟩ ⇓ σ

(wh2)

Renato Neves Semantics 14 / 39

The Semantics at Work

Program x := x + 1 ; x := x + 2 corresponds to the syntax tree

(;)
ww ''

x := x + 1 x := x + 2

Memory σ = x 7→ 3 yields the semantic tree

⟨x + 1, x 7→ 3⟩ ⇓ 4
⟨x := x + 1, x 7→ 3⟩ ⇓ x 7→ 4

⟨x + 2, x 7→ 4⟩ ⇓ 6
⟨x := x + 2, x 7→ 4⟩ ⇓ x 7→ 6

⟨x := x + 1 ; x := x + 2, x 7→ 3⟩ ⇓ x 7→ 6

Renato Neves Semantics 15 / 39

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence
p ∼ q if for all environments σ

⟨p, σ⟩ ⇓ σ′ iff ⟨q, σ⟩ ⇓ σ′

Examples of equivalent terms:

• x := x + 1 ; x := x + 2 ∼ x := x + 3

• (p ; q) ; r ∼ p ; (q ; r)

Renato Neves Semantics 16 / 39

Pause for Meditations

We designed our first programming language

And used the semantics to prove program properties

Which program features would you like to add next?

Here: we add differential operations

Renato Neves Semantics 17 / 39

Preliminaries about Differential Equations

Systems of diff. eqs. x′
1 = t1, . . . , x′

n = tn have unique solutions

ϕ : Rn × [0, ∞) −→ Rn

Example (Continuous Dynamics of a Vehicle)
p′ = v, v′ = a admits the solution

ϕ ((x0, v0), t) =
(
x0 + v0t + 1

2at2, v0 + at
)

Obtained via Linear Algebra

Initial position and initial velocity

Renato Neves Semantics 18 / 39

Conventions

Often abbreviate a list v1, . . . , vn to v⃗

σ[v⃗/x⃗] denotes the memory that maps each xi in x⃗ to vi in v⃗ and
all other variables the same way as σ

Example

σ[v1, v2/x1, x2](y) =


v1 if y = x1

v2 if y = x2

σ(y) otherwise

Often treat σ : {x1, . . . , xn} → R as a list [σ(x1), . . . , σ(xn)]

Renato Neves Semantics 19 / 39

The Hybrid While-Language and . . .

Linear Terms
LTerm ∋ r | r · t | x | t + s

Atomic Programs
At ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog ∋ a | p ; q | if b then p else q | while b do { p }

real number variable

"run" the system of differential equations for t seconds

Renato Neves Semantics 20 / 39

. . . its semantics

Evaluation of programs is now time-dependent

⟨p, σ, t⟩ ⇓ σ′

Lince relies on such semantics: evaluation of ⟨p, σ, ti⟩ for a "big"
sequence t1, . . . , tk yields a trajectory, such as

Renato Neves Semantics 21 / 39

The Semantic Rules pt. I

⟨s, σ⟩ ⇓ r t < r

⟨⃗x′ = t⃗ for s, σ, t⟩ ⇓ stop, σ[ϕ(σ, t)/x⃗]

⟨s, σ⟩ ⇓ r t = r
⟨⃗x′ = t for s, σ, t⟩ ⇓ skip, σ[ϕ(σ, t)/x⃗]

⟨t, σ⟩ ⇓ r
⟨x := t, σ, 0⟩ ⇓ skip, σ[r/x]

⟨p, σ, t⟩ ⇓ stop, σ′

⟨p ; q, σ, t⟩ ⇓ stop, σ′

⟨p, σ, t⟩ ⇓ skip, σ′ ⟨q, σ, t ′⟩ ⇓ s, σ′′

⟨p ; q, σ, t + t ′⟩ ⇓ s, σ′′

Renato Neves Semantics 22 / 39

Examples

⟨1, (x 7→ 2)⟩ ⇓ 1 1
2 < 1

⟨x′ = 0 for 1, (x 7→ 2), 1
2 ⟩ ⇓ stop, (x 7→ 2)

⟨(x′ = 0 for 1) ; (x′ = 1 for 1), (x 7→ 2), 1
2 ⟩ ⇓ stop, (x 7→ 2)

· · ·
⟨x′ = 0 for 1, (x 7→ 2), 1⟩ ⇓ skip, (x 7→ 2)

· · ·
⟨x′ = 1 for 1, (x 7→ 2), 1

2 ⟩ ⇓ stop, (x 7→ 2 + 1
2)

⟨(x′ = 0 for 1) ; (x′ = 1 for 1), (x 7→ 2), 1 + 1
2 ⟩ ⇓ stop, (x 7→ 2 + 1

2)

= (x 7→ 2)[ϕ(2, 1
2)/x]

= (x 7→ 2)[ϕ(2, 1
2)/x] = (x 7→ 2)[2 + 1

2 /x] = x 7→ 2 + 1
2

Renato Neves Semantics 23 / 39

Exercise

Write down the corresponding derivation trees for

• (x′ = 1 for 1) ; (x′ = −1 for 1) at time instant 1
2

• (x′ = 1 for 1) ; (x′ = −1 for 1) at time instant 2

Renato Neves Semantics 24 / 39

The Semantic Rules pt. II

⟨b, σ⟩ ⇓ tt ⟨p, σ, t⟩ ⇓ s, σ′

⟨if b then p else q, σ, t⟩ ⇓ s, σ′
⟨b, σ⟩ ⇓ ff ⟨q, σ, t⟩ ⇓ s, σ′

⟨if b then p else q, σ, t⟩ ⇓ s, σ′

⟨b, σ⟩ ⇓ tt ⟨p ; while b do { p }, σ, t⟩ ⇓ s, σ′

⟨while b do { p }, σ, t⟩ ⇓ s, σ′

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ, 0⟩ ⇓ skip, σ

Renato Neves Semantics 25 / 39

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence:
p ∼ q if for all environments σ and time instants t,

⟨p, σ, t⟩ ⇓ s, σ′ iff ⟨q, σ, t⟩ ⇓ s, σ′

Examples of equivalent terms:

• (x′ = 1 for 1) ; (x′ = 1 for 1) ∼ x′ = 1 for 2
• (p ; q) ; r ∼ p ; (q ; r)

Renato Neves Semantics 26 / 39

A Zoo of Newtonian Hybrid Programs

• Cruise controller (speed regulation)
• Landing system
• Bouncing Ball
• Moving a particle from point A to B
• Following a leader

Renato Neves Semantics 27 / 39

Table of Contents

Overview

Semantics

Design Patterns

Conclusions

Renato Neves Design Patterns 28 / 39

A selection of design patterns

We explore the last two (ubiquituous) scenarios

Tackle them via Analytic Geometry

Renato Neves Design Patterns 29 / 39

Moving a particle

1 2 3 4 5 6

1
2
3
4

Time →

Ve
lo

cit
y

→

Area = distance travelled

What should be the function’s shape?

Renato Neves Design Patterns 30 / 39

Moving a particle with a fixed acceleration

We accelerate and then brake

Time →

Ve
lo

cit
y

→

Time →

Ac
ce

l→

dist = 1
2 · b · h

h = 1
2 · b · accel

=⇒ b =
√

4 · dist
accel

Renato Neves Design Patterns 31 / 39

Moving a particle with positive velocity

We maintain velocity and then brake

Time →

Ve
lo

cit
y

→

Time →

Ac
ce

l→

dist = v · b1 + 1
2 · v · b2

v = b2 · accel
=⇒ b1 = 2 · dist − v2

a
2 · v

Renato Neves Design Patterns 32 / 39

The more general case

We accelerate, maintain velocity, and then brake

Time →

Ve
lo

cit
y

→

. . .

Renato Neves Design Patterns 33 / 39

Following the leader pt. I

Problem: Even if behind the leader in the next iteration, we might
generate a velocity so high that we won’t brake in time

Renato Neves Design Patterns 34 / 39

Following the leader pt. I

Problem: Even if behind the leader in the next iteration, we might
generate a velocity so high that we won’t brake in time

Renato Neves Design Patterns 34 / 39

Following the leader pt. II

Conditional arises from solving the equation for t

x0 + v0t + 1
2(−2)t2 = y0 + 10t

No solutions, means no collisions!!

Renato Neves Design Patterns 35 / 39

Following the leader pt. II

Conditional arises from solving the equation for t

x0 + v0t + 1
2(−2)t2 = y0 + 10t

No solutions, means no collisions!!
Renato Neves Design Patterns 35 / 39

Table of Contents

Overview

Semantics

Design Patterns

Conclusions

Renato Neves Conclusions 36 / 39

Conclusions

Studied fundamentals of program semantics

Visited a zoo of hybrid programs – which improved our ability to
recognise them in the wild

Saw how to design hybrid programs formally

What next?

Renato Neves Conclusions 37 / 39

Conclusions

Studied fundamentals of program semantics

Visited a zoo of hybrid programs – which improved our ability to
recognise them in the wild

Saw how to design hybrid programs formally

What next?

Renato Neves Conclusions 37 / 39

Scenarios we did not cover

Movement in n-dimensions

Trajectory correction

Orbital dynamics

. . .

Renato Neves Conclusions 38 / 39

Open Challenges

Integration of uncertainty, concurrency, and communication

A logical verification framework

A proper handle of exact real-number computation

Renato Neves Conclusions 39 / 39

	Overview
	Semantics
	Design Patterns
	Conclusions

