Hybrid Programming

Renato Neves

% @
L d I ~
5
020 HASLab
Universidade do Minho SOFTWARE LABORATORY

Table of Contents

Overview

o 25

Last Lectures

Explored a simple language (ccs) and its semantics
Used it to design communicating systems
Expanded this study to the timed setting

Used it to save us all from zombies!!

o 3/

Going Beyond the Timed Setting

4 . 4
3 . . 3
2 + 2 —
1 . . . 1
Il Il Il Il Il Il | | | Il Il Il
‘ 1 2 3 4 5 6 ‘ 1 2 3 4 5 6

Sequence of events —

v V

Described via classical methods of computation Described via differential equations

Computational devices now interact with arbitrary physical

processes (and not just time)

o)

Which language?

This time we explore a simple, imperative language

No concurrency and no communication (languages with such
features are still underdeveloped)

Perhaps some of you would like to improve them :-)

o 5/

The Hybrid While-Language

Linear Terms
LTerm>r|r-t|x|t+s

v v

real number variable

Atomic Programs
AtSx:=t|x]=t4,...,x, =1t, for t

v

"run" the system of differential equations for t seconds

Hybrid Programs
Prog>a|p;q|if bthenpelseq |whilebdo{p}

o e

First we tackle a while-language without differential equations

Then move to the hybrid case and see how semantics aids in the

analysis of hybrid programs

Throughout this journey, we will:

= write implementations in HASKELL

= do analyses in LINCE

o 7/

Table of Contents

Semantics

S e

A Language of Linear Terms and its Semantics

Linear Terms
LTerm>r|r-t|x|t+s

Let 0 : X — R denote a

Expression (t,o) | r tells that t outputs r if current memory is o

(var) (con)

(x,0) | o(x) (r,o) 4 r

(t,o) I r (t1,0) § ry (t2,0) | ra

(s-t,o)|s-r (&) (t1 +to,0) 11 + 19 et

S e

The Semantics at Work

Linear term x + 2 - y corresponds to the ‘syntax tree’

(+)
PN
X (2)
v
y

Equations o(x) = 3 and o(y) = 4 yield the 'semantic tree’

(y,0) | 4
(x,0) 43 (2-y,0) 48
(x+2-y,0) 11

Exercises

Write down the corresponding derivation trees for

= 2.x+2-y
3 (20 +2:(y+2)

Exercises

Write down the corresponding derivation trees for

= 2.x+2-y
3 (20 +2:(y+2)

Boring computations? If so why not implement the semantics?

Equivalence of Linear Terms

The previous semantics yields the following notion of equivalence
t ~ s if for all memories o

(t,oy Y riff (s,o0) | r

Examples of equivalent terms:

s r-(x+y)~r-x+r-y
= 0-x~0

» (r-s)-x~r-(s-x)

A Language of Boolean Terms and its Semantics

Boolean Terms
BTerm> t; <ty |bAc|—b

Expression (b, o) | v tells that b outputs v if the memory is o

(t1,0) I ry (t2,0) | ra ry <1
(t1 < tg,0) | tt

(leq)

(t1,0) 4 1y (t2,0) I ra Ty £ 13
<t1 < tQ,O'> U«ff

(str)

(bo) Iv
<ﬁb7 U) ‘U‘ =Y

(b1,0) | v (b2,0) | vo
<b1 /\b2,0’> le /\V2

(not)

(and)

A While-language and its Semantics

While-Programs
Prog>x:=t|p;q|if bthenpelseq |whilebdo{p}

(p,oy o’ (q,0) 0"
(piq,0o) o

(t,o) I r
(x:=t,0) | o[r/x]

(asg) (seq)

(bo) $£f (q,0) 4 o’
(if bthen pelseq,o) | o

(bo) 4ttt (p,0) 4o’
(if bthen pelseq,o) | o

(if1) (if2)

b.o)4tt (po)bo (whilebdo{p}.o’) I o”
(whilebdo{p},o) | o’

(wh1)

(b,o) | ££
(whilebdo{p},0) | o

(wh2)

The Semantics at Work

Program x :=x + 1; x := x + 2 corresponds to the syntax tree

Memory o = x — 3 yields the semantic tree
(x+1,x—3) 4 (x+2,x—4) 6

(xi=x+1,x—3)|x—4 (xi=x+2,x—4) x—6
(x=x+1;x:=x+2,x—3)|x—6

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence
p ~ q if for all environments o

(p,o) |} " iff (q,0) I o

Examples of equivalent terms:
n x =x4+1;x=x4+2~x:=%x+3
= (p;a)ir~pi(q;iT)

Pause for Meditations

We designed our first programming language
And used the semantics to prove program properties
Which program features would you like to add next?

Here: we add differential operations

Preliminaries about Differential Equations

/
n

¢ :R" x[0,00) — R"

|

Obtained via Linear Algebra

Systems of diff. eqs. x} = tj,...,x, = t, have unique

Example (Continuous Dynamics of a Vehicle)

p’ = v,v/ = a admits the solution

¢ ((x0, vo), t) = (xo + vot + Sat?, v + at)

/

Initial position and initial velocity

Conventions

Often abbreviate a list vq,...,Vv, to V

o[V /X] denotes the memory that maps each x; in X to v; in V and
all other variables the same way as o

Example
Vi if y =x1
ofvi, va/x1,%](y) = { vz ify =x
o(y) otherwise
Often treat o : {x1,...,%a} — R as a list [0(x1),...,0(xn)]

The Hybrid While-Language and ...

Linear Terms
LTerm>r|r-t|x|t+s

v v

real number variable

Atomic Programs

AtSx:=t|x]=t4,...,x, =1t, for t

v

"run" the system of differential equations for t seconds

Hybrid Programs
Prog>a|p;q|if bthenpelseq |whilebdo{p}

... its semantics

Evaluation of programs is now time-dependent
(p,0,t) I o’

LINCE relies on such semantics: evaluation of (p, o, t;) for a "big"
sequence ty, ..., tx yields a trajectory, such as

0

AVAA/\/\/
TV

The Semantic Rules pt. |

(s,o) Jr t<r
(¥ =t fors,o,t) || stop,o[¢(o,t)/X]

(s,o) Jr t=r
(¥ =t fors,o,t) | skip,o[¢(o, t)/X]

(t,o) I r (p,0,t) | stop,o’
(x :=1t,0,0) | skip,o[r/x] (piq,o,t) | stop,o’

<p’ J? t> U’ Sklp7 OJ <q7 U? tl) ‘U’ S? OJI
<P?q707t+ t,> U S7O'”

LGEo241 <t
(¥’ =0for 1,(x»—>2),%) | stop, (x — 2)

((x' =0forl); (x' =1forl),(x+— 2), %) | stop, (x — 2)

v

= (x = 2)[(2, 3)/]

(x =0forl,(x— 2),1) |} skip, (x — 2) (x' =1forl,(x— 2), %) | stop, (x — 2+ %)

<(x’:0for1);(x’:1for1),(x>—>2),1+%)l}stop,(xH2+%)

v

= (x> 2)[p(2, 1)/x= (x> 22+ 3/x=x—2+1

Exercise

Write down the corresponding derivation trees for

» (x' =1forl);(x' = —1forl) at time instant 3

» (¥ =1forl);(x' = —1for1l) at time instant 2

The Semantic Rules pt. 1l

(bo) bttt (p,o,t)Is,0 (bo) 4 £f (q,0,t) Is,0
(if b then pelseq,o,t) || s,0’ (if b then pelseq,o,t) || s,0’

(b,o) | tt (p;whilebdo {p},o,t) | s,0
(whilebdo{p},o,t) | s, o

(b,o) | ££
(whilebdo{p},0,0) | skip,o

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence:
p ~ q if for all environments o and time instants ¢t,

(p,o,t) I s,0" iff (q,0,t) I 5,0

Examples of equivalent terms:
» (¥ =1forl);(x¥ =1forl)~x'=1for?2

* (p;q);r~p;(q;r)

A Zoo of Newtonian Hybrid Programs

= Cruise controller (speed regulation)
= Landing system

= Bouncing Ball

= Moving a particle from point A to B

= Following a leader

Table of Contents

Design Patterns

v 259

A selection of design patterns

We explore the last two (ubiquituous) scenarios

Tackle them via Analytic Geometry

v 59

Moving a particle

—> Area = distance travelled

Velocity —
=N W S

What should be the function’s shape?

v 2059

Moving a particle with a fixed acceleration

We accelerate and then brake

Velocity —
Accel —

Time — Time —

-b-h 14 . dist
= b=/ ———
. accel accel

v a5

dist

O‘ I\)M—\

I\J\l—-

Moving a particle with positive velocity

We maintain velocity and then brake

. 1
8 g
g <<
Time — Time —
. . 2
dlSt:V~b1+%-V~b2 2-dlst—";
2-v

v = by - accel

v 559

The more general case

We accelerate, maintain velocity, and then brake

Velocity —

Time —

v -

Following the leader pt. |

p:=0; v:=2; pl:=50; v1:=10;
while true do {
ifp+v+25<pl+10
then p'=v,v'=5 ,pl'=10 for 1
else p'=v,v'=-2,pl'=10 for 1
}

Renato Neves

1500

1000

50

Design Patterns

100

150

34 /39

Following the leader pt. |

1500 -

p:=0; v:=2; pl:=50; v1:=10; .

while true do { ?
ifp+v+25<pl+10 1000

then p'=v,v'=5 ,pl'=10 for 1
. else p'=v,v'=-2,pl'=10 for 1 o
0.
0 50 100 150

Problem: Even if behind the leader in the next iteration, we might
generate a velocity so high that we won't brake in time

v 20 1259

Following the leader pt. |l

- - P
osition and velocit 300
er -- —pl
pLi=50; v1:=10; osition and velocit
while true do{ 200
if (p+v+2.5 < pl+10) &&
((v-5)72 +
4*(prv+2.5-pl-10) < 0) 100
then p'=v,v B
else p'=v,v 2,pl'=10 for 1;
} o
10 15 20 25 30
Design Patterns 35 /30

Following the leader pt. |l

P
""" e t 300
- - —
pl:=50; v1:=10; e
while true do{ 200
if (p+v+2.5 < pl+10) &&
((v-5)72 +
a*(prv+2.5-pl-10) < 0) 100
then p'=v,v'=5,pl*'=10 for 1;
else p'=v,v'=-2,pl'=10 for 1; «
} 0
0 5 10 15 20 25 30

Conditional arises from solving the equation for t

1
X0 + Vot + 5(—2)1.&2 = yo + 10t

No solutions, means no collisions!!

Renato Neves

Design Patterns 35/ 39

Table of Contents

Conclusions

e e

Conclusions

Studied fundamentals of program semantics

Visited a zoo of hybrid programs — which improved our ability to
recognise them in the wild

Saw how to design hybrid programs formally

e .

Conclusions

Studied fundamentals of program semantics

Visited a zoo of hybrid programs — which improved our ability to

recognise them in the wild

Saw how to design hybrid programs formally

What next?

e .

Scenarios we did not cover

Movement in n-dimensions
Trajectory correction

Orbital dynamics

e -

Open Challenges

Integration of uncertainty, concurrency, and communication
A logical verification framework

A proper handle of exact real-number computation

e .

	Overview
	Semantics
	Design Patterns
	Conclusions

