
Calculus of Communicating Systems

Renato Neves

Table of Contents

Syntax and Semantics of Programming

A Simple Concurrent Language and its Semantics

Putting things into practice

Renato Neves Syntax and Semantics of Programming 2 / 18

A sprinkle of linguistics

We will often face two linguistic concepts that every programmer
ought to know

• syntax - determines whether a sentence is valid or not
• semantics - the meaning of valid sentences

Example (syntax)
The sentence (program) x := p ; q is forbidden by the syntactic
rules of most programming languages

Example (semantics)
The sentence (program) x := 1 has the meaning “writes 1 in the
memory address corresponding to x”

Renato Neves Syntax and Semantics of Programming 3 / 18

The need for semantics in programming

How can one prove that a program does what is supposed to do if
its semantics (i.e. its meaning) is not established a priori?

Examples
What are the outputs of the following programs?

• f (){print a; ret. 1}; g(){print b; ret. 0}; x := f () + g()
• x := 2 ; (x := x + 1 ∥ x := 0)
• (a := 1 ; print b) ∥ (b := 1 ; print a)

Renato Neves Syntax and Semantics of Programming 4 / 18

Transition systems as semantic providers

Transition systems are an ubiquitous mechanism for defining the
semantics of programming languages

Following tradition, we will use them to define the semantics of a
simple (but powerful !!) concurrent language —

and then base on this learning step to tackle Dijkstra’s

Dining Philosophers Problem (circa 1965)

Renato Neves Syntax and Semantics of Programming 5 / 18

Table of Contents

Syntax and Semantics of Programming

A Simple Concurrent Language and its Semantics

Putting things into practice

Renato Neves A Simple Concurrent Language and its Semantics 6 / 18

Calculus of Communicating Systems

Syntax
P, Q ::= X | a.P |

∑
i∈I Pi | P ∥ Q | P\L | . . .

• X is a process name
• a.P communicates via channel a and proceeds as P
•

∑
i∈I Pi non-deterministic choice between processes Pi

• P ∥ Q parallel composition between processes P and Q
• P\L makes channels in L private ‘outside’ of P

Renato Neves A Simple Concurrent Language and its Semantics 7 / 18

First Steps with CCS

Conventions

• 0 =
∑

i∈∅ Pi (denotes a terminating process)
• ā denotes outgoing information via channel a
• τ denotes an invisible action

Examples (processes in CCS)

• a.0 ∥ ā.0 - two processes connected via channel a; information
flows in one direction

• a.b̄.0 ∥ ā.b.0 - info. flows in one direction via a and then in
the inverse direction via b

• (a.b̄.0 ∥ ā.b.0)\{a, b} - both channels a, b now private

Renato Neves A Simple Concurrent Language and its Semantics 8 / 18

First steps with CCS

Which of these expressions are valid sentences in CCS?

1. a.b.P + Q
2. a + b
3. P.a
4. (P + Q).a
5. a.0 + b.0

6. P.Q

Renato Neves A Simple Concurrent Language and its Semantics 9 / 18

CCS and Cyclic Behaviour

We now add the construct rec X . P to the syntax of CCS – so
that we can describe cyclic behaviour

Example
rec X . a.b.X - receive communication through a and then
through b; after that repeat protocol

Example (the coffee machine and the student)
(rec X . coin.coffee.X) || (rec Y . coin.coffee.wrk.Y)

Write down a coffee machine that fails to deliver coffee sometimes

Renato Neves A Simple Concurrent Language and its Semantics 10 / 18

Semantics of CCS

Every process yields a transition system according to the rules

a.P a−→ P
(pr) Pi

a−→ Q∑
i∈I Pi

a−→ Q
(ch) P a−→ P ′

P\L a−→ P ′\L
(res)a, a ̸∈ L

P a−→ P ′

P ∥ Q a−→ P ′ ∥ Q
(coml) Q a−→ Q′

P ∥ Q a−→ P ∥ Q′
(comr)

P a−→ P ′ Q ā−→ Q′

P ∥ Q τ−→ P ′ ∥ Q′
(com)

P[rec X . P/X] a−→ P ′

rec X . P a−→ P ′
(rec)

Substitution of X in P by rec X . P

Renato Neves A Simple Concurrent Language and its Semantics 11 / 18

First steps with CCS

What are the semantics of the following processes?

1. a.b.0

2. a.b.0 + c.d .0

3. a.b.0 ∥ c.d .0

4. rec X . a.b.X

Renato Neves A Simple Concurrent Language and its Semantics 12 / 18

Table of Contents

Syntax and Semantics of Programming

A Simple Concurrent Language and its Semantics

Putting things into practice

Renato Neves Putting things into practice 13 / 18

CCS at Work

With the syntax and semantics of CCS
now in place, we put on our working hats
and start to formally analyse
communication and synchronisation
mechanisms

Renato Neves Putting things into practice 14 / 18

Starvation and Mutual Exclusion in CCS

We define three recursive processes

S = rec X . start.finish.X (the semaphore)
P1 = rec Y . start.a1.b1.finish.Y (process 1)
P2 = rec Z . start.a2.b2.finish.Z (process 2)

and then write down (S ∥ P1 ∥ P2)\{start, finish}

Question: will we ever observe a sequence of actions x1 . . . xn . . .

such that xi = a1 and xi+1 = a2?

think of ai as writing on a critical region and of bi as ending this process

Renato Neves Putting things into practice 15 / 18

Dining Philosophers Problem

Two philosophers sitting at the table in front of each other
. . . thinking . . .

They will wish to eat and for that effect there are precisely two
forks on the table, at their left and right-hand sides

When Philosopher 1 wishes to eat he picks the fork on his left and
then the one on his right

Phil. 2 picks the fork on her left and then the fork on her right

Write down this system in CCS and discover whether it is possible
that both philosophers can no longer eat

Renato Neves Putting things into practice 16 / 18

Going beyond the Dining Philosophers Problem . . .

Detection of both deadlocks and livelocks e.g. in

• Driving systems
• Pacemakers
• at the LHC
• . . .

See details at https://www.mcrl2.org/web/index.html

Renato Neves Putting things into practice 17 / 18

https://www.mcrl2.org/web/index.html

. . . and beyond CCS

Different extensions of CCS to the

• probabilistic
• quantum
• and timed

domains, among others

Stay tuned!

Renato Neves Putting things into practice 18 / 18

Robin Milner, A calculus of communicating systems, Springer,
1980.

Renato Neves Putting things into practice 18 / 18

	Syntax and Semantics of Programming
	A Simple Concurrent Language and its Semantics
	Putting things into practice

