
Transition Systems

Renato Neves

Table of Contents

Why transition systems?

A (generalised) notion of a transition system

A simple concurrent language and its semantics

Observational equivalence

Renato Neves Why transition systems? 2 / 33

A Sprinkle of Linguistics

During the module we will encounter two linguistic concepts that
every programmer should know:

• syntax - the rules used for determining whether a sentence is
valid (in a language) or not

• semantics - the meaning of valid sentences

Example (Syntax)
The sentence/program x := p ; q is forbidden by the syntactic
rules of most programming languages

Example (Semantics)
The sentence/program x := 1 has the meaning “writes 1 in the
memory address corresponding to x”

Renato Neves Why transition systems? 3 / 33

The need for Semantics in Formal Analysis

How can one prove that a program does what is supposed to do if
its semantics (i.e. its meaning) is not established a priori ?

Example
What is the end result of running x := 2 ; (x := x + 1 ∥ x := 0) ?

parallelism operator

Widely used programming languages still lack a formal semantics

Renato Neves Why transition systems? 4 / 33

Transition Systems as Semantic Providers

Transition systems are an ubiquitous mechanism for defining the
semantics of programming languages —

essentially they register all steps of computations

Following tradition, we will use them to define the semantics of a
simple (but powerful !) concurrent language —

and then base on this learning step to tackle Dijkstra’s

Dining Philosophers Problem (circa 1965)

Renato Neves Why transition systems? 5 / 33

Table of Contents

Why transition systems?

A (generalised) notion of a transition system

A simple concurrent language and its semantics

Observational equivalence

Renato Neves A (generalised) notion of a transition system 6 / 33

Preliminaries pt. I

Recalling previous modules . . .

Definition (Functor)
A functor F sends a set X into a new set FX and a function
f : X → Y into a new function Ff : FX → FY such that

F (id) = id F (g · f) = Fg · Ff

Fix a set A. The following two functors then naturally arise

• product - X 7→ A × X , f 7→ id × f
• exponential - X 7→ XA, f 7→ (g 7→ f · g)

Renato Neves A (generalised) notion of a transition system 7 / 33

Preliminaries pt. II - the List and Powerset functors

The list functor - X 7→ X ∗, f 7→ map f

The powerset functor - almost like the list functor; the difference is
that we do not look at the order in which elements appear and
how many times they repeat. Formally,

X 7→ {A | A ⊆ X}, f 7→ (A 7→ {f (a) | a ∈ A})

Example (Powerset on Booleans)
Bool 7→ {∅, {⊤}, {⊥}, {⊤, ⊥}}

applies f to every element of a given list

Renato Neves A (generalised) notion of a transition system 8 / 33

A (Generalised) Notion of a Transition System

Definition (Transition system)
Let F be a functor. An F -transition system is a map X → FX

Some famous examples of F -transition systems

• Moore automata - X → A × XL

• Deterministic automata - X → Bool × XL

• Non-deterministic automata - X → Bool × P(X)L

• Markov chain - X → D(X)
Powerset functor

Distribution functor

Renato Neves A (generalised) notion of a transition system 9 / 33

Our First encounter with Coalgebra

Indeed the idea of working at the level of

Functors as Transition Types

is a very fruitful one; and which we only barely grasped (yet) —

in essence, it provides a universal theory of transition systems that
can be instantiated to most kinds of transition system we will
encounter in our life

Renato Neves A (generalised) notion of a transition system 10 / 33

Table of Contents

Why transition systems?

A (generalised) notion of a transition system

A simple concurrent language and its semantics

Observational equivalence

Renato Neves A simple concurrent language and its semantics 11 / 33

Calculus of Communicating Systems

Syntax
P, Q ::= X | a.P |

∑
i∈I Pi | P ∥ Q | P[f] | P\L

(suited for describing communication and
synchronisation protocols)

• X is a process name
• a.P communicates via channel a and proceeds as P
•

∑
i∈I Pi non-deterministic choice between processes Pi

• P ∥ Q parallel composition between processes P and Q
• . . .

Renato Neves A simple concurrent language and its semantics 12 / 33

First Steps with CCS

Some helpful conventions:

• 0 =
∑

i∈∅ Pi (denotes a terminating process)
• ā denotes outgoing information via channel a
• τ denotes an invisible action

Some examples of processes written in CCS:

• a.0 ∥ ā.0 - connects two processes via channel a; information
flows in one direction only

• a.b̄.0 ∥ ā.b.0 - info. flows in one direction via a and in the
inverse direction via b; the latter is used only after a is used

• (a.b̄.0 ∥ ā.b.0)\{a, b} - both channels a, b are now private

Renato Neves A simple concurrent language and its semantics 13 / 33

First steps with CCS

Which of these expressions are valid sentences in CCS?

1. a.b.P + Q
2. a + b
3. P.a
4. (P + Q).a
5. a.0 + b.0

6. P.Q

Renato Neves A simple concurrent language and its semantics 14 / 33

CCS and Cyclic Behaviour

We now add the construct rec X . P to the syntax of CCS – so
that we can describe cyclic behaviour

Example
rec X . a.b.X - receive communication through a and then
through b; after that repeat the protocol

Example (The coffee machine and the student)
(rec X . coin.coffee.X) || (rec Y . coin.coffee.wrk.Y)

Write down a coffee machine that fails to deliver coffee sometimes

Renato Neves A simple concurrent language and its semantics 15 / 33

The Semantics of CCS

Every process P yields a transition system X → P(X)L with P ∈ X
and with the transitions prescribed by the following rules:

α.P α−→ P
Pi

α−→ Q∑
i∈I Pi

α−→ Q

P α−→ P ′

P ∥ Q α−→ P ′ ∥ Q
Q α−→ Q′

P ∥ Q α−→ P ∥ Q′
P α−→ P ′ Q ᾱ−→ Q′

P ∥ Q τ−→ P ′ ∥ Q′

P α−→ P ′

P\L α−→ P ′\L
α, α ̸∈ L

P[rec X . P/X] α−→ P ′

rec X . P α−→ P ′

Substitution of X in P by rec X . P

Renato Neves A simple concurrent language and its semantics 16 / 33

Exploring CCS . . .

With the syntax and semantics of CCS
now in place, we may put on our working
hats and start to (formally) analyse
communication and synchronisation
mechanisms

Renato Neves A simple concurrent language and its semantics 17 / 33

Mutual Exclusion in CCS

We define three recursive processes

S = rec X . start.finish.X (the semaphore)
P1 = rec Y . start.a1.b1.finish.Y (process 1)
P2 = rec Z . start.a2.b2.finish.Z (process 2)

and then write down (S ∥ P1 ∥ P2)\{start, finish}

Question: will we ever observe a sequence of actions x1 . . . xn . . .

such that xi = a1 and xi+1 = a2?

think of ai as writing on a critical region and of bi as ending this process

Renato Neves A simple concurrent language and its semantics 18 / 33

Dining Philosophers Problem

Two philosophers are sitting at the table in front of each other
. . . thinking . . .

At some point, they will wish to eat and for that effect there are
precisely two forks on the table, at their left and right-hand sides

When Philosopher 1 wishes to eat he first picks the fork on his left
and then the one on his right

Philosopher 2 picks first the fork on her left and then the fork on
her right

Write down this system in CCS and discover whether it is possible
that both philosophers die of starvation

Renato Neves A simple concurrent language and its semantics 19 / 33

Table of Contents

Why transition systems?

A (generalised) notion of a transition system

A simple concurrent language and its semantics

Observational equivalence

Renato Neves Observational equivalence 20 / 33

The Quest for Observational Equivalence

Sometimes we would like to replace a program for another one
whose behaviour we cannot distinguish from the original

Example
Why not replace rec X . a.a.X by the simpler process
rec X . a.X ?

For such substitutions to be sound we require a formal notion of
observational equivalence

Renato Neves Observational equivalence 21 / 33

Observational Equivalence Informally

Two programs are observationally equivalent if it is impossible to
observe any difference in their behaviour

Here behaviour is described in terms of transition systems

. . . and therefore behaviour/equivalence needs to be pinned down
to them

Renato Neves Observational equivalence 22 / 33

F -Transition Systems and Observational Behaviour

Every functor F induces a notion of observational behaviour

Example (Moore automata)
Every automaton X → A × X induces a map J−K : X → Aω

Example (Deterministic automata)
Every automaton X → Bool × XL induces J−K : X × L∗ → Bool

Intuitively F provides a black-box perspective to the transition
system . . .

states are not directly observable; only their interaction with the
environment is

Infinite lists over A

Renato Neves Observational equivalence 23 / 33

Question

x1_

��

// x2 //
_

��

x3 //
_

��

· · · y ee_

��
a a a a

x1

a
~~

a

y

a
��

x2
c // x3 c

rr z c
mm

Do x1 and y possess the same observable behaviour in both cases?

Renato Neves Observational equivalence 24 / 33

Just Another Brief Visit to the Field of Coalgebra

The subject of systematically deriving a notion of observable
behaviour from a functor goes beyond this module . . .

. . . but you can always ask me about it after the lecture :-)

Renato Neves Observational equivalence 25 / 33

F -Transition Systems and Observational Equivalence

Definition
Fix a functor F and consider two transition systems f : X → FX
and g : Y → FY . Two states x ∈ X , y ∈ Y are observationally
equivalent if there exists a relation R ⊆ X × Y with (x , y) ∈ R
and there exists a transition system b : R → FR such that the
diagram below commutes

X
f
��

Rπ1oo π2 //

b
��

Y
g
��

FX FR
Fπ1
oo

Fπ2
// FY

If such is the case we write x ∼ y

Renato Neves Observational equivalence 26 / 33

Observational Equivalence for Moore Automata

Given ⟨o1, n1⟩ : X → A × X and ⟨o2, n2⟩ : Y → A × Y we obtain
from the previous slide that x ∼ y iff

• o1(x) = o2(y)
• n1(x) ∼ n2(y)

Renato Neves Observational equivalence 27 / 33

Observational Equivalence for Labelled Transition Systems

Recall that we used systems of type X → P(X)L for establishing
the semantics of CCS processes. This means that . . .

notions of observational behaviour/equivalence for such transition
systems directly impact our concurrent language

Given t1 : X → P(X)L and t2 : Y → P(Y)L, x ∼ y iff for all l ∈ L

• ∀x ′ ∈ t1(x , l). ∃y ′ ∈ t2(y , l). x ′ ∼ y ′

• ∀y ′ ∈ t2(y , l). ∃x ′ ∈ t1(x , l). x ′ ∼ y ′

Renato Neves Observational equivalence 28 / 33

Observational Equivalence for Labelled Transition Systems

q1
a

~~

a

p1

a
��

q2

c
��

q3

c
��

p2
c

~~

c

q4 q5 p4 p5

q1
a

~~

a

p1

a
��

q2

c
��

q3

b
��

p2
c

~~

b

q4 q5 p4 p5

Renato Neves Observational equivalence 29 / 33

Is Observational Equivalence a Good Notion of Equivalence?

Coinduction Principle
Two states x , y are observationally equivalent iff they produce
the same observational behaviour

Renato Neves Observational equivalence 30 / 33

Process Equivalence

Definition
Consider two processes P, Q in CCS. They are equivalent (in
symbols P ∼ Q) whenever the corresponding states in the
transition system are observationally equivalent

Show that

• rec X . (rec Y . a.X ∥ b.Y) ∼ (rec X . a.X) ∥ (rec Y . b.Y)
• (rec X . a.X) ∥ (rec Y . b.Y) ∼ rec X . (a.X + b.X)
• rec X . (a.X + b.X) ̸∼ (rec X . a.X) + (rec Y . b.Y)

Renato Neves Observational equivalence 31 / 33

An Algorithm for Finding Observationally Equivalent States

Consider two transition systems t1 : X → XL and t2 : Y → Y L

For every ∼k⊆ X × Y define

• ∼0:= X × Y
• x ∼k+1 y iff for all l ∈ L:

∀x ′ ∈ t1(x , l). ∃y ′ ∈ t2(y , l). x ′ ∼k y ′;
∀y ′ ∈ t2(y , l). ∃x ′ ∈ t1(x , l). x ′ ∼k y ′

If for some k > 0 we obtain ∼k = ∼k+1 then ∼ := ∼k

Renato Neves Observational equivalence 32 / 33

Exercises

Show that

• rec X . a.a.X ∼ rec X . a.X
• rec X . (a.X + a.a.X) ∼ rec X . a.x
• rec X . (a.X + b.X) ̸∼ (recX . a.X) + (recY . b.Y)
• P ∥ 0 ∼ P
• P + Q ∼ Q + P
• P ∥ Q ∼ Q ∥ P

Renato Neves Observational equivalence 33 / 33

	Why transition systems?
	A (generalised) notion of a transition system
	A simple concurrent language and its semantics
	Observational equivalence

