Cyber-Physical Programming
TPC-2

Renato Neves

nevrenato@di.uminho.pt

It is often necessary to incorporate wait calls in whatever programming language we are
working with. For example, we might wish to query a velocity sensor every n seconds. So let
us consider the following simple, imperative programming language:

Prog(X) > x :=t |waity(p) |p;q|if bthenpelseq|whilebdo{p}

Note that t is a linear term (defined in previous lectures) and n in the construct wait, is
a natural number. The program wait,(p) reads as “wait n seconds and then run program p”.
For such a language we take a semantics (p, o) |} n, ¢’ which informs not only of the output of p
(i.e. ¢’) but also its execution time (i.e. n). Specifically, we adopt the following semantic rules:

(t,o) I r
(x :=t,0) 0,0[r/x]

(p,o) I n,o’
(waity(p),o) 4 m+n,o’

(asg) (wait)

(p,o) I n, o’ (q,0") 4 mad”
(p;q,0)dn+m,o”

(seq)

(bo)btt (p,0) In,o
if bthen pelseq,o) | n,o’
p q

(b,o) $ £f (q,0) Y n,0’
(if bthen pelseq,o) | n,o’

(if1) (if2)

(b,o) || tt (p,o) § n,o’ (whilebdo{p},o’) § m,o”
(whilebdo{p},o) 4 n+m,o”

(Whl)

(b,o) | ££
(whilebdo{p},0) | 0,0

(wha)

We can then define a natural notion of equivalence for our programs: we say that two
programs p and q are equivalent (in symbols, p ~ q) if for all environments o we have

(p,0) b n, 0" iff (q,0) | n,0’
Exercise 1. Prove that waity(waity(p)) ~ waitpin(p).

Exercise 2. Implement in Haskell the while-language described above and its semantics.
Suggestion: use the code developed in previous lectures.

mailto:nevrenato@di.uminho.pt

What to submit: A .pdf file containing the solution to the first exercise and a also .hs
file containing the code that you developed (properly commented!) for the second exercise.
Please send a corresponding .zip archive by email (nevrenato@di.uminho.pt) with the
name “cpp2122-N.zip”, where “N” is your student number. The subject of the email
should be “cpp2122 N TPC-2”.

