
Cyber-Physical Programming
TPC-2

Renato Neves
nevrenato@di.uminho.pt

It is often necessary to incorporate wait calls in whatever programming language we are
working with. For example, we might wish to query a velocity sensor every n seconds. So let
us consider the following simple, imperative programming language:

Prog(X) ∋ x := t | waitn(p) | p ; q | if b then p else q | while b do { p }

Note that t is a linear term (defined in previous lectures) and n in the construct waitn is
a natural number. The program waitn(p) reads as “wait n seconds and then run program p”.
For such a language we take a semantics ⟨p, σ⟩ ⇓ n, σ′ which informs not only of the output of p
(i.e. σ′) but also its execution time (i.e. n). Specifically, we adopt the following semantic rules:

⟨t, σ⟩ ⇓ r
⟨x := t, σ⟩ ⇓ 0, σ[r/x] (asg)

⟨p, σ⟩ ⇓ n, σ′

⟨waitm(p), σ⟩ ⇓ m + n, σ′ (wait)

⟨p, σ⟩ ⇓ n, σ′ ⟨q, σ′⟩ ⇓ m, σ′′

⟨p ; q, σ⟩ ⇓ n + m, σ′′ (seq)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ n, σ′

⟨if b then p else q, σ⟩ ⇓ n, σ′ (if1)
⟨b, σ⟩ ⇓ ff ⟨q, σ⟩ ⇓ n, σ′

⟨if b then p else q, σ⟩ ⇓ n, σ′ (if2)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ n, σ′ ⟨while b do { p }, σ′⟩ ⇓ m, σ′′

⟨while b do { p }, σ⟩ ⇓ n + m, σ′′ (wh1)

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ⟩ ⇓ 0, σ

(wh2)

We can then define a natural notion of equivalence for our programs: we say that two
programs p and q are equivalent (in symbols, p ∼ q) if for all environments σ we have

⟨p, σ⟩ ⇓ n, σ′ iff ⟨q, σ⟩ ⇓ n, σ′

Exercise 1. Prove that waitn(waitm(p)) ∼ waitn+m(p).

Exercise 2. Implement in Haskell the while-language described above and its semantics.
Suggestion: use the code developed in previous lectures.

1

mailto:nevrenato@di.uminho.pt

What to submit: A .pdf file containing the solution to the first exercise and a also .hs
file containing the code that you developed (properly commented!) for the second exercise.
Please send a corresponding .zip archive by email (nevrenato@di.uminho.pt) with the
name “cpp2122-N.zip”, where “N” is your student number. The subject of the email
should be “cpp2122 N TPC-2”.

2

