
Timed Systems and Uppaal

Renato Neves

Table of Contents

More features of Uppaal

Verification of Timed Systems via Uppaal

Renato Neves More features of Uppaal 2 / 19

Uppaal

Editor

• Templates and instantiations
• Global and local declarations
• System definition

Simulator

• Viewers: automata animator

Verifier (we will explore this later on)

• Answers questions about the system at hand

Renato Neves More features of Uppaal 3 / 19

Extensions of timed automata provided by Uppaal

• data expressions over bounded integer variables (e.g
int[2..45] x) allowed in guards, assigments, and invariants

• rich set of operators over integer and Booleans, including
bitwise operations, arrays, and initialisers

• non-standard types of synchronisation
• non-standard types of location

Renato Neves More features of Uppaal 4 / 19

Extension: Broadcast Synchronisation

• Declared as broadcast chan channelname

• a sender can synchronise with an arbitrary number of receivers
• any receiver than can synchronise in the current state must do

so
• broadcast sending is never blocking (the send action can

occur even with no receivers).

Renato Neves More features of Uppaal 5 / 19

Extension: Urgent Synchronisation

Declared as urgent chan channelname
Both edges need to be taken as soon as they are
ready (simultaneously in locations ℓ1 and s1). In
other words, no delay allowed if a synchronisation
transition on an urgent channel is enabled. Note
the problem cannot be solved with invariants
because locations ℓ1 and s1 can be reached at
different moments

• Edges using urgent channels for
synchronisation cannot have time constraints
(i.e. clock guards)

Renato Neves More features of Uppaal 6 / 19

Extension: Urgent Location

• Time cannot progress in an urgent
location

• Both models are equivalent,
• but the use of urgent locations reduces

the number of clocks in a model and
simplifies analysis

Renato Neves More features of Uppaal 7 / 19

Extension: Committed Location

• Delay is also not allowed and one of the
(possibly several) committed locations
must be exited in the next instant, i.e.
the next transition of the whole system
must involve an outgoing edge of at least
one of the committed locations

• Our aim is to pass the value k to variable
j (via global variable t)

• location n is committed to ensure that no
other automaton can change t before the
assignment j := t

Renato Neves More features of Uppaal 8 / 19

Table of Contents

More features of Uppaal

Verification of Timed Systems via Uppaal

Renato Neves Verification of Timed Systems via Uppaal 9 / 19

Properties: Expression and Satisfaction

The Satisfaction Problem
Given a timed automaton ta and a property ϕ show that

T (ta) |= ϕ

• in which logical language shall ϕ be specified?
• how is |= defined?

Renato Neves Verification of Timed Systems via Uppaal 10 / 19

The Logical Language

A variant of Computation Tree Logic (CTL) with two types of
formulae

• state: for describing properties of states in T (ta)
• path: for describing properties of paths in T (ta)

Renato Neves Verification of Timed Systems via Uppaal 11 / 19

State Formulae

Clock constraints which are used for guards and invariants and
similar constraints over integer variables:

x >= 8, i == 8, and x < 2, ...

Additionally,

• ta.ℓ, which tests current location: (ℓ, η) |= ta.ℓ
provided (ℓ, η) is a state in T (ta)

• deadlock:
(ℓ, η) |= ∀d∈R≥0 . there is no transition from ⟨ℓ, η + d⟩

Renato Neves Verification of Timed Systems via Uppaal 12 / 19

Path Formulae

Π ::= A□Ψ | A♢Ψ | E□Ψ | E♢Ψ | Φ⇝ Ψ

Ψ ::= ta.ℓ | gc | gd | not Ψ | Ψ or Ψ | Ψ and Ψ | Ψ imply Ψ

where

• A, E quantify (universally and existentially, resp.) over paths
• □, ♢ quantify (universally and existentially, resp.) over states

in a path

also notice that

Φ⇝ Ψ abv= A□ (Φ ⇒ A♢Ψ)

Renato Neves Verification of Timed Systems via Uppaal 13 / 19

Path Formulae pt. II

A□φ A♢φ

E□φ E♢φ

Renato Neves Verification of Timed Systems via Uppaal 14 / 19

Path Formulae pt. III

φ ⇝ ψ

Example
If a message is sent, it will eventually be received –
send(m)⇝ received(m)

Renato Neves Verification of Timed Systems via Uppaal 15 / 19

Reachability Properties

E♢ϕ
Is there a path starting at the initial state such that a state
formula ϕ is eventually satisfied?

Examples:

• Is it possible for a sender to send a message?
• Can a message possibly be received?
• Is it possible to reach a certain location of the automaton?
• . . .

Renato Neves Verification of Timed Systems via Uppaal 16 / 19

Safety Properties

A□ϕ and E□ϕ
Something bad will never happen

Example:

• In a nuclear power plant will the temperature of the core be
always under a certain threshold?

• Will we ever reach a state with a deadlock?

Renato Neves Verification of Timed Systems via Uppaal 17 / 19

Liveness Properties

A♢ϕ and ϕ ⇝ ψ

Something good will eventually happen
or if something happens then something else will eventually
happen

Examples:

• Always when pressing the on button the television will
eventually turn on

• In a communication protocol any message that has been sent
should eventually be received

Renato Neves Verification of Timed Systems via Uppaal 18 / 19

Exercises

Write the sentences below in CTL

1. The system never enters in deadlock
2. The location ℓ is reachable
3. In all executions we reach location ℓ
4. If we reach location ℓ we will inevitably reach location s
5. There exists at least one execution where variable i is always

below or equal 10

6. The two philosophers never eat at the same time

Renato Neves Verification of Timed Systems via Uppaal 19 / 19

	More features of Uppaal
	Verification of Timed Systems via Uppaal

