Timed Systems

Renato Neves

% @
L d I ~ X
@)@ HasLab
Universidade do Minho SOFTWARE LABORATORY

Previously ...

= We visited the concepts of syntax and semantics
= Explored a basic concurrent language and its semantics
= Analysed central ideas of Concurrency & Synchronisation

= Saw that (some) semantic aspects arise from functors, which
provides basis for a uniform development of semantics

2/3

Previously ...

= We visited the concepts of syntax and semantics
= Explored a basic concurrent language and its semantics
= Analysed central ideas of Concurrency & Synchronisation

= Saw that (some) semantic aspects arise from functors, which
provides basis for a uniform development of semantics

We will now see how time fits in the items above

2/3

Table of Contents

Motivation

Saying that an airbag in a car crash eventually inflates is
insufficient — it would be better to say:

in a car crash the airbag inflates within 20ms

Correctness in time-critical systems not only depends on the
logical result of the computation, but also on the time at

which the results are produced

[Baier & Katoen, 2008]

Examples of Time-Critical Systems

Network-based traffic lights

Lights activate at very specific time intervals

Bounded retransmission protocol
Communication of large files between a remote control unit and a
video/audio equipment. Correctness relies on

= transmission and synchronisation delays

= time-out values

And many others ...
= medical instruments

= cruise controllers

Our Focus

We will explore an automaton-based formalism with an explicit
notion of clock (stopwatch) to control availability of transitions

| Timed Automata [Alur & Dill, 90] |

Emphasis on the reachability problem and corresponding practically
efficient algorithms

Associated tool

= UPPAAL [Behrmann, David, Larsen, 04]

Uppaal

’UPPAAL = (Uppsala University + Aalborg University) [1995] ‘

= A toolbox for modelling and analysis of timed systems

= Systems modelled as networks of timed automata enriched

with integer variables and channel synchronisations

= Properties specified in a subset of CTL

|

Computation Tree Logic

https://uppaal.org/

https://uppaal.org/

Table of Contents

The very basics of timed automata

The very basics of timed automata 3 4l

Timed automata

Finite-state machine equipped with a finite set of real-valued

clock variables (clocks)

Clocks

= clocks can only be read or

= reset to zero (after which they start increasing their value
again as time progresses)

= a clock’s value corresponds to time elapsed since its last reset

= all clocks proceed synchronously (i.e. at the same rate)

The very basics of timed automata o jal

Example: The Lamp Interrupt

Lamp

of f

bright

(extracted from UPPAAL)

The very basics of timed automata 0 /il

Timed Automata

Definition

A timed automaton is a tuple (L, Lo, Act, C, Tr, Inv) such that

L is a set of locations and Ly C L the set of locations
= Act is a set of actions and C a set of clocks

= Tr C LxC(C) x Act x P(C) x L is the transition relation
o 228 g

is a transition from location ¢; to ¢, labelled by a, enabled if
g holds, which, when performed, resets the set U of clocks

= Inv:L — C(C) is the assigment of invariants to locations

C(C) denotes the set of clock constraints over a set C of clocks

The very basics of timed automata il

Clock Constraints

C(C) denotes the set of clock constraints over a set C of clock
variables. Each constraint is formed according to

g = x0On | x—yOn | gNg | true

where x,y € C,neNand O € {<,<, >, > =}
This is used in
= transitions (enabling conditions) — a transition cannot occur if
its guard is false

= locations (safety conditions) — a location must be left before
its invariant becomes false

Note

Invariants are the only way to force transitions to occur

The very basics of timed automata i sl

Guards, Updates, & Invariants

location i
N
N y
)

kX

\
S
—={ !
.

g |

action

Invariant

Renato Neves

The very basics of timed automata 13 /31

Table of Contents

Parallel Composition

Parallel Composition 0 3l

Parallel Composition of Timed Automata

Let H C Acty N Actr. The parallel composition of ta; and tap
synchronising on H is the timed automaton

tay ||H tay := <L1 X Ly, LO,l X Lo}g,ACtHH, G UG, Tr”H, IanH>

= ACt”H = ((ACtl U ACtQ) = H) U {T}
. /nVHH(fl,fz) = lnvl(fl) AN /nV2(€2)
= Tr, is given by:
o (0, 0) 525 (8, 0) if ag HAL S g
o (0, 0) 22 (0, 0) if ag_zHAéQg"’“z’
o (0, 0) S5 (0, 05) if ae HAL B2 0 A gy 8225 g
Withg—gl/\gz and U = U; U U

Parallel Composition i il

Example: revisiting the Lamp Interrupt

Lamp
press? User
>] press? II,LU—E\' press? idle
] 3 y<§ [ore
\\ /}J bright
o 2
pre
yi=0
Uppaal:
= communication occurs between (marked by

and | annotations)

= only considers systems

Parallel Composition el

Exercise: Worker, Hammer, Nail

Worker
: 10
O e
T
TR 2<mBl
z:=0
Hammer

Nail

half

up done

Parallel Composition i 3l

Table of Contents

Semantics

Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed Labelled Transition Systems

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed LTS pt. |

Introduce to capture the passage of time within a LTS

a . o . .
s—5s forae Act, are ordlnary transitions due to action occurrence

d "
s — s’ for d € R, are transitions

subject to a number of constraints

Timed LTS pt. 1l

Time additivity:
’ o
(s 4y dn0<d < d) = s & & 29 ¢/ for some state s

Delay transitions are deterministic:

Semantics of Timed Automata

Every TA ta defines a TLTS
T (ta)
whose states are pairs

(location, clocks valuations)

Clock Valuation

Definition

A clock valuation 7) for a set of clocks C is a function
C— RZO

assigning to each clock x € C its current value 1) x

Satisfaction of Clock Constraints

ExOn < nx0On
Ex—yOn <& (nx—ny)On
Fang & nEgaN)Eeg

Operations on Clock Valuations

Delay

For each d € R, valuation 7 is given by
(n+d)x =nx + d

Reset

For each R C C, valuation n|R]| is given by

nRlx =nx ifxég€R
nlRlx = 0 ifxeR

From ta to 7 (ta)

Let ta= (L, Lo, Act, C, Tr, Inv)
T(ta) = (5,5 CS,N, T)

where

S={(l,n) e Lx (RZO)C |n = Inv(l)}
So={(fo,n) | o € Ly A nx =0 forall x € C}

N = Act+R> (i.e., transitions can be labelled by actions or delays)

T CSxNxSis given by:

(hn) == (') if 3pau, — nEg A" =nlU] Ao inv(l)

—1I'eTr

(/,n)i>(/,n+d) if Jaers, n+d = Inv())

Example: the Simple Switch pt. |

SwitchA

T (SwitchA)

S={(off,t)|t € Rsg} U{(on,t)|0 <t <2}

where t is a shorthand for 7 such that nx =t

Example: the Simple Switch pt. Il

SwitchA

of f on

T (SwitchA)

(off, t) -%5 (off, t + d) forall t,d >0

(off, t) LN (on,0) forallt>0

(on,t)i>(on,t+d forall t,d >0and t+d <2

out

(on,t) — (off,t) forall1 <t <2

)
)
)
)

Table of Contents

Observational Equivalence

Observational Equivalence o

Execution Traces

Definition
A trace over a timed LTS is a (finite or infinite) sequence
(t1,a1), (t2, a2),- -+ in R>g x Act such that there exist

d d
(Lo, m0) — (Lo, m1) —2 (C1,m2) = (b1,m3) 2> -+
respecting the equation
ti=ti_1 + d;

with top = 0 and, for all clocks x, nox =0

Intuitively, each t; is an absolute time value acting as a

Observational Equivalence 3 il

Exercise

Write possible traces

Lamp

of f

bright

Observational Equivalence 5 il

Observational Equivalence

Two states s; and s, of timed LTSs are equivalent iff for any action
a and delay d

a . oy a
s1 —+ s; = there exists a transition s, — sh As; ~)

d . . d
s1 — s; = there exists a transition s, — sh As; ~)

and vice-versa

Observational Equivalence 20l

Exercise

W1 W2 w3

()
O x==1 & x <=2 O

x:=0
W1 equivalent to Z17

Z1. 72 73

Y
O No=="1 @ <=1 O

x:=0

Observational Equivalence il il

	Motivation
	The very basics of timed automata
	Parallel Composition
	Semantics
	Observational Equivalence

