Timed Systems

Renato Neves

Universidade do Minho

- We visited the concepts of syntax and semantics
- Explored a basic concurrent language and its semantics
- Analysed central ideas of Concurrency & Synchronisation
- Saw that (some) semantic aspects arise from functors, which provides basis for a uniform development of semantics

- We visited the concepts of syntax and semantics
- Explored a basic concurrent language and its semantics
- Analysed central ideas of Concurrency & Synchronisation
- Saw that (some) semantic aspects arise from functors, which provides basis for a uniform development of semantics

We will now see how time fits in the items above

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Saying that an airbag in a car crash eventually inflates is insufficient – it would be better to say:

in a car crash the airbag inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Network-based traffic lights

Lights activate at very specific time intervals

Bounded retransmission protocol

Communication of large files between a remote control unit and a video/audio equipment. Correctness relies on

- transmission and synchronisation delays
- time-out values

And many others ...

- medical instruments
- cruise controllers

We will explore an automaton-based formalism with an explicit notion of clock (stopwatch) to control availability of transitions

Timed Automata [Alur & Dill, 90]

Emphasis on the reachability problem and corresponding practically efficient algorithms

Associated tool

• UPPAAL [Behrmann, David, Larsen, 04]

UPPAAL = (Uppsala University + Aalborg University) [1995]

- A toolbox for modelling and analysis of timed systems
- Systems modelled as networks of timed automata enriched with integer variables and channel synchronisations
- Properties specified in a subset of CTL

Computation Tree Logic

https://uppaal.org/

Motivation

The very basics of timed automata

Parallel Composition

Semantics

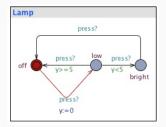
Observational Equivalence

Finite-state machine equipped with a finite set of real-valued clock variables (clocks)

Clocks

- clocks can only be read or
- reset to zero (after which they start increasing their value again as time progresses)
- a clock's value corresponds to time elapsed since its last reset
- all clocks proceed synchronously (i.e. at the same rate)

Example: The Lamp Interrupt



(extracted from UPPAAL)

Renato Neves

The very basics of timed automata

Timed Automata

Definition

A timed automaton is a tuple $\langle L, L_0, Act, C, Tr, Inv \rangle$ such that

- *L* is a set of locations and $L_0 \subseteq L$ the set of initial locations
- Act is a set of actions and C a set of clocks
- $Tr \subseteq L \times C(C) \times Act \times P(C) \times L$ is the transition relation

$$\ell_1 \xrightarrow{g,a,U} \ell_2$$

is a transition from location ℓ_1 to ℓ_2 , labelled by *a*, enabled if guard *g* holds, which, when performed, resets the set *U* of clocks

• $Inv: L \longrightarrow C(C)$ is the assigment of invariants to locations

 $\mathcal{C}(C)$ denotes the set of clock constraints over a set C of clocks

Renato Neves

C(C) denotes the set of clock constraints over a set C of clock variables. Each constraint is formed according to

$$g ::= x \Box n \mid x - y \Box n \mid g \land g \mid true$$

where $x, y \in C, n \in \mathbb{N}$ and $\Box \in \{<, \leq, >, \geq, =\}$

This is used in

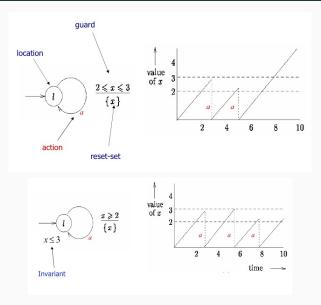
- transitions (enabling conditions) a transition cannot occur if its guard is false
- locations (safety conditions) a location must be left before its invariant becomes false

Note

Invariants are the only way to force transitions to occur

Renato Neves

Guards, Updates, & Invariants



Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Let $H \subseteq Act_1 \cap Act_2$. The parallel composition of ta_1 and ta_2 synchronising on H is the timed automaton

 $\textit{ta}_1 \parallel_{H} \textit{ta}_2 := \langle \textit{L}_1 \times \textit{L}_2, \textit{L}_{0,1} \times \textit{L}_{0,2}, \textit{Act}_{\parallel_{H}}, \textit{C}_1 \cup \textit{C}_2, \textit{Tr}_{\parallel_{H}}, \textit{Inv}_{\parallel_{H}} \rangle$

•
$$Act_{\parallel_H} = ((Act_1 \cup Act_2) - H) \cup \{\tau\}$$

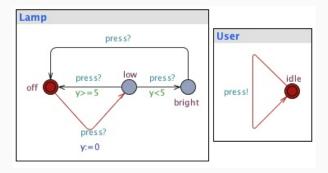
•
$$\mathit{Inv}_{\parallel_{H}}(\ell_{1},\ell_{2}) = \mathit{Inv}_{1}(\ell_{1}) \wedge \mathit{Inv}_{2}(\ell_{2})$$

• Tr_{\parallel_H} is given by:

•
$$(\ell_1, \ell_2) \xrightarrow{g,a,U} (\ell'_1, \ell_2)$$
 if $a \notin H \land \ell_1 \xrightarrow{g,a,U} \ell'_1$
• $(\ell_1, \ell_2) \xrightarrow{g,a,U} (\ell_1, \ell'_2)$ if $a \notin H \land \ell_2 \xrightarrow{g,a,U} \ell'_2$

• $(\ell_1, \ell_2) \xrightarrow{g, \tau, U} (\ell'_1, \ell'_2)$ if $a \in H \land \ell_1 \xrightarrow{g_1, a, U_1} \ell'_1 \land \ell_2 \xrightarrow{g_2, a, U_2} \ell'_2$ with $g = g_1 \land g_2$ and $U = U_1 \cup U_2$

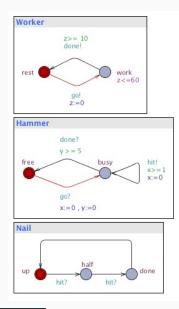
Example: revisiting the Lamp Interrupt



Uppaal:

- communication occurs between complementary actions (marked by
 - ? and ! annotations)
- only considers closed systems

Exercise: Worker, Hammer, Nail



Renato Neves

Parallel Composition

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Syntax	Semantics
How to write	How to execute
Timed Automaton	TLTS (Timed LTS)

Syntax	Semantics
How to write	How to execute
Timed Automaton	TLTS (Timed LTS)

Timed LTS pt. I

Introduce delay transitions to capture the passage of time within a LTS

$$s \stackrel{a}{\longrightarrow} s'$$
 for $a \in Act$, are ordinary transitions due to action occurrence

 $s \stackrel{d}{\longrightarrow} s'$ for $d \in \mathbb{R}_{\geq 0}$, are delay transitions

subject to a number of constraints

Time additivity:

$$(s \stackrel{d}{\longrightarrow} s' \land 0 \leq d' \leq d) \ \Rightarrow \ s \stackrel{d'}{\longrightarrow} s'' \stackrel{d-d'}{\longrightarrow} s'$$
 for some state s''

Delay transitions are deterministic:

$$(s \stackrel{d}{\longrightarrow} s' \wedge s \stackrel{d}{\longrightarrow} s'') \ \Rightarrow \ s' = s''$$

Every TA ta defines a TLTS

 $\mathcal{T}(ta)$

whose states are pairs

 $\langle location, clocks valuations \rangle$

Clock Valuation

Definition

A clock valuation η for a set of clocks *C* is a function

$$\eta: C \longrightarrow \mathbb{R}_{\geq 0}$$

assigning to each clock $x \in C$ its current value ηx

Satisfaction of Clock Constraints

$$\eta \models x \Box n \Leftrightarrow \eta x \Box n$$
$$\eta \models x - y \Box n \Leftrightarrow (\eta x - \eta y) \Box n$$
$$\eta \models g_1 \land g_2 \Leftrightarrow \eta \models g_1 \land \eta \models g_2$$

Delay

For each $d \in \mathbb{R}_{\geq_0}$, valuation $\eta + d$ is given by

$$(\eta + d)x = \eta x + d$$

Reset

For each $R \subseteq C$, valuation $\eta[R]$ is given by

$$\begin{cases} \eta[R] x = \eta x & \text{if } x \notin R \\ \eta[R] x = 0 & \text{if } x \in R \end{cases}$$

From ta to T(ta)

Let
$$ta = \langle L, L_0, Act, C, Tr, Inv \rangle$$

 $\mathcal{T}(ta) = \langle S, S_0 \subseteq S, N, T \rangle$

where

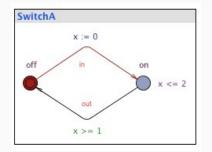
•
$$S = \{(I,\eta) \in L \times (\mathbb{R}_{\geq 0})^C \mid \eta \models Inv(I)\}$$

•
$$S_0 = \{(\ell_0, \eta) \mid \ell_0 \in L_0 \land \eta x = 0 \text{ for all } x \in C\}$$

- $N = Act + \mathbb{R}_{\geq 0}$ (i.e., transitions can be labelled by actions or delays)
- $T \subseteq S \times N \times S$ is given by:

$$(I,\eta) \xrightarrow{a} (I',\eta') \quad \text{if} \quad \exists_{I^{\underline{\sigma},\underline{\sigma},U}_{l' \in Tr}} \eta \models g \land \eta' = \eta[U] \land \eta' \models \mathsf{Inv}(I')$$
$$(I,\eta) \xrightarrow{d} (I,\eta+d) \quad \text{if} \quad \exists_{d \in \mathbb{R}_{\geq 0}} \eta + d \models \mathsf{Inv}(I)$$

Example: the Simple Switch pt. I

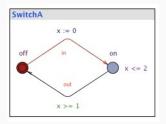


$\mathcal{T}(\mathsf{SwitchA})$

$$S = \{ (off, t) \mid t \in \mathbb{R}_{\geq 0} \} \cup \{ (on, t) \mid 0 \le t \le 2 \}$$

where *t* is a shorthand for η such that $\eta x = t$

Example: the Simple Switch pt. II



 $\mathcal{T}(\mathsf{SwitchA})$

$$(off, t) \stackrel{d}{\longrightarrow} (off, t+d)$$
 for all $t, d \ge 0$
 $(off, t) \stackrel{in}{\longrightarrow} (on, 0)$ for all $t \ge 0$
 $(on, t) \stackrel{d}{\longrightarrow} (on, t+d)$ for all $t, d \ge 0$ and $t+d \le 2$
 $(on, t) \stackrel{out}{\longrightarrow} (off, t)$ for all $1 \le t \le 2$

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Definition

A trace over a timed LTS is a (finite or infinite) sequence $(t_1, a_1), (t_2, a_2), \cdots$ in $\mathbb{R}_{\geq 0} \times Act$ such that there exist

$$(\ell_0,\eta_0) \xrightarrow{d_1} (\ell_0,\eta_1) \xrightarrow{a_1} (\ell_1,\eta_2) \xrightarrow{d_2} (\ell_1,\eta_3) \xrightarrow{a_2} \cdots$$

respecting the equation

$$t_i = t_{i-1} + d_i$$

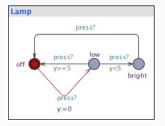
with $t_0 = 0$ and, for all clocks x, $\eta_0 x = 0$

Intuitively, each t_i is an absolute time value acting as a time-stamp

Renato Neves

Observational Equivalence

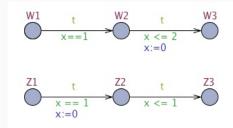
Write possible traces



Two states s_1 and s_2 of timed LTSs are equivalent iff for any action a and delay d

$$s_1 \xrightarrow{a} s'_1 \Rightarrow$$
 there exists a transition $s_2 \xrightarrow{a} s'_2 \wedge s'_1 \sim s'_2$
 $s_1 \xrightarrow{d} s'_1 \Rightarrow$ there exists a transition $s_2 \xrightarrow{d} s'_2 \wedge s'_1 \sim s'_2$

and vice-versa



W1 equivalent to Z1?