
Timed Systems

Renato Neves

Previously . . .

• We visited the concepts of syntax and semantics
• Explored a basic concurrent language and its semantics
• Analysed central ideas of Concurrency & Synchronisation
• Saw that (some) semantic aspects arise from functors, which

provides basis for a uniform development of semantics

We will now see how time fits in the items above

Renato Neves 2 / 31

Previously . . .

• We visited the concepts of syntax and semantics
• Explored a basic concurrent language and its semantics
• Analysed central ideas of Concurrency & Synchronisation
• Saw that (some) semantic aspects arise from functors, which

provides basis for a uniform development of semantics

We will now see how time fits in the items above

Renato Neves 2 / 31

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Renato Neves Motivation 3 / 31

Motivation

Saying that an airbag in a car crash eventually inflates is
insufficient – it would be better to say:

in a car crash the airbag inflates within 20ms

Correctness in time-critical systems not only depends on the
logical result of the computation, but also on the time at
which the results are produced

[Baier & Katoen, 2008]

Renato Neves Motivation 4 / 31

Examples of Time-Critical Systems

Network-based traffic lights
Lights activate at very specific time intervals

Bounded retransmission protocol
Communication of large files between a remote control unit and a
video/audio equipment. Correctness relies on

• transmission and synchronisation delays
• time-out values

And many others ...

• medical instruments
• cruise controllers

Renato Neves Motivation 5 / 31

Our Focus

We will explore an automaton-based formalism with an explicit
notion of clock (stopwatch) to control availability of transitions

Timed Automata [Alur & Dill, 90]

Emphasis on the reachability problem and corresponding practically
efficient algorithms

Associated tool

• Uppaal [Behrmann, David, Larsen, 04]

Renato Neves Motivation 6 / 31

Uppaal

Uppaal = (Uppsala University + Aalborg University) [1995]

• A toolbox for modelling and analysis of timed systems
• Systems modelled as networks of timed automata enriched

with integer variables and channel synchronisations
• Properties specified in a subset of CTL

Computation Tree Logic

Renato Neves Motivation 7 / 31

https://uppaal.org/

https://uppaal.org/

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Renato Neves The very basics of timed automata 8 / 31

Timed automata

Finite-state machine equipped with a finite set of real-valued
clock variables (clocks)

Clocks

• clocks can only be read or
• reset to zero (after which they start increasing their value

again as time progresses)
• a clock’s value corresponds to time elapsed since its last reset
• all clocks proceed synchronously (i.e. at the same rate)

Renato Neves The very basics of timed automata 9 / 31

Example: The Lamp Interrupt

(extracted from Uppaal)

Renato Neves The very basics of timed automata 10 / 31

Timed Automata

Definition
A timed automaton is a tuple ⟨L, L0, Act, C , Tr , Inv⟩ such that

• L is a set of locations and L0 ⊆ L the set of initial locations

• Act is a set of actions and C a set of clocks

• Tr ⊆ L × C(C) × Act × P(C) × L is the transition relation

ℓ1
g,a,U−→ ℓ2

is a transition from location ℓ1 to ℓ2, labelled by a, enabled if guard
g holds, which, when performed, resets the set U of clocks

• Inv : L −→ C(C) is the assigment of invariants to locations

C(C) denotes the set of clock constraints over a set C of clocks

Renato Neves The very basics of timed automata 11 / 31

Clock Constraints

C(C) denotes the set of clock constraints over a set C of clock
variables. Each constraint is formed according to

g ::= x □ n | x − y □ n | g ∧ g | true

where x , y ∈ C , n ∈ N and □ ∈ {<, ≤, >, ≥, =}

This is used in

• transitions (enabling conditions) – a transition cannot occur if
its guard is false

• locations (safety conditions) – a location must be left before
its invariant becomes false

Note
Invariants are the only way to force transitions to occur

Renato Neves The very basics of timed automata 12 / 31

Guards, Updates, & Invariants

Renato Neves The very basics of timed automata 13 / 31

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Renato Neves Parallel Composition 14 / 31

Parallel Composition of Timed Automata

Let H ⊆ Act1 ∩ Act2. The parallel composition of ta1 and ta2

synchronising on H is the timed automaton

ta1 ∥H ta2 := ⟨L1 × L2, L0,1 × L0,2, Act∥H , C1 ∪ C2, Tr∥H , Inv∥H ⟩

• Act∥H = ((Act1 ∪ Act2) − H) ∪ {τ}
• Inv∥H (ℓ1, ℓ2) = Inv1(ℓ1) ∧ Inv2(ℓ2)
• Tr∥H is given by:

• (ℓ1, ℓ2) g,a,U−→ (ℓ′
1, ℓ2) if a ̸∈ H ∧ ℓ1

g,a,U−→ ℓ′
1

• (ℓ1, ℓ2) g,a,U−→ (ℓ1, ℓ′
2) if a ̸∈ H ∧ ℓ2

g,a,U−→ ℓ′
2

• (ℓ1, ℓ2) g,τ,U−→ (ℓ′
1, ℓ′

2) if a ∈ H ∧ ℓ1
g1,a,U1−→ ℓ′

1 ∧ ℓ2
g2,a,U2−→ ℓ′

2
with g = g1 ∧ g2 and U = U1 ∪ U2

Renato Neves Parallel Composition 15 / 31

Example: revisiting the Lamp Interrupt

Uppaal:

• communication occurs between complementary actions (marked by
? and ! annotations)

• only considers closed systems

Renato Neves Parallel Composition 16 / 31

Exercise: Worker, Hammer, Nail

Renato Neves Parallel Composition 17 / 31

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Renato Neves Semantics 18 / 31

Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed LTS pt. I
Introduce delay transitions to capture the passage of time within a LTS

s a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s d−→ s ′ for d ∈ R≥0, are delay transitions

subject to a number of constraints

Renato Neves Semantics 19 / 31

Timed Labelled Transition Systems

Syntax Semantics

How to write How to execute
Timed Automaton TLTS (Timed LTS)

Timed LTS pt. I
Introduce delay transitions to capture the passage of time within a LTS

s a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s d−→ s ′ for d ∈ R≥0, are delay transitions

subject to a number of constraints

Renato Neves Semantics 19 / 31

Timed LTS pt. II

Time additivity:

(s d−→ s ′ ∧ 0 ≤ d ′ ≤ d) ⇒ s d ′
−→ s ′′ d−d ′

−→ s ′ for some state s ′′

Delay transitions are deterministic:

(s d−→ s ′ ∧ s d−→ s ′′) ⇒ s ′ = s ′′

Renato Neves Semantics 20 / 31

Semantics of Timed Automata

Every TA ta defines a TLTS

T (ta)

whose states are pairs

⟨location, clocks valuations⟩

Renato Neves Semantics 21 / 31

Clock Valuation

Definition
A clock valuation η for a set of clocks C is a function

η : C −→ R≥0

assigning to each clock x ∈ C its current value η x

Satisfaction of Clock Constraints

η |= x □ n ⇔ η x □ n
η |= x − y □ n ⇔ (η x − η y) □ n

η |= g1 ∧ g2 ⇔ η |= g1 ∧ η |= g2

Renato Neves Semantics 22 / 31

Operations on Clock Valuations

Delay
For each d ∈ R≥0 , valuation η + d is given by

(η + d) x = η x + d

Reset
For each R ⊆ C , valuation η[R] is given byη[R] x = η x if x ̸∈ R

η[R] x = 0 if x ∈ R

Renato Neves Semantics 23 / 31

From ta to T (ta)

Let ta = ⟨L, L0, Act, C , Tr , Inv⟩

T (ta) = ⟨S, S0 ⊆ S, N, T ⟩

where

• S = {(l , η) ∈ L × (R≥0)C | η |= Inv(l)}

• S0 = {(ℓ0, η) | ℓ0 ∈ L0 ∧ η x = 0 for all x ∈ C}

• N = Act +R≥0 (i.e., transitions can be labelled by actions or delays)

• T ⊆ S × N × S is given by:

(l , η) a−→ (l ′, η′) if ∃
lg,a,U−→ l′∈Tr

η |= g ∧ η′ = η[U] ∧ η′ |= Inv(l ′)

(l , η) d−→ (l , η + d) if ∃d∈R≥0 η + d |= Inv(l)

Renato Neves Semantics 24 / 31

Example: the Simple Switch pt. I

T (SwitchA)

S = {(off , t) | t ∈ R≥0} ∪ {(on, t) | 0 ≤ t ≤ 2}

where t is a shorthand for η such that η x = t

Renato Neves Semantics 25 / 31

Example: the Simple Switch pt. II

T (SwitchA)

(off , t) d−→ (off , t + d) for all t, d ≥ 0

(off , t) in−→ (on, 0) for all t ≥ 0

(on, t) d−→ (on, t + d) for all t, d ≥ 0 and t + d ≤ 2

(on, t) out−→ (off , t) for all 1 ≤ t ≤ 2

Renato Neves Semantics 26 / 31

Table of Contents

Motivation

The very basics of timed automata

Parallel Composition

Semantics

Observational Equivalence

Renato Neves Observational Equivalence 27 / 31

Execution Traces

Definition
A trace over a timed LTS is a (finite or infinite) sequence
(t1, a1), (t2, a2), · · · in R≥0 × Act such that there exist

(ℓ0, η0) d1−→ (ℓ0, η1) a1−→ (ℓ1, η2) d2−→ (ℓ1, η3) a2−→ · · ·

respecting the equation

ti = ti−1 + di

with t0 = 0 and, for all clocks x , η0 x = 0

Intuitively, each ti is an absolute time value acting as a time-stamp

Renato Neves Observational Equivalence 28 / 31

Exercise

Write possible traces

Renato Neves Observational Equivalence 29 / 31

Observational Equivalence

Two states s1 and s2 of timed LTSs are equivalent iff for any action
a and delay d

s1
a−→ s ′

1 ⇒ there exists a transition s2
a−→ s ′

2 ∧ s ′
1 ∼ s ′

2

s1
d−→ s ′

1 ⇒ there exists a transition s2
d−→ s ′

2 ∧ s ′
1 ∼ s ′

2

and vice-versa

Renato Neves Observational Equivalence 30 / 31

Exercise

W1 equivalent to Z1?

Renato Neves Observational Equivalence 31 / 31

	Motivation
	The very basics of timed automata
	Parallel Composition
	Semantics
	Observational Equivalence

