Simply-Typed λ -Calculus and Algebraic Operations

Renato Neves

Table of Contents

Recalling . . .

Integration of Algebraic Operations in λ -Calculus

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Recalling λ -Calculus

Types
$$\mathbb{A} \ni 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$$

Programs built according to the rules

$$\frac{x : \mathbb{A} \in \Gamma}{\Gamma \vdash x : \mathbb{A}} \qquad \qquad \frac{\Gamma \vdash V : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_1 V : \mathbb{A}}$$

$$\frac{\Gamma \vdash V : \mathbb{A} \qquad \Gamma \vdash U : \mathbb{B}}{\Gamma \vdash \langle V, U \rangle : \mathbb{A} \times \mathbb{B}} \qquad \frac{\Gamma, x : \mathbb{A} \vdash V : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot V : \mathbb{A} \to \mathbb{B}}$$

$$\frac{\Gamma \vdash V : \mathbb{A} \to \mathbb{B} \quad \Gamma \vdash U : \mathbb{A}}{\Gamma \vdash V U : \mathbb{B}}$$

 Γ a non-repetitive list of typed variables $x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n$

Sequential Composition

Consider the following "new" deductive rule

$$\frac{\Gamma \vdash V : \mathbb{A} \qquad x : \mathbb{A} \vdash U : \mathbb{B}}{\Gamma \vdash x \leftarrow V; U : \mathbb{B}}$$

It reads as "bind the computation V to x and then run U"

Interpretation is defined as

$$\frac{ \llbracket \Gamma \vdash V : \mathbb{A} \rrbracket = f \quad \llbracket x : \mathbb{A} \vdash U : \mathbb{B} \rrbracket = g }{ \llbracket \Gamma \vdash x \leftarrow V ; U : \mathbb{B} \rrbracket = g \cdot f }$$

4

Table of Contents

Recalling . . .

Integration of Algebraic Operations in λ -Calculus

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Signatures

A signature $\Sigma = \{(\sigma_1, n_1), (\sigma_2, n_2), \dots\}$ is a set of operations σ_i paired with the number of inputs n_i they are supposed to receive

Signatures will later be integrated in λ -calculus

They constitute the aforementioned the algebraic operations

Examples

- Exceptions: $\Sigma = \{(e, 0)\}$
- Read a bit from the environment: $\Sigma = \{(\mathrm{read}, 2)\}$
- Wait calls: $\Sigma = \{ (\operatorname{wait}_n, 1) \mid n \in \mathbb{N} \}$
- Non-deterministic choice: $\Sigma = \{(+,2)\}$

Simply-Typed λ -Calculus with Algebraic Operations

We choose a signature Σ of algebraic operations and introduce a new deductive rule

$$\frac{(\sigma,n)\in\Sigma\quad\forall i\leq n.\ \Gamma\vdash M_i:\mathbb{A}}{\Gamma\vdash\sigma(M_1,\ldots,M_n):\mathbb{A}}$$

Examples of Effectful λ -**Terms**

- $x : \mathbb{A} \vdash \text{wait}_1(x) : \mathbb{A} \text{adds delay}$ of one second to returning x
- $\Gamma \vdash e() : A raises an exception e$
- $\Gamma \vdash \text{write}_{\nu}(M) : \mathbb{A} \text{writes } \nu \text{ in memory and then runs } M$
- $x : \mathbb{A} \times \mathbb{A} \vdash \operatorname{read}(\pi_1 x, \pi_2 x) : \mathbb{A} \text{receives}$ a bit: if the bit is 0 it returns $\pi_1 x$ otherwise it returns $\pi_2 x$

Examples of Effectful λ -**Terms**

- $x : \mathbb{A} \vdash \text{wait}_1(x) : \mathbb{A} \text{adds delay}$ of one second to returning x
- $\Gamma \vdash e() : A raises an exception e$
- $\Gamma \vdash \text{write}_{\nu}(M) : \mathbb{A} \text{writes } \nu \text{ in memory and then runs } M$
- $x : \mathbb{A} \times \mathbb{A} \vdash \operatorname{read}(\pi_1 x, \pi_2 x) : \mathbb{A} \operatorname{receives}$ a bit: if the bit is 0 it returns $\pi_1 x$ otherwise it returns $\pi_2 x$

Exercise

Define a λ -term $x: \mathbb{A} \vdash ?: \mathbb{A}$ that requests a bit from the user and depending on the value read it returns x with either one or two seconds of delay.

Table of Contents

Recalling ...

Integration of Algebraic Operations in λ -Calculus

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Semantics of λ -Calculus with Algebraic Operations

How to provide a suitable semantics to this family of programming languages?

The short answer: via monads

The long answer: see the next slides . . .

The Core Idea

Recall that programs $\Gamma \vdash V : \mathbb{A}$ are interpreted as functions

$$\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

Recall as well that there exists only one function of type

$$\llbracket \Gamma \rrbracket \longrightarrow \llbracket 1 \rrbracket$$

Problem: it is then necessarily the case that

$$\llbracket \Gamma \vdash x : 1 \rrbracket = \llbracket \Gamma \vdash \operatorname{wait}_1(x) : 1 \rrbracket$$

despite these programs having different execution times

The Core Idea pt. II

Previously, we interpreted a program $\Gamma \vdash V : \mathbb{A}$ as a function

$$\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

which returns values in $[\![\mathbb{A}]\!]$. But now values come with effects . . .

Instead of having $[\![\mathbb{A}]\!]$ as the set of outputs, we should have a set of effects $\mathcal{T}[\![\mathbb{A}]\!]$ over $[\![\mathbb{A}]\!]$ as outputs

$$\llbracket \Gamma \vdash M : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow T \llbracket \mathbb{A} \rrbracket$$

T should thus be a <u>set-constructor</u>: *i.e.* given a set of outputs X it returns a set of effects TX over X

The Core Idea pt. III

For wait calls, the corresponding set-constructor T is defined as

$$X \mapsto \mathbb{N} \times X$$

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor $\mathcal T$ is defined as

$$X \mapsto X + \{e\}$$

i.e. values in X plus an element e representing the exception

Another Problem

This idea of a set-constructor T seems good, but it breaks sequential composition

$$[\![\Gamma \vdash M : \mathbb{A}]\!] : [\![\Gamma]\!] \to \mathcal{T}[\![\mathbb{A}]\!]$$
$$[\![x : \mathbb{A} \vdash N : \mathbb{B}]\!] : [\![\mathbb{A}]\!] \to \mathcal{T}[\![\mathbb{B}]\!]$$

We need a way to convert a function $h:X\to TY$ into a function of the type

$$h^*: TX \to TY$$

Another Problem pt. II

There are set-constructors T for which this is possible

In the case of wait-calls

$$\frac{f: X \to TY = \mathbb{N} \times Y}{f^*(n,x) = (n+m,y) \text{ where } f(x) = (m,y)}$$

In the case of exceptions

$$\frac{f: X \to TY = Y + \{e\}}{f^*(x) = f(y) \qquad f^*(e) = e}$$

Testing the Idea with a Simple Example

$$[x: 1 \vdash y \leftarrow \operatorname{wait}_{1}(x); \operatorname{wait}_{2}(y): 1]$$

$$= [y: 1 \vdash \operatorname{wait}_{2}(y): 1]^{*} \cdot [x: 1 \vdash \operatorname{wait}_{1}(x): 1]$$

$$= (v \mapsto (2, v))^{*} \cdot (v \mapsto (1, v))$$

$$= v \mapsto (3, v)$$

Yet Another problem

The idea of interpreting λ -terms $\Gamma \vdash M : \mathbb{A}$ as functions

$$\llbracket \Gamma \vdash M : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \to T \llbracket \mathbb{A} \rrbracket$$

looks good but it presupposes that all terms invoke effects

There are terms that do not do this, e.g.

$$\llbracket x: \mathbb{A} \vdash x: \mathbb{A} \rrbracket : \llbracket \mathbb{A} \rrbracket \to \llbracket \mathbb{A} \rrbracket$$

Solution

T[A] should also include values free of effects, specifically there should exist a function

$$\eta_{\llbracket \mathbb{A} \rrbracket} : \llbracket \mathbb{A} \rrbracket \to T \llbracket \mathbb{A} \rrbracket$$

that maps a value to the corresponding effect-free representation in $\mathcal{T}[\![\mathbb{A}]\!]$

Yet Another problem pt. II

Again there are set-constructors T for which this is possible:

In the case of wait-calls

$$\frac{TX = \mathbb{N} \times X}{\eta_X(x) = (0, x)}$$

(i.e. no wait call was invoked)

In the case of exceptions

$$\frac{TX = X + \{e\}}{\eta_X(x) = x}$$

(i.e. the exception e was never raised)

Monads Unlocked

The analysis we did in the previous slides naturally leads to the notion of a monad

Definition

A monad $(T, \eta, (-)^*)$ is as triple such that T is a set-constructor, η is a function $\eta_X : X \to TX$ for each set X, and $(-)^*$ is an operation

$$\frac{f:X\to TY}{f^*:TX\to TY}$$

such that the following laws are respected: $\eta^\star=\mathrm{id},\ f^\star\cdot\eta=f,$ $(f^\star\cdot g)^\star=f^\star\cdot g^\star$

The laws above are required to forbid "weird" computational behaviour

Exercise

Show that the set-constructor

$$X \mapsto \mathbb{N} \times X$$

can be equipped with a monadic structure

Show that the set-constructor

$$X \mapsto X + 1$$

can be equipped with a monadic structure

Table of Contents

Recalling ...

Integration of Algebraic Operations in λ -Calculus

Semantics of λ -Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

To Keep In Mind

Let us use what we learned thus far to extend λ -calculus with algebraic operations and provide it with a proper semantics

To this effect, recall that,

- ullet we fix a signature Σ of algebraic operations
- we have monads $(T, \eta, (-)^*)$ at our disposal
- Programs $\Gamma \vdash V : \mathbb{A}$ can be seen either as functions of type $\llbracket \Gamma \rrbracket \to \llbracket \mathbb{A} \rrbracket$ or of type $\llbracket \Gamma \rrbracket \to T \llbracket \mathbb{A} \rrbracket$

Semantics for Effectful Simply-Typed λ -Calculus

Types \mathbb{A} are interpreted as sets $[\![\mathbb{A}]\!]$

$$\llbracket 1 \rrbracket = \{\star\} \qquad \llbracket \mathbb{A} \times \mathbb{B} \rrbracket = \llbracket \mathbb{A} \rrbracket \times \llbracket \mathbb{B} \rrbracket \qquad \llbracket \mathbb{A} \to \mathbb{B} \rrbracket = (\mathcal{T} \llbracket \mathbb{B} \rrbracket)^{\llbracket \mathbb{A} \rrbracket}$$

A typing context Γ is interpreted as

$$\llbracket \Gamma \rrbracket = \llbracket x_1 : \mathbb{A}_1 \times \cdots \times x_n : \mathbb{A}_n \rrbracket = \llbracket \mathbb{A}_1 \rrbracket \times \cdots \times \llbracket \mathbb{A}_n \rrbracket$$

For each operation $(\sigma, n) \in \Sigma$ and set X we postulate the existence of a map

$$\llbracket \sigma \rrbracket_X : (TX)^n \longrightarrow TX$$

Semantics for effectful simply-typed λ -calculus II

$$\begin{array}{ll}
x_{i} : \mathbb{A} \in \Gamma \\
\llbracket \Gamma \vdash x_{i} \rrbracket = \pi_{i}
\end{array} \qquad \overline{\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket} = f \qquad \overline{\llbracket \Gamma \vdash U : \mathbb{B} \rrbracket} = g \\
\underline{\llbracket \Gamma \vdash x_{i} \rrbracket} = \pi_{i}
\end{array} \qquad \overline{\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket} = f \qquad \overline{\llbracket \Gamma \vdash V : \mathbb{A} \times \mathbb{B} \rrbracket} = \langle f, g \rangle$$

$$\begin{array}{ll}
\llbracket \Gamma \vdash X : \mathbb{A} \vdash_{c} M : \mathbb{B} \rrbracket = f \\
\overline{\llbracket \Gamma \vdash \lambda x : \mathbb{A} \cdot M : \mathbb{A} \rightarrow \mathbb{B} \rrbracket} = \lambda f
\end{array} \qquad \overline{\llbracket \Gamma \vdash V : \mathbb{A} \times \mathbb{B} \rrbracket} = f \\
\underline{\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket} = f \qquad \overline{\llbracket \Gamma \vdash_{c} M : \mathbb{A} \rrbracket} = \pi_{1} \cdot f$$

$$\boxed{\llbracket \Gamma \vdash_{c} M : \mathbb{A} \rrbracket} = f \qquad \overline{\llbracket x : \mathbb{A} \vdash_{c} N : \mathbb{B} \rrbracket} = g$$

$$\boxed{\llbracket \Gamma \vdash_{c} x \leftarrow M : \mathbb{N} : \mathbb{B} \rrbracket} = g$$

$$\frac{(\sigma, n) \in \Sigma \qquad \forall i \leq n. \ \llbracket \Gamma \vdash_{c} M_{i} : \mathbb{A} \rrbracket = f_{i}}{\llbracket \Gamma \vdash_{c} \sigma(M_{1}, \dots M_{n}) \rrbracket = \llbracket \sigma \rrbracket_{\llbracket \mathbb{A} \rrbracket} \cdot \langle f_{1}, \dots, f_{n} \rangle}$$

 $\frac{\llbracket \Gamma \vdash V : \mathbb{A} \to \mathbb{B} \rrbracket = f \quad \llbracket \Gamma \vdash U : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash_{c} V U : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$

Exercise

Use the interpretation rules to prove that the equations below hold

Exercises

Build a λ -term that receives a value, waits one second, and returns the same value. Run this in Haskell using DurationMonad.hs. What is the value obtained when you feed this function with "Hi"? Justify.

Can you build a λ -term that receives a function $f: \mathbb{A} \to \mathbb{A}$, receives a value $x: \mathbb{A}$, and applies f to x twice? In classical λ -calculus such would be defined as

$$\lambda f: \mathbb{A} \to \mathbb{A}. \ \lambda x: \mathbb{A}. \ f(f x)$$