Simply-Typed λ-Calculus and Algebraic Operations

Renato Neves

Table of Contents

Recalling ...

Integration of Algebraic Operations in λ-Calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Recalling λ-Calculus

Types $\mathbb{A} \ni 1|\mathbb{A} \times \mathbb{A}| \mathbb{A} \rightarrow \mathbb{A}$

Programs built according to the rules

$$
\begin{aligned}
& \frac{x: \mathbb{A} \in \Gamma}{\Gamma \vdash x: \mathbb{A}} \\
& \overline{\Gamma \vdash *: 1} \\
& \frac{\Gamma \vdash V: \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1} V: \mathbb{A}} \\
& \frac{\Gamma \vdash V: \mathbb{A} \quad \Gamma \vdash U: \mathbb{B}}{\Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B}} \\
& \frac{\Gamma, x: \mathbb{A} \vdash V: \mathbb{B}}{\Gamma \vdash \lambda x: \mathbb{A} \cdot V: \mathbb{A} \rightarrow \mathbb{B}} \\
& \frac{\Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B} \quad \Gamma \vdash U: \mathbb{A}}{\Gamma \vdash V U: \mathbb{B}}
\end{aligned}
$$

$\left\lceil\right.$ a non-repetitive list of typed variables $x_{1}: \mathbb{A}_{1} \ldots x_{n}: \mathbb{A}_{n}$

Sequential Composition

Consider the following "new" deductive rule

$$
\frac{\Gamma \vdash V: \mathbb{A} \quad x: \mathbb{A} \vdash U: \mathbb{B}}{\Gamma \vdash x \leftarrow V ; U: \mathbb{B}}
$$

It reads as "bind the computation V to x and then run U "

Interpretation is defined as

$$
\frac{\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket=f \quad \llbracket x: \mathbb{A} \vdash U: \mathbb{B} \rrbracket=g}{\llbracket \Gamma \vdash x \leftarrow V ; U: \mathbb{B} \rrbracket=g \cdot f}
$$

Table of Contents

Recalling

Integration of Algebraic Operations in λ-Calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Signatures

A signature $\Sigma=\left\{\left(\sigma_{1}, n_{1}\right),\left(\sigma_{2}, n_{2}\right), \ldots\right\}$ is a set of operations σ_{i} paired with the number of inputs n_{i} they are supposed to receive

Signatures will later be integrated in λ-calculus

They constitute the aforementioned the algebraic operations

Examples

- Exceptions: $\Sigma=\{(\mathrm{e}, 0)\}$
- Read a bit from the environment: $\Sigma=\{($ read, 2$)\}$
- Wait calls: $\Sigma=\left\{\left(\right.\right.$ wait $\left.\left._{n}, 1\right) \mid n \in \mathbb{N}\right\}$
- Non-deterministic choice: $\Sigma=\{(+, 2)\}$

Simply-Typed λ-Calculus with Algebraic Operations

We choose a signature Σ of algebraic operations and introduce a new deductive rule

$$
\frac{(\sigma, n) \in \Sigma \quad \forall i \leq n . \Gamma \vdash M_{i}: \mathbb{A}}{\Gamma \vdash \sigma\left(M_{1}, \ldots, M_{n}\right): \mathbb{A}}
$$

Examples of Effectful λ-Terms

- $x: \mathbb{A} \vdash$ wait $_{1}(x): \mathbb{A}$ - adds delay of one second to returning x
- 「 $\vdash \mathrm{e}(): \mathbb{A}$ - raises an exception e
- $\Gamma \vdash \operatorname{write}_{v}(M): \mathbb{A}-$ writes v in memory and then runs M
- $x: \mathbb{A} \times \mathbb{A} \vdash \operatorname{read}\left(\pi_{1} x, \pi_{2} x\right): \mathbb{A}-$ receives a bit: if the bit is 0 it returns $\pi_{1} \times$ otherwise it returns $\pi_{2} X$

Examples of Effectful λ-Terms

- $x: \mathbb{A} \vdash$ wait $_{1}(x): \mathbb{A}$ - adds delay of one second to returning x
- 「 $\vdash \mathrm{e}(): \mathbb{A}$ - raises an exception e
- $\Gamma \vdash \operatorname{write}_{v}(M): \mathbb{A}$ - writes v in memory and then runs M
- $x: \mathbb{A} \times \mathbb{A} \vdash \operatorname{read}\left(\pi_{1} x, \pi_{2} x\right): \mathbb{A}-$ receives a bit: if the bit is 0 it returns $\pi_{1} \times$ otherwise it returns $\pi_{2} x$

Exercise

Define a λ-term $x: \mathbb{A} \vdash$?: \mathbb{A} that requests a bit from the user and depending on the value read it returns x with either one or two seconds of delay.

Table of Contents

Recalling ...
Integration of Algebraic Operations in λ-Calculus

Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

Semantics of λ-Calculus with Algebraic Operations

How to provide a suitable semantics to this family of programming languages?

The short answer: via monads

The long answer: see the next slides ...

The Core Idea

Recall that programs $\Gamma \vdash V: \mathbb{A}$ are interpreted as functions

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

Recall as well that there exists only one function of type

$$
\llbracket\ulcorner\rrbracket \longrightarrow \llbracket 1 \rrbracket
$$

Problem: it is then necessarily the case that

$$
\llbracket\left\ulcorner\vdash x: 1 \rrbracket=\llbracket \Gamma \vdash \operatorname{wait}_{1}(x): 1 \rrbracket\right.
$$

despite these programs having different execution times

The Core Idea pt. II

Previously, we interpreted a program $\Gamma \vdash V: \mathbb{A}$ as a function

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

which returns values in $\llbracket \mathbb{A} \rrbracket$. But now values come with effects...

Instead of having $\llbracket \mathbb{A} \rrbracket$ as the set of outputs, we should have a set of effects $T \llbracket \mathbb{A} \rrbracket$ over $\llbracket \mathbb{A} \rrbracket$ as outputs

$$
\llbracket\ulcorner\vdash M: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow T \llbracket \mathbb{A} \rrbracket
$$

T should thus be a set-constructor: i.e. given a set of outputs X it returns a set of effects $T X$ over X

The Core Idea pt. III

For wait calls, the corresponding set-constructor T is defined as

$$
X \mapsto \mathbb{N} \times X
$$

i.e. values in X paired with an execution time

For exceptions, the corresponding set-constructor T is defined as

$$
X \mapsto X+\{e\}
$$

i.e. values in X plus an element e representing the exception

Another Problem

This idea of a set-constructor T seems good, but it breaks sequential composition

$$
\begin{array}{r}
\llbracket \Gamma \vdash M: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \rightarrow T \llbracket \mathbb{A} \rrbracket \\
\llbracket x: \mathbb{A} \vdash N: \mathbb{B} \rrbracket: \llbracket \mathbb{A} \rrbracket \rightarrow T \llbracket \mathbb{B} \rrbracket
\end{array}
$$

We need a way to convert a function $h: X \rightarrow T Y$ into a function of the type

$$
h^{\star}: T X \rightarrow T Y
$$

Another Problem pt. II

There are set-constructors T for which this is possible

In the case of wait-calls

$$
\frac{f: X \rightarrow T Y=\mathbb{N} \times Y}{f^{\star}(n, x)=(n+m, y) \text { where } f(x)=(m, y)}
$$

In the case of exceptions

$$
\frac{f: X \rightarrow T Y=Y+\{e\}}{f^{\star}(x)=f(y) \quad f^{\star}(e)=e}
$$

Testing the Idea with a Simple Example

$$
\begin{aligned}
& \llbracket x: 1 \vdash y \leftarrow \operatorname{wait}_{1}(x) ; \operatorname{wait}_{2}(y): 1 \rrbracket \\
& =\llbracket y: 1 \vdash \operatorname{wait}_{2}(y): 1 \rrbracket^{*} \cdot \llbracket x: 1 \vdash \operatorname{wait}_{1}(x): 1 \rrbracket \\
& =(v \mapsto(2, v))^{*} \cdot(v \mapsto(1, v)) \\
& =v \mapsto(3, v)
\end{aligned}
$$

Yet Another problem

The idea of interpreting λ-terms $\Gamma \vdash M: \mathbb{A}$ as functions

$$
\llbracket \Gamma \vdash M: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \rightarrow T \llbracket \mathbb{A} \rrbracket
$$

looks good but it presupposes that all terms invoke effects
There are terms that do not do this, e.g.

$$
\llbracket x: \mathbb{A} \vdash x: \mathbb{A} \rrbracket: \llbracket \mathbb{A} \rrbracket \rightarrow \llbracket \mathbb{A} \rrbracket
$$

Solution

$T \llbracket \mathbb{A} \rrbracket$ should also include values free of effects, specifically there should exist a function

$$
\eta_{\llbracket \mathbb{A} \rrbracket}: \llbracket \mathbb{A} \rrbracket \rightarrow T \llbracket \mathbb{A} \rrbracket
$$

that maps a value to the corresponding effect-free representation in $T \llbracket \mathbb{A} \rrbracket$

Yet Another problem pt. II

Again there are set-constructors T for which this is possible:

In the case of wait-calls

$$
\frac{T X=\mathbb{N} \times X}{\eta_{X}(x)=(0, x)}
$$

(i.e. no wait call was invoked)

In the case of exceptions

$$
\frac{T X=X+\{e\}}{\eta_{X}(x)=x}
$$

(i.e. the exception e was never raised)

Monads Unlocked

The analysis we did in the previous slides naturally leads to the notion of a monad

Definition

A monad $\left(T, \eta,(-)^{\star}\right)$ is as triple such that T is a set-constructor, η is a function $\eta_{X}: X \rightarrow T X$ for each set X, and $(-)^{\star}$ is an operation

$$
\frac{f: X \rightarrow T Y}{f^{\star}: T X \rightarrow T Y}
$$

such that the following laws are respected: $\eta^{\star}=\mathrm{id}, f^{\star} \cdot \eta=f$, $\left(f^{\star} \cdot g\right)^{\star}=f^{\star} \cdot g^{\star}$

The laws above are required to forbid "weird" computational behaviour

Exercise

Show that the set-constructor

$$
X \mapsto \mathbb{N} \times X
$$

can be equipped with a monadic structure

Show that the set-constructor

$$
X \mapsto X+1
$$

can be equipped with a monadic structure

Table of Contents

> Recalling

> Integration of Algebraic Operations in λ-Calculus

> Semantics of λ-Calculus with Algebraic Operations

Capitalising on the Lessons Learned Thus Far

To Keep In Mind

Let us use what we learned thus far to extend λ-calculus with algebraic operations and provide it with a proper semantics

To this effect, recall that,

- we fix a signature Σ of algebraic operations
- we have monads $\left(T, \eta,(-)^{\star}\right)$ at our disposal
- Programs $\Gamma \vdash V: \mathbb{A}$ can be seen either as functions of type $\llbracket\ulcorner\rrbracket \rightarrow \llbracket \mathbb{A} \rrbracket$ or of type $\llbracket\ulcorner\rrbracket \rightarrow T \llbracket \mathbb{A} \rrbracket$

Semantics for Effectful Simply-Typed λ-Calculus

Types \mathbb{A} are interpreted as sets $\llbracket \mathbb{A} \rrbracket$

$$
\llbracket 1 \rrbracket=\{\star\} \quad \llbracket \mathbb{A} \times \mathbb{B} \rrbracket=\llbracket \mathbb{A} \rrbracket \times \llbracket \mathbb{B} \rrbracket \quad \llbracket \mathbb{A} \rightarrow \mathbb{B} \rrbracket=(T \llbracket \mathbb{B} \rrbracket)^{\llbracket \mathbb{A} \rrbracket}
$$

A typing context Γ is interpreted as

$$
\llbracket\left\ulcorner\rrbracket=\llbracket x_{1}: \mathbb{A}_{1} \times \cdots \times x_{n}: \mathbb{A}_{n} \rrbracket=\llbracket \mathbb{A}_{1} \rrbracket \times \cdots \times \llbracket \mathbb{A}_{n} \rrbracket\right.
$$

For each operation $(\sigma, n) \in \Sigma$ and set X we postulate the existence of a map

$$
\llbracket \sigma \rrbracket_{X}:(T X)^{n} \longrightarrow T X
$$

Semantics for effectful simply-typed λ-calculus II

$$
\begin{aligned}
& \frac{x_{i}: \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_{i} \rrbracket=\pi_{i}} \quad \overline{\llbracket \Gamma \vdash * \rrbracket=!} \quad \frac{\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket=f}{\llbracket \Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B} \rrbracket=\langle f, g\rangle} \\
& \llbracket \Gamma, x: \mathbb{A} \vdash_{c} M: \mathbb{B} \rrbracket=f \\
& \overline{\llbracket \Gamma \vdash \lambda x: \mathbb{A} \cdot M: \mathbb{A} \rightarrow \mathbb{B} \rrbracket=\lambda f} \\
& \frac{\llbracket \Gamma \vdash V: \mathbb{A} \times \mathbb{B} \rrbracket=f}{\llbracket\left\ulcorner\vdash \pi_{1} V: \mathbb{A} \rrbracket=\pi_{1} \cdot f\right.} \\
& \frac{\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket=f}{\llbracket \Gamma \vdash_{c} \text { return } V: \mathbb{A} \rrbracket=\eta \cdot f} \quad \frac{\llbracket \Gamma \vdash_{c} M: \mathbb{A} \rrbracket=f \quad \llbracket x: \mathbb{A} \vdash_{c} N: \mathbb{B} \rrbracket=g}{\llbracket \Gamma \vdash_{c} x \leftarrow M ; N: \mathbb{B} \rrbracket=g^{\star} \cdot f} \\
& \begin{array}{r}
\frac{\llbracket \Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B} \rrbracket=f \quad \llbracket \Gamma \vdash U: \mathbb{A} \rrbracket=g}{\llbracket \Gamma \vdash_{c} V U: \mathbb{B} \rrbracket=\operatorname{app} \cdot\langle f, g\rangle} \\
\frac{(\sigma, n) \in \Sigma \quad \forall i \leq n . \llbracket \Gamma \vdash_{c} M_{i}: \mathbb{A} \rrbracket=f_{i}}{\llbracket \Gamma \vdash_{c} \sigma\left(M_{1}, \ldots M_{n}\right) \rrbracket=\llbracket \sigma \rrbracket_{\llbracket \mathbb{A} \rrbracket} \cdot\left\langle f_{1}, \ldots, f_{n}\right\rangle}
\end{array}
\end{aligned}
$$

Exercise

Use the interpretation rules to prove that the equations below hold
$\llbracket\ulcorner\vdash x \leftarrow \operatorname{return} * ;(\operatorname{return} x): 1 \rrbracket=\llbracket\ulcorner\vdash \operatorname{return} *: 1 \rrbracket$
(hint: one of the monad laws)
$\llbracket \Gamma \vdash x \leftarrow \operatorname{wait}_{1}($ return $*) ;($ return $x): 1 \rrbracket=\llbracket \Gamma \vdash x \leftarrow$ return $* ;$ wait $_{1}($ return $x): 1 \rrbracket$
(hint: two of the monad laws)
$\llbracket \Gamma \vdash x \leftarrow \operatorname{wait}_{1}(\operatorname{return} *) ;$ wait $_{1}(\operatorname{return} x): 1 \rrbracket=\llbracket \Gamma \vdash x \leftarrow$ wait $_{2}($ return $*) ;($ return $x): 1 \rrbracket$

Exercises

Build a λ-term that receives a value, waits one second, and returns the same value. Run this in Haskell using DurationMonad.hs. What is the value obtained when you feed this function with "Hi"? Justify.

Can you build a λ-term that receives a function $f: \mathbb{A} \rightarrow \mathbb{A}$, receives a value $x: \mathbb{A}$, and applies f to x twice? In classical λ-calculus such would be defined as

$$
\lambda f: \mathbb{A} \rightarrow \mathbb{A} . \lambda x: \mathbb{A} . f(f x)
$$

