
A brief overview of Simply-Typed λ-Calculus

Renato Neves

Table of Contents

Roadmap

Stripping (higher-order) programming to the essentials

2

The Four Chapters of this course

1. CCS and its semantics: focus on distributed systems comprised
of processing units that communicate with each other

2. Adaption of previous notions to real-time systems: semantics
via timed labelled transition systems

3. Going cyber-physical: simple imperative while-language and (as
usual) program analysis via its semantics

4. Programming with algebraic effects: a uniform approach to the
previous chapters

3

Overview

Modern programming typically involves different effects

• memory cell manipulation
• communication
• exception raising operations
• probabilistic operations
• real-time behaviour
• cyber-physical behaviour

In the following lectures we will study the mathematical
foundations of

Programming with effects

in a uniform way

4

Table of Contents

Roadmap

Stripping (higher-order) programming to the essentials

5

Deductive Reasoning

The process of reasoning via assumptions and logical rules to
obtain new knowledge

(e.g. if every crow is black and x is a crow then x is black)

Deductive reasoning has been studied in the last millenina, long
before the age of artificial computers

So what does it have to do with programming?

6

A Logical Rule-Based System for Deductive Reasoning pt. I

Let A,B,C . . . denote
propositions and 1 denote a
special proposition that is always
true. Next, if A and B are
propositions then:

• A×B is a proposition – it denotes the conjunction of A and B

• A → B is a proposition – it says that A implies B

7

A Logical Rule-Based System for Deductive Reasoning pt. II

Let Γ denote a list of propositions. Γ ⊢ A means “if the
propositions in Γ hold then we deduce that A also holds”

A ∈ Γ
Γ ⊢ A Γ ⊢ 1

Γ ⊢ A × B
Γ ⊢ A

Γ ⊢ A × B
Γ ⊢ B

Γ ⊢ A Γ ⊢ B
Γ ⊢ A × B

Γ,A ⊢ B
Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A
Γ ⊢ B

Exercise
Show that A × B ⊢ B × A

8

Building New Rules from the Original Ones

The following rules are derivable from the previous system

Γ ⊢ A
Γ,B ⊢ A

Γ,A,B, ∆ ⊢ C
Γ,B,A, ∆ ⊢ C

Exercise
Show that if Γ ⊢ A → B and Γ ⊢ B → C then Γ ⊢ A → C.

Going back to programming . . .

9

The Essentials of Programming

In order to study effectful programming, we should think of what
are the basic features of (higher-order) programming . . .

• variables
• function application
• function abstraction
• pairing . . .

and base our study on the simplest programming language
containing these features . . .

Simply-typed λ-calculus

It is the basis of Haskell, ML, Eff, F#, Agda, Elm and many other
programming languages

10

Simply-Typed λ-Calculus

Types A ∋ 1 | A × A | A → A

Γ is now a non-repetitive list of typed variables x1 : A1 . . . xn : An

Programs are built according to the previous deduction rules

x : A ∈ Γ
Γ ⊢ x : A Γ ⊢ ∗ : 1

Γ ⊢ V : A × B
Γ ⊢ π1V : A

Γ ⊢ V : A Γ ⊢ U : B
Γ ⊢ ⟨V , U⟩ : A × B

Γ, x : A ⊢ V : B
Γ ⊢ λx : A. V : A → B

Γ ⊢ V : A → B Γ ⊢ U : A
Γ ⊢ V U : B

11

Examples of λ-terms

x : A ⊢ x : A (identity)

x : A ⊢ ⟨x , x⟩ : A × A (duplication)

x : A × B ⊢ ⟨π2 x , π1 x⟩ : B × A (swap)

f : A → B, g : B → C ⊢ λx : A. g(f x) : A → C (composition)

Exercise
Build a λ-term f : A → A, x : A ⊢ ? : A that takes a variable
f : A → A, a variable x : A, and applies f to x twice.

12

Semantics for Simply-Typed λ-Calculus

We wish to assign a mathematical meaning to λ-terms

[[−]]: λ-Terms −→ ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret
λ-terms as functions. But first . . .

13

Semantics for Simply-Typed λ-Calculus

We wish to assign a mathematical meaning to λ-terms

[[−]]: λ-Terms −→ ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret
λ-terms as functions. But first . . .

13

Basic Facts about Functions

For every set X , there is a ‘trivial’ function

! : X −→ {⋆} = 1, ! (x) = ⋆

We can always pair two functions f : X → A, g : X → B into

⟨f , g⟩ : X → A × B, ⟨f , g⟩(x) = (f x , g x)

Consider two sets X , Y . There exist ‘projection’ functions

π1 : X × Y → X , π1(x , y) = x
π2 : X × Y → Y , π2(x , y) = y

14

Basic Facts about Functions

We can always ‘curry’ a function f : X × Y → Z into

λf : X → ZY , λf (x) = (y 7→ f (x , y))

Consider sets X , Y , Z . There exists an ‘application’ function

app : ZY × Y → Z , app(f , y) = f y

15

Functional Semantics for the Simply-Typed λ-Calculus

Types A are interpreted as sets [[A]]

[[1]] = {⋆}
[[A × B]] = [[A]]×[[B]]

[[A → B]] = [[B]][[A]]

A typing context Γ is interpreted as

[[Γ]] = [[x1 : A1 × · · · × xn : An]] = [[A1]]× · · · × [[An]]

A λ-term Γ ⊢ V : A is interpreted as a function

[[Γ ⊢ V : A]] : [[Γ]] −→ [[A]]

16

Functional Semantics for the Simply-Typed λ-Calculus

A λ-term Γ ⊢ V : A is interpreted as a function

[[Γ ⊢ V : A]] : [[Γ]] −→ [[A]]

in the following way

xi : A ∈ Γ
[[Γ ⊢ xi : A]]= πi [[Γ ⊢ ∗ : 1]] = !

[[Γ ⊢ V : A × B]]= f
[[Γ ⊢ π1V : A]]= π1 · f

[[Γ ⊢ V : A]] = f [[Γ ⊢ U : B]] = g
[[Γ ⊢ ⟨V , U⟩ : A × B]] = ⟨f , g⟩

[[Γ, x : A ⊢ V : B]] = f
[[Γ ⊢ λx : A. V : A → B]] = λf

[[Γ ⊢ V : A → B]] = f [[Γ ⊢ U : A]] = g
[[Γ ⊢ V U : B]] = app · ⟨f , g⟩

17

Exercises

Show that the following two equations hold.

[[x : A, y : B ⊢ π1⟨x , y⟩ : A]] = [[x : A, y : B ⊢ x : A]]
[[Γ ⊢ V : A]] = [[Γ ⊢ ⟨π1V , π2V ⟩ : A]]

Chocolate for anyone that shows that the following equation holds!

[[(λf . λx . f (f x)) (λx . ⟨π2 x , π1 x⟩)]] = [[λx . x]]

18

	Roadmap
	Stripping (higher-order) programming to the essentials

