A brief overview of Simply-Typed λ-Calculus

Renato Neves

Table of Contents

Roadmap

Stripping (higher-order) programming to the essentials

The Four Chapters of this course

1. CCS and its semantics: focus on distributed systems comprised of processing units that communicate with each other
2. Adaption of previous notions to real-time systems: semantics via timed labelled transition systems
3. Going cyber-physical: simple imperative while-language and (as usual) program analysis via its semantics
4. Programming with algebraic effects: a uniform approach to the previous chapters

Overview

Modern programming typically involves different effects

- memory cell manipulation
- communication
- exception raising operations
- probabilistic operations
- real-time behaviour
- cyber-physical behaviour

In the following lectures we will study the mathematical foundations of

Programming with effects
in a uniform way

Table of Contents

Roadmap

Stripping (higher-order) programming to the essentials

Deductive Reasoning

The process of reasoning via assumptions and logical rules to obtain new knowledge
(e.g. if every crow is black and x is a crow then x is black)

Deductive reasoning has been studied in the last millenina, long before the age of artificial computers

So what does it have to do with programming?

A Logical Rule-Based System for Deductive Reasoning pt. I

Let $\mathbb{A}, \mathbb{B}, \mathbb{C} \ldots$ denote propositions and 1 denote a special proposition that is always true. Next, if \mathbb{A} and \mathbb{B} are propositions then:

- $\mathbb{A} \times \mathbb{B}$ is a proposition - it denotes the conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \rightarrow \mathbb{B}$ is a proposition - it says that \mathbb{A} implies \mathbb{B}

A Logical Rule-Based System for Deductive Reasoning pt. II

Let Γ denote a list of propositions. $\Gamma \vdash \mathbb{A}$ means "if the propositions in Γ hold then we deduce that \mathbb{A} also holds"

$$
\begin{array}{ccc}
\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} & \overline{\Gamma \vdash 1} & \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}}
\end{array} \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}}
$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

Building New Rules from the Original Ones

The following rules are derivable from the previous system

$$
\frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}} \quad \frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}}
$$

Exercise

Show that if $\Gamma \vdash \mathbb{A} \rightarrow \mathbb{B}$ and $\Gamma \vdash \mathbb{B} \rightarrow \mathbb{C}$ then $\Gamma \vdash \mathbb{A} \rightarrow \mathbb{C}$.

Going back to programming ...

The Essentials of Programming

In order to study effectful programming, we should think of what are the basic features of (higher-order) programming ...

- variables
- function application
- function abstraction
- pairing...
and base our study on the simplest programming language containing these features...

Simply-typed λ-calculus

It is the basis of Haskell, ML, Eff, F\#, Agda, Elm and many other programming languages

Simply-Typed λ-Calculus

Types $\mathbb{A} \ni 1|\mathbb{A} \times \mathbb{A}| \mathbb{A} \rightarrow \mathbb{A}$
Γ is now a non-repetitive list of typed variables $x_{1}: \mathbb{A}_{1} \ldots x_{n}: \mathbb{A}_{n}$
Programs are built according to the previous deduction rules

$$
\begin{array}{cc}
\frac{x: \mathbb{A} \in \Gamma}{\Gamma \vdash x: \mathbb{A}} & \overline{\Gamma \vdash *: 1} \\
\frac{\Gamma \vdash V: \mathbb{A}}{\Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B}} & \frac{\Gamma \vdash V: \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1} V: \mathbb{A}} \\
& \frac{\Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B}}{\Gamma \vdash V U: \mathbb{B}}
\end{array}
$$

Examples of λ-terms

$$
\begin{aligned}
& x: \mathbb{A} \vdash x: \mathbb{A} \text { (identity) } \\
& x: \mathbb{A} \vdash\langle x, x\rangle: \mathbb{A} \times \mathbb{A}(\text { duplication }) \\
& x: \mathbb{A} \times \mathbb{B} \vdash\left\langle\pi_{2} x, \pi_{1} x\right\rangle: \mathbb{B} \times \mathbb{A} \text { (swap) } \\
& f: \mathbb{A} \rightarrow \mathbb{B}, g: \mathbb{B} \rightarrow \mathbb{C} \vdash \lambda x: \mathbb{A} . g(f x): \mathbb{A} \rightarrow \mathbb{C} \text { (composition) }
\end{aligned}
$$

Exercise

Build a λ-term $f: \mathbb{A} \rightarrow \mathbb{A}, x: \mathbb{A} \vdash$?: \mathbb{A} that takes a variable $f: \mathbb{A} \rightarrow \mathbb{A}$, a variable $x: \mathbb{A}$, and applies f to x twice.

Semantics for Simply-Typed λ-Calculus

We wish to assign a mathematical meaning to λ-terms

$$
\llbracket-\rrbracket: \lambda \text {-Terms } \longrightarrow \ldots
$$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

Semantics for Simply-Typed λ-Calculus

We wish to assign a mathematical meaning to λ-terms

$$
\llbracket-\rrbracket: \lambda \text {-Terms } \longrightarrow \ldots
$$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret λ-terms as functions. But first ...

Basic Facts about Functions

For every set X, there is a 'trivial' function

$$
!: X \longrightarrow\{\star\}=1, \quad!(x)=\star
$$

We can always pair two functions $f: X \rightarrow A, g: X \rightarrow B$ into

$$
\langle f, g\rangle: X \rightarrow A \times B, \quad\langle f, g\rangle(x)=(f x, g x)
$$

Consider two sets X, Y. There exist 'projection' functions

$$
\begin{array}{ll}
\pi_{1}: X \times Y \rightarrow X, & \pi_{1}(x, y)=x \\
\pi_{2}: X \times Y \rightarrow Y, & \pi_{2}(x, y)=y
\end{array}
$$

Basic Facts about Functions

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$
\lambda f: X \rightarrow Z^{Y}, \quad \lambda f(x)=(y \mapsto f(x, y))
$$

Consider sets X, Y, Z. There exists an 'application' function

$$
\text { app : } Z^{Y} \times Y \rightarrow Z, \quad \operatorname{app}(f, y)=f y
$$

Functional Semantics for the Simply-Typed λ-Calculus

Types \mathbb{A} are interpreted as sets $\llbracket \mathbb{A} \rrbracket$

$$
\begin{aligned}
\llbracket 1 \rrbracket & =\{\star\} \\
\llbracket \mathbb{A} \times \mathbb{B} \rrbracket & =\llbracket \mathbb{A} \rrbracket \times \llbracket \mathbb{B} \rrbracket \\
\llbracket \mathbb{A} \rightarrow \mathbb{B} \rrbracket & =\llbracket \mathbb{B} \rrbracket^{\mathbb{A} \rrbracket}
\end{aligned}
$$

A typing context Γ is interpreted as

$$
\llbracket\left\ulcorner\rrbracket=\llbracket x_{1}: \mathbb{A}_{1} \times \cdots \times x_{n}: \mathbb{A}_{n} \rrbracket=\llbracket \mathbb{A}_{1} \rrbracket \times \cdots \times \llbracket \mathbb{A}_{n} \rrbracket\right.
$$

A λ-term $\Gamma \vdash V: \mathbb{A}$ is interpreted as a function

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

Functional Semantics for the Simply-Typed λ-Calculus

A λ-term $\Gamma \vdash V: \mathbb{A}$ is interpreted as a function

$$
\llbracket\ulcorner\vdash V: \mathbb{A} \rrbracket: \llbracket\ulcorner\rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket
$$

in the following way

$$
\begin{array}{cc}
\frac{x_{i}: \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_{i}: \mathbb{A} \rrbracket=\pi_{i}} \quad \overline{\llbracket \Gamma \vdash *: 1 \rrbracket=!} & \frac{\llbracket \Gamma \vdash V: \mathbb{A} \times \mathbb{B} \rrbracket=f}{\llbracket \Gamma \vdash \pi_{1} V: \mathbb{A} \rrbracket=\pi_{1} \cdot f} \\
\frac{\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket=f}{\llbracket \Gamma \vdash\langle V, U\rangle: \mathbb{A} \times \mathbb{B} \rrbracket=\langle f, g\rangle} & \frac{\llbracket \Gamma \vdash U: \mathbb{B} \rrbracket=g}{\llbracket \Gamma \vdash \lambda x: \mathbb{A} \cdot V: \mathbb{A} \rightarrow \mathbb{B} \rrbracket=\lambda f} \\
\frac{\llbracket \Gamma \vdash V: \mathbb{A} \rightarrow \mathbb{B} \rrbracket=f}{\llbracket \Gamma \vdash V U: \mathbb{B} \rrbracket=\operatorname{app} \cdot\langle f, g\rangle}
\end{array}
$$

Exercises

Show that the following two equations hold.

$$
\begin{aligned}
\llbracket x: \mathbb{A}, y: \mathbb{B} \vdash \pi_{1}\langle x, y\rangle: \mathbb{A} \rrbracket & =\llbracket x: \mathbb{A}, y: \mathbb{B} \vdash x: \mathbb{A} \rrbracket \\
\llbracket \Gamma \vdash V: \mathbb{A} \rrbracket & =\llbracket \Gamma \vdash\left\langle\pi_{1} V, \pi_{2} V\right\rangle: \mathbb{A} \rrbracket
\end{aligned}
$$

Chocolate for anyone that shows that the following equation holds!

$$
\llbracket(\lambda f . \lambda x . f(f x))\left(\lambda x .\left\langle\pi_{2} x, \pi_{1} x\right\rangle\right) \rrbracket=\llbracket \lambda x, x \rrbracket
$$

