A brief overview of Simply-Typed \-Calculus

Renato Neves

iz @
g .
020 HASLab
Universidade do Minho SOFTWARE LABORATORY

Table of Contents

Roadmap

The Four Chapters of this course

1. CCS and its semantics: focus on distributed systems comprised

of processing units that communicate with each other

2. Adaption of previous notions to real-time systems: semantics
via timed labelled transition systems

3. Going cyber-physical: simple imperative while-language and (as

usual) program analysis via its semantics

4. Programming with algebraic effects: a uniform approach to the
previous chapters

Modern programming typically involves different effects

= memory cell manipulation

= communication

= exception raising operations
= probabilistic operations

= real-time behaviour

= cyber-physical behaviour

In the following lectures we will study the mathematical

foundations of

Programming with effects

in a uniform way

Table of Contents

Stripping (higher-order) programming to the essentials

Deductive Reasoning

The process of reasoning via assumptions and logical rules to
obtain new knowledge

(e.g. if every crow is black and x is a crow then x is black)

Deductive reasoning has been studied in the last millenina, long
before the age of artificial computers

So what does it have to do with programming?

A Logical Rule-Based System for Deductive Reasoning pt. |

Let A,B,C... denote
propositions and 1 denote a
special proposition that is always
true. Next, if A and B are
propositions then:

= A X B is a proposition — it denotes the conjunction of A and B

= A — B is a proposition — it says that A implies B

A Logical Rule-Based System for Deductive Reasoning pt.

Let I denote a list of propositions. I' = A means “if the
propositions in [hold then we deduce that A also holds”

Aerl INFAxB lFAXxB
r-A M1 r-A r-mB
- A B NA-B rN-FA—B A
F-AxB r-A—B M- B
Exercise

Show that A x B+ B x A

Building New Rules from the Original Ones

The following rules are derivable from the previous system

reA NLABARFC
LBEA B,AAFC

Exercise
Show that if TFA -Band B — Cthenl F A — C.

Going back to programming . ..

The Essentials of Programming

In order to study effectful programming, we should think of what

are the basic features of (higher-order) programming ...

variables
function application

function abstraction
pairing ...

and base our study on the simplest programming language

containing these features ...

Simply-typed A-calculus

It is the basis of Haskell, ML, Eff, F#, Agda, E1lm and many other
programming languages

10

Simply-Typed)\-Calculus

Types AS1|AXA|A— A
I is now a non-repetitive list of typed variables x; : A1 ...x,: A,

Programs are built according to the previous deduction rules

x:Ael N-V:AxB

NkE=x: A MNEx:1 FrEmVv:A
rEV:A r’CU:B Mx:AFV:B

r=(v,U):AxB FTEAx:AV:A—-B

rFV:A—-B THFU:A
r-vu:B

11

Examples of \-terms

x A F x: A (identity)
x A F (x,x): A x A (duplication)
x:AXBE (m x,m x) : B x A (swap)

f:A—-B,g:B—CkA:A g(fx):A— C (composition)
Exercise

Build a A-term f : A — A, x : A+ 7 : A that takes a variable
f:A— A, avariable x : A, and applies f to x twice.

12

Semantics for Simply-Typed)\-Calculus

We wish to assign a mathematical meaning to A-terms
[-]: A-Terms — ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

13

Semantics for Simply-Typed)\-Calculus

We wish to assign a mathematical meaning to A-terms
[-]: A-Terms — ...

so that we can reason about them in a rigorous way, and take
advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret
A-terms as functions. But first ...

13

Basic Facts about Functions

For every set X, there is a ‘trivial’ function

X — {x} =1, I(x) = *

We can always pair two functions f : X — A, g : X — B into

(f,g): X - Ax B, (f,g)(x) = (f x,g x)

Consider two sets X, Y. There exist ‘projection’ functions

X XY =X, m1(x,y) = x
miXXY =Y, ma(X,y) =y

14

Basic Facts about Functions

We can always ‘curry’ a function f : X x Y — Z into

M X = ZY, M (x) = (y = f(x,y))

Consider sets X, Y, Z. There exists an ‘application’ function

app: ZY xY = Z, app(f,y)="fy

5

Functional Semantics for the Simply-Typed A\-Calculus

Types A are interpreted as sets [A]

[1] = {x}
[4 x B] = [A]x[B]
[A — B] = [B]!M

A typing context [is interpreted as

[Tl =1Dxw: A x - x xp 0 Ap] = [A1]x - -+ x [AR]

A Mterm [V : A is interpreted as a function

[TEV:A]:[I] — [A]

16

Functional Semantics for the Simply-Typed A\-Calculus

A Aterm [V : A is interpreted as a function
[TEVA]: I — [A]

in the following way

xi:Ael [[rl—VIAXB]]:f
IrExi: A]=7; [TEx:1] = [TEmV:Al=n-f
[FTFV:A]=f [TFU:B)l=g [Mx:AFV :B]=f

[FTE(V,U):AxB]=(fg) [TEA:A VA= B] =AM

[TFV:A—-B]j=f [TFU:A]l=g
[TEVU:B] =app-(f,g)

17

Exercises

Show that the following two equations hold.

[x:Ay :BEm(x,y):A] = [x:Ay:BFx:A]
[TFV:A] = [TF(mV,mV):A]

Chocolate for anyone that shows that the following equation holds!

[(Af. Ax. f(f x)) (Ax. (m2 x,m1 x))] = [Mx. x]

18

	Roadmap
	Stripping (higher-order) programming to the essentials

