
Semantics for (Hybrid) Programming

Renato Neves

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves Overview 2 / 41

Last Lectures

Explored a simple programming language (CCS) and its semantics

Used both to model and analyse communicating systems

Expanded our journey to the timed setting, through timed
automata and UPPAAL

Used both to save us from zombies!

Renato Neves Overview 3 / 41

Going Beyond the Timed Setting

1 2 3 4 5 6

1
2
3
4

Sequence of events →

+
1 2 3 4 5 6

1
2
3
4

Time →

Computational devices now interact with arbitrary physical
processes (and not just time)

Described via differential equationsDescribed via classical methods of computation

Renato Neves Overview 4 / 41

Which Language?

This time we explore a simple imperative language

No concurrency, no communication, and no functional capabilities

(languages with such features are still underdeveloped)

Perhaps some of you would like to improve them :-)

Renato Neves Overview 5 / 41

The Hybrid While-Language

Fix a stock of variables X = {x1, . . . , xn}. Then we have,

Linear Terms
LTerm(X) ∋ r | r · t | x | t + s

Atomic Programs
At(X) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds

Renato Neves Overview 6 / 41

Overview

First we tackle a while-language, without differential equations,
and its semantics

Then we move to the hybrid case and see how the corresponding
semantics helps the engineer analyse hybrid programs

Throughout the journey, we will do:

• implementations in Haskell
• analysis in Lince

Renato Neves Overview 7 / 41

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves Semantics for Linear Terms 8 / 41

A Language of Linear Terms and its Semantics

Linear Terms
LTerm(X) ∋ r | r · t | x | t + s

Let σ : X → R be an environment, i.e. a memory on which the
program performs computations

The expression ⟨t, σ⟩ ⇓ r says that the linear expression t outputs
r if the current memory is σ

⟨x, σ⟩ ⇓ σ(x) (var) ⟨r, σ⟩ ⇓ r
(con)

⟨t, σ⟩ ⇓ r
⟨s · t, σ⟩ ⇓ s · r

(scl) ⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2

⟨t1 + t2, σ⟩ ⇓ r1 + r2
(add)

Renato Neves Semantics for Linear Terms 9 / 41

The Semantics at Work

The linear term x + 2 · y corresponds to the tree

(+)
�� ##

x (2 ·)
��
y

Consider an environment σ such that σ(x) = 3 and σ(y) = 4. We
can then build the following derivation tree:

⟨x, σ⟩ ⇓ 3
⟨y, σ⟩ ⇓ 4

⟨2 · y, σ⟩ ⇓ 8
⟨x + 2 · y, σ⟩ ⇓ 11

Renato Neves Semantics for Linear Terms 10 / 41

Exercises

• ⟨2 · x + 2 · y, σ⟩ ⇓ ?
• ⟨3 · (2 · x) + 2 · (y + z), σ⟩ ⇓ ?

Boring computations? If so why not implement the semantics in
Haskell?

Renato Neves Semantics for Linear Terms 11 / 41

Exercises

• ⟨2 · x + 2 · y, σ⟩ ⇓ ?
• ⟨3 · (2 · x) + 2 · (y + z), σ⟩ ⇓ ?

Boring computations? If so why not implement the semantics in
Haskell?

Renato Neves Semantics for Linear Terms 11 / 41

Equivalence of Linear Terms

The previous semantics yields the following notion of equivalence:
t ∼ s if for all environments σ

⟨t, σ⟩ ⇓ r iff ⟨s, σ⟩ ⇓ r

Examples of equivalent terms:

• r · (x + y) ∼ r · x + r · y

• 0 · x ∼ 0

• (r · s) · x ∼ r · (s · x) ?

Renato Neves Semantics for Linear Terms 12 / 41

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves Semantics for Boolean Terms 13 / 41

A Language of Boolean Terms and its Semantics

Boolean Terms
BTerm(X) ∋ t1 ≤ t2 | b ∧ c | ¬b

The expression ⟨b, σ⟩ ⇓ v says that the Boolean term b outputs v
if the current memory is σ

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ tt
(leq)

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ̸≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ ff
(gtr)

⟨b, σ⟩ ⇓ v
⟨¬b, σ⟩ ⇓ ¬v

(not) ⟨b1, σ⟩ ⇓ v1 ⟨b2, σ⟩ ⇓ v2

⟨b1 ∧ b2, σ⟩ ⇓ v1 ∧ v2
(and)

Renato Neves Semantics for Boolean Terms 14 / 41

A Language of Boolean Terms and its Semantics

Boolean Terms
BTerm(X) ∋ t1 ≤ t2 | b ∧ c | ¬b

The expression ⟨b, σ⟩ ⇓ v says that the Boolean term b outputs v
if the current memory is σ

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ tt
(leq)

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ̸≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ ff
(gtr)

⟨b, σ⟩ ⇓ v
⟨¬b, σ⟩ ⇓ ¬v

(not) ⟨b1, σ⟩ ⇓ v1 ⟨b2, σ⟩ ⇓ v2

⟨b1 ∧ b2, σ⟩ ⇓ v1 ∧ v2
(and)

Renato Neves Semantics for Boolean Terms 14 / 41

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves Semantics for While Programs 15 / 41

A While-language and its Semantics

While-Programs
Prog(X) ∋ x := t | p ; q | if b then p else q | while b do { p }

⟨t, σ⟩ ⇓ r
⟨x := t, σ⟩ ⇓ σ[r/x] (asg)

⟨p, σ⟩ ⇓ σ′ ⟨q, σ′⟩ ⇓ σ′′

⟨p ; q, σ⟩ ⇓ σ′′ (seq)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ σ′

⟨if b then p else q, σ⟩ ⇓ σ′ (if1) ⟨b, σ⟩ ⇓ ff ⟨q, σ⟩ ⇓ σ′

⟨if b then p else q, σ⟩ ⇓ σ′ (if2)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ σ′ ⟨while b do { p }, σ′⟩ ⇓ σ′′

⟨while b do { p }, σ⟩ ⇓ σ′′ (wh1)

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ⟩ ⇓ σ

(wh2)

Renato Neves Semantics for While Programs 16 / 41

The Semantics at Work

The program x := x + 1 ; x := x + 2 corresponds to the tree

(;)
ww ''

x := x + 1 x := x + 2

Consider the environment σ = x 7→ 3. We build the following
derivation tree:

⟨x + 1, x 7→ 3⟩ ⇓ 4
⟨x := x + 1, x 7→ 3⟩ ⇓ x 7→ 4

⟨x + 2, x 7→ 4⟩ ⇓ 6
⟨x := x + 2, x 7→ 4⟩ ⇓ x 7→ 6

⟨x := x + 1 ; x := x + 2, x 7→ 3⟩ ⇓ x 7→ 6

Renato Neves Semantics for While Programs 17 / 41

Exercise

• x := 0 ; y := 1 ; while x ≤ y do {x := x + y ; y := y + 1} ⇓ ?

Renato Neves Semantics for While Programs 18 / 41

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence:
p ∼ q if for all environments σ

⟨p, σ⟩ ⇓ σ′ iff ⟨q, σ⟩ ⇓ σ′

Examples of equivalent terms:

• x := x + 1 ; x := x + 2 ∼ x := x + 3

• (p ; q) ; r ∼ p ; (q ; r)

Renato Neves Semantics for While Programs 19 / 41

Pause for Meditations

We have just built and implemented our first progr. language

Note that we used its semantics to run our programs and also to
prove properties about them

Which features would you like to add to this language next?
Probabilistic operations or perhaps concurrency?

Next step: add the differential operations

Renato Neves Semantics for While Programs 20 / 41

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves Semantics for Hybrid-while Programs 21 / 41

Preliminaries about Differential Equations

Consider a stock X = {x1, . . . , xn} of variables

Systems of differential equations x′
1 = t1, . . . , x′

n = tn always have
unique solutions

ϕ : Rn × [0, ∞) −→ Rn

Example (The Continuous Dynamics of a Vehicle)
p′ = v, v′ = a which admits the solution

ϕ((x0, v0), t) =
(
x0 + v0t + 1

2at2, v0 + at
)

Systematically obtained via linear algebra tools

Renato Neves Semantics for Hybrid-while Programs 22 / 41

Conventions

We will often abbreviate a list v1, . . . , vn simply to v

σ[v/x] denotes the environment that maps each xi in x to vi in v
and all other variables the same way as σ

Example

σ[v1, v2/x1, x2](y) =


v1 if y = x1

v2 if y = x2

σ(y) otherwise

We will often treat an environment σ : {x1, . . . , xn} → R as a list
[σ(x1), . . . , σ(xn)]

Renato Neves Semantics for Hybrid-while Programs 23 / 41

The Hybrid While-Language and . . .

Fix a stock of variables X = {x1, . . . , xn}. Then we have,

Linear Terms
LTerm(X) ∋ r | r · t | x | t + s

Atomic Programs
At(X) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds

Renato Neves Semantics for Hybrid-while Programs 24 / 41

. . . its semantics

The evaluation of programs is now time-dependent

⟨p, σ, t⟩ ⇓ σ′

. . . different time instants, different outputs

Lince relies on such a semantics: evaluating ⟨p, σ, ti⟩ for a "big"
sequence t1, . . . , tk results in a trajectory, such as

Renato Neves Semantics for Hybrid-while Programs 25 / 41

The Semantic Rules pt. I

⟨s, σ⟩ ⇓ r t < r
⟨x′ = t for s, σ, t⟩ ⇓ stop, σ[ϕ(σ, t)/x]

⟨s, σ⟩ ⇓ r t = r
⟨x′ = t for s, σ, t⟩ ⇓ skip, σ[ϕ(σ, t)/x]

⟨t, σ⟩ ⇓ r
⟨x := t, σ, 0⟩ ⇓ σ[r/x]

⟨p, σ, t⟩ ⇓ stop, σ′

⟨p ; q, σ, t⟩ ⇓ stop, σ′

⟨p, σ, t⟩ ⇓ skip, σ′ ⟨q, σ, t ′⟩ ⇓ s, σ′′

⟨p ; q, σ, t + t ′⟩ ⇓ s, σ′′

Renato Neves Semantics for Hybrid-while Programs 26 / 41

Examples

⟨1, (x 7→ 2)⟩ ⇓ 1 1
2 < 1

⟨x′ = 0 for 1, (x 7→ 2), 1
2 ⟩ ⇓ stop, (x 7→ 2)

⟨(x′ = 0 for 1) ; (x′ = 1 for 1), (x 7→ 2), 1
2 ⟩ ⇓ stop, (x 7→ 2)

· · ·
⟨x′ = 0 for 1, (x 7→ 2), 1⟩ ⇓ skip, (x 7→ 2)

· · ·
⟨x′ = 1 for 1, (x 7→ 2), 1

2 ⟩ ⇓ stop, (x 7→ 2 + 1
2)

⟨(x′ = 0 for 1) ; (x′ = 1 for 1), (x 7→ 2), 1 + 1
2 ⟩ ⇓ stop, (x 7→ 2 + 1

2)

= (x 7→ 2)[ϕ(2, 1
2)/x]

= (x 7→ 2)[ϕ(2, 1
2)/x] = (x 7→ 2)[2 + 1

2 /x] = x 7→ 2 + 1
2

Renato Neves Semantics for Hybrid-while Programs 27 / 41

Exercise

⟨(x′ = 1 for 1) ; (x′ = −1 for 1), (x 7→ 5), 2⟩ ⇓ ?

Renato Neves Semantics for Hybrid-while Programs 28 / 41

The Semantic Rules pt. II

⟨b, σ⟩ ⇓ tt ⟨p, σ, t⟩ ⇓ s, σ′

⟨if b then p else q, σ, t⟩ ⇓ s, σ′
⟨b, σ⟩ ⇓ ff ⟨q, σ, t⟩ ⇓ s, σ′

⟨if b then p else q, σ, t⟩ ⇓ s, σ′

⟨b, σ⟩ ⇓ tt ⟨p ; while b do { p }, σ, t⟩ ⇓ s, σ′

⟨while b do { p }, σ, t⟩ ⇓ s, σ′

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ, 0⟩ ⇓ skip, σ

Renato Neves Semantics for Hybrid-while Programs 29 / 41

Equivalence of While-Programs

The previous semantics yields the following notion of equivalence:
p ∼ q if for all environments σ and time instants t,

⟨p, σ, t⟩ ⇓ s, σ′ iff ⟨q, σ, t⟩ ⇓ s, σ′

Examples of equivalent terms:

• (x′ = 1 for 1) ; (x′ = 1 for 1) ∼ x′ = 1 for 2
• (p ; q) ; r ∼ p ; (q ; r)

Renato Neves Semantics for Hybrid-while Programs 30 / 41

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves A Zoo of Hybrid Programs 31 / 41

A Zoo of Hybrid Programs

• Traffic Lights
• Cruise Controller
• Landing System

Renato Neves A Zoo of Hybrid Programs 32 / 41

A Million-Dollar Question

How to simulate a differential statement that terminates as soon
as a certain event occurs?

x′ = 1 until x = 2

A: No general solution for simulation with exact precision; and
even approximated simulation raises problems :-(

(x′ = 1 until x = 2) collapses almost always to (x′ = 1 for ∞)

For this lecture we take a (naive) approach:

(x′ = t untilϵ b) =̂ while ¬b {x′ = t for ϵ}

Renato Neves A Zoo of Hybrid Programs 33 / 41

A Million-Dollar Question

How to simulate a differential statement that terminates as soon
as a certain event occurs?

x′ = 1 until x = 2

A: No general solution for simulation with exact precision; and
even approximated simulation raises problems :-(

(x′ = 1 until x = 2) collapses almost always to (x′ = 1 for ∞)

For this lecture we take a (naive) approach:

(x′ = t untilϵ b) =̂ while ¬b {x′ = t for ϵ}

Renato Neves A Zoo of Hybrid Programs 33 / 41

(Another) Zoo of Hybrid Programs

• Bouncing Ball
• Fireflies

Renato Neves A Zoo of Hybrid Programs 34 / 41

Table of Contents

Overview

Semantics for Linear Terms

Semantics for Boolean Terms

Semantics for While Programs

Semantics for Hybrid-while Programs

A Zoo of Hybrid Programs

Examples of what not to do

Renato Neves Examples of what not to do 35 / 41

Checkpoint

We saw how to analyse hybrid programs formally

We also visited a zoo of hybrid programs – which improved our
ability to recognise them in the wild

We now go over examples of what not to do in hybrid programming

Renato Neves Examples of what not to do 36 / 41

Checkpoint

We saw how to analyse hybrid programs formally

We also visited a zoo of hybrid programs – which improved our
ability to recognise them in the wild

We now go over examples of what not to do in hybrid programming

Renato Neves Examples of what not to do 36 / 41

What not to do

Neglect:

• error accumulation or
• analytical testing

Renato Neves Examples of what not to do 37 / 41

Error Accumulation and Particle Positioning

Q: What is the position of the particle the first time it stops?

Renato Neves Examples of what not to do 38 / 41

Analytical Testing and Following the Leader pt. I

Problem: Even if behind the leader in the next iteration, we might
generate a velocity so high that we won’t brake in time

Renato Neves Examples of what not to do 39 / 41

Analytical Testing and Following the Leader pt. I

Problem: Even if behind the leader in the next iteration, we might
generate a velocity so high that we won’t brake in time

Renato Neves Examples of what not to do 39 / 41

Analytical Testing and Following the Leader pt. II

Problem: We might still generate an undetected, unsafe velocity –
"safe" should amount to "not collide until velocity becomes lower
than the leader" rather than "not collide at the end of the next
iteration"

Renato Neves Examples of what not to do 40 / 41

Analytical Testing and Following the Leader pt. II

Problem: We might still generate an undetected, unsafe velocity –
"safe" should amount to "not collide until velocity becomes lower
than the leader" rather than "not collide at the end of the next
iteration"

Renato Neves Examples of what not to do 40 / 41

Analytical Testing and Following the Leader pt. III

The conditional now arises from solving the equation for t

x0 + v0t + 1
2(−2)t2 = y0 + 10t

No solutions, means no collisions!!

Renato Neves Examples of what not to do 41 / 41

Analytical Testing and Following the Leader pt. III

The conditional now arises from solving the equation for t

x0 + v0t + 1
2(−2)t2 = y0 + 10t

No solutions, means no collisions!!
Renato Neves Examples of what not to do 41 / 41

	Overview
	Semantics for Linear Terms
	Semantics for Boolean Terms
	Semantics for While Programs
	Semantics for Hybrid-while Programs
	A Zoo of Hybrid Programs
	Examples of what not to do

