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Last Lectures

Explored a simple programming language (CCS) and its semantics

Used both to model and analyse communicating systems

Expanded our journey to the timed setting, through timed
automata and UPPAAL

Used both to save us from zombies!
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Going Beyond the Timed Setting
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Time →

Computational devices now interact with arbitrary physical
processes (and not just time)

Described via differential equationsDescribed via classical methods of computation
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Which Language?

This time we explore a simple imperative language

No concurrency, no communication, and no functional capabilities

(languages with such features are still underdeveloped)

Perhaps some of you would like to improve them :-)
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The Hybrid While-Language

Fix a stock of variables X = {x1, . . . , xn}. Then we have,

Linear Terms
LTerm(X ) ∋ r | r · t | x | t + s

Atomic Programs
At(X ) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X ) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds
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Overview

First we tackle a while-language, without differential equations,
and its semantics

Then we move to the hybrid case and see how the corresponding
semantics helps the engineer analyse hybrid programs

Throughout the journey, we will do:

• implementations in Haskell
• analysis in Lince
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A Language of Linear Terms and its Semantics

Linear Terms
LTerm(X ) ∋ r | r · t | x | t + s

Let σ : X → R be an environment, i.e. a memory on which the
program performs computations

The expression ⟨t, σ⟩ ⇓ r says that the linear expression t outputs
r if the current memory is σ

⟨x, σ⟩ ⇓ σ(x) (var) ⟨r, σ⟩ ⇓ r
(con)

⟨t, σ⟩ ⇓ r
⟨s · t, σ⟩ ⇓ s · r

(scl) ⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2

⟨t1 + t2, σ⟩ ⇓ r1 + r2
(add)
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The Semantics at Work

The linear term x + 2 · y corresponds to the tree

(+)
�� ##

x (2 ·)
��
y

Consider an environment σ such that σ(x) = 3 and σ(y) = 4. We
can then build the following derivation tree:

⟨x, σ⟩ ⇓ 3
⟨y, σ⟩ ⇓ 4

⟨2 · y, σ⟩ ⇓ 8
⟨x + 2 · y, σ⟩ ⇓ 11
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Exercises

• ⟨2 · x + 2 · y, σ⟩ ⇓ ?
• ⟨3 · (2 · x) + 2 · (y + z), σ⟩ ⇓ ?

Boring computations? If so why not implement the semantics in
Haskell?
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Equivalence of Linear Terms

The previous semantics yields the following notion of equivalence:
t ∼ s if for all environments σ

⟨t, σ⟩ ⇓ r iff ⟨s, σ⟩ ⇓ r

Examples of equivalent terms:

• r · (x + y) ∼ r · x + r · y

• 0 · x ∼ 0

• (r · s) · x ∼ r · (s · x) ?
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A Language of Boolean Terms and its Semantics

Boolean Terms
BTerm(X ) ∋ t1 ≤ t2 | b ∧ c | ¬b

The expression ⟨b, σ⟩ ⇓ v says that the Boolean term b outputs v
if the current memory is σ

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ tt
(leq)

⟨t1, σ⟩ ⇓ r1 ⟨t2, σ⟩ ⇓ r2 r1 ̸≤ r2

⟨t1 ≤ t2, σ⟩ ⇓ ff
(gtr)

⟨b, σ⟩ ⇓ v
⟨¬b, σ⟩ ⇓ ¬v

(not) ⟨b1, σ⟩ ⇓ v1 ⟨b2, σ⟩ ⇓ v2

⟨b1 ∧ b2, σ⟩ ⇓ v1 ∧ v2
(and)
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A While-language and its Semantics

While-Programs
Prog(X ) ∋ x := t | p ; q | if b then p else q | while b do { p }

⟨t, σ⟩ ⇓ r
⟨x := t, σ⟩ ⇓ σ[r/x] (asg)

⟨p, σ⟩ ⇓ σ′ ⟨q, σ′⟩ ⇓ σ′′

⟨p ; q, σ⟩ ⇓ σ′′ (seq)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ σ′

⟨if b then p else q, σ⟩ ⇓ σ′ (if1) ⟨b, σ⟩ ⇓ ff ⟨q, σ⟩ ⇓ σ′

⟨if b then p else q, σ⟩ ⇓ σ′ (if2)

⟨b, σ⟩ ⇓ tt ⟨p, σ⟩ ⇓ σ′ ⟨while b do { p }, σ′⟩ ⇓ σ′′

⟨while b do { p }, σ⟩ ⇓ σ′′ (wh1)

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ⟩ ⇓ σ

(wh2)

Renato Neves Semantics for While Programs 16 / 41



The Semantics at Work

The program x := x + 1 ; x := x + 2 corresponds to the tree

( ; )
ww ''

x := x + 1 x := x + 2

Consider the environment σ = x 7→ 3. We build the following
derivation tree:

⟨x + 1, x 7→ 3⟩ ⇓ 4
⟨x := x + 1, x 7→ 3⟩ ⇓ x 7→ 4

⟨x + 2, x 7→ 4⟩ ⇓ 6
⟨x := x + 2, x 7→ 4⟩ ⇓ x 7→ 6

⟨x := x + 1 ; x := x + 2, x 7→ 3⟩ ⇓ x 7→ 6
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Exercise

• x := 0 ; y := 1 ; while x ≤ y do {x := x + y ; y := y + 1} ⇓ ?
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Equivalence of While-Programs

The previous semantics yields the following notion of equivalence:
p ∼ q if for all environments σ

⟨p, σ⟩ ⇓ σ′ iff ⟨q, σ⟩ ⇓ σ′

Examples of equivalent terms:

• x := x + 1 ; x := x + 2 ∼ x := x + 3

• (p ; q) ; r ∼ p ; (q ; r)
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Pause for Meditations

We have just built and implemented our first progr. language

Note that we used its semantics to run our programs and also to
prove properties about them

Which features would you like to add to this language next?
Probabilistic operations or perhaps concurrency?

Next step: add the differential operations
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Preliminaries about Differential Equations

Consider a stock X = {x1, . . . , xn} of variables

Systems of differential equations x′
1 = t1, . . . , x′

n = tn always have
unique solutions

ϕ : Rn × [0, ∞) −→ Rn

Example (The Continuous Dynamics of a Vehicle)
p′ = v, v′ = a which admits the solution

ϕ((x0, v0), t) =
(
x0 + v0t + 1

2at2, v0 + at
)

Systematically obtained via linear algebra tools
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Conventions

We will often abbreviate a list v1, . . . , vn simply to v

σ[v/x ] denotes the environment that maps each xi in x to vi in v
and all other variables the same way as σ

Example

σ[v1, v2/x1, x2](y) =


v1 if y = x1

v2 if y = x2

σ(y) otherwise

We will often treat an environment σ : {x1, . . . , xn} → R as a list
[σ(x1), . . . , σ(xn)]
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The Hybrid While-Language and . . .

Fix a stock of variables X = {x1, . . . , xn}. Then we have,

Linear Terms
LTerm(X ) ∋ r | r · t | x | t + s

Atomic Programs
At(X ) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X ) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds
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. . . its semantics

The evaluation of programs is now time-dependent

⟨p, σ, t⟩ ⇓ σ′

. . . different time instants, different outputs

Lince relies on such a semantics: evaluating ⟨p, σ, ti⟩ for a "big"
sequence t1, . . . , tk results in a trajectory, such as
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The Semantic Rules pt. I

⟨s, σ⟩ ⇓ r t < r
⟨x′ = t for s, σ, t⟩ ⇓ stop, σ[ϕ(σ, t)/x ]

⟨s, σ⟩ ⇓ r t = r
⟨x′ = t for s, σ, t⟩ ⇓ skip, σ[ϕ(σ, t)/x ]

⟨t, σ⟩ ⇓ r
⟨x := t, σ, 0⟩ ⇓ σ[r/x]

⟨p, σ, t⟩ ⇓ stop, σ′

⟨p ; q, σ, t⟩ ⇓ stop, σ′

⟨p, σ, t⟩ ⇓ skip, σ′ ⟨q, σ, t ′⟩ ⇓ s, σ′′

⟨p ; q, σ, t + t ′⟩ ⇓ s, σ′′
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Examples

⟨1, (x 7→ 2)⟩ ⇓ 1 1
2 < 1

⟨x′ = 0 for 1, (x 7→ 2), 1
2 ⟩ ⇓ stop, (x 7→ 2)

⟨(x′ = 0 for 1) ; (x′ = 1 for 1), (x 7→ 2), 1
2 ⟩ ⇓ stop, (x 7→ 2)

· · ·
⟨x′ = 0 for 1, (x 7→ 2), 1⟩ ⇓ skip, (x 7→ 2)

· · ·
⟨x′ = 1 for 1, (x 7→ 2), 1

2 ⟩ ⇓ stop, (x 7→ 2 + 1
2 )

⟨(x′ = 0 for 1) ; (x′ = 1 for 1), (x 7→ 2), 1 + 1
2 ⟩ ⇓ stop, (x 7→ 2 + 1

2 )

= (x 7→ 2)[ϕ(2, 1
2 )/x]

= (x 7→ 2)[ϕ(2, 1
2 )/x] = (x 7→ 2)[2 + 1

2 /x] = x 7→ 2 + 1
2
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Exercise

⟨(x′ = 1 for 1) ; (x′ = −1 for 1), (x 7→ 5), 2⟩ ⇓ ?
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The Semantic Rules pt. II

⟨b, σ⟩ ⇓ tt ⟨p, σ, t⟩ ⇓ s, σ′

⟨if b then p else q, σ, t⟩ ⇓ s, σ′
⟨b, σ⟩ ⇓ ff ⟨q, σ, t⟩ ⇓ s, σ′

⟨if b then p else q, σ, t⟩ ⇓ s, σ′

⟨b, σ⟩ ⇓ tt ⟨p ; while b do { p }, σ, t⟩ ⇓ s, σ′

⟨while b do { p }, σ, t⟩ ⇓ s, σ′

⟨b, σ⟩ ⇓ ff
⟨while b do { p }, σ, 0⟩ ⇓ skip, σ
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Equivalence of While-Programs

The previous semantics yields the following notion of equivalence:
p ∼ q if for all environments σ and time instants t,

⟨p, σ, t⟩ ⇓ s, σ′ iff ⟨q, σ, t⟩ ⇓ s, σ′

Examples of equivalent terms:

• (x′ = 1 for 1) ; (x′ = 1 for 1) ∼ x′ = 1 for 2
• (p ; q) ; r ∼ p ; (q ; r)
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A Zoo of Hybrid Programs

• Traffic Lights
• Cruise Controller
• Landing System
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A Million-Dollar Question

How to simulate a differential statement that terminates as soon
as a certain event occurs?

x′ = 1 until x = 2

A: No general solution for simulation with exact precision; and
even approximated simulation raises problems :-(

(x′ = 1 until x = 2) collapses almost always to (x′ = 1 for ∞)

For this lecture we take a (naive) approach:

(x′ = t untilϵ b) =̂ while ¬b {x′ = t for ϵ}
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(Another) Zoo of Hybrid Programs

• Bouncing Ball
• Fireflies
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Checkpoint

We saw how to analyse hybrid programs formally

We also visited a zoo of hybrid programs – which improved our
ability to recognise them in the wild

We now go over examples of what not to do in hybrid programming
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What not to do

Neglect:

• error accumulation or
• analytical testing
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Error Accumulation and Particle Positioning

Q: What is the position of the particle the first time it stops?
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Analytical Testing and Following the Leader pt. I

Problem: Even if behind the leader in the next iteration, we might
generate a velocity so high that we won’t brake in time
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Analytical Testing and Following the Leader pt. II

Problem: We might still generate an undetected, unsafe velocity –
"safe" should amount to "not collide until velocity becomes lower
than the leader" rather than "not collide at the end of the next
iteration"
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Analytical Testing and Following the Leader pt. III

The conditional now arises from solving the equation for t

x0 + v0t + 1
2(−2)t2 = y0 + 10t

No solutions, means no collisions!!
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