
Alcino Cunha

specification and modeling
safety, liveness, and fairness

Universidade do Minho & INESC TEC

2019/20



leader election in a ring



specification and modeling / leader election in a ring 3 / 19

leader election in a ring

Verify the correctness of the protocol:

One leader will be elected



specification and modeling / leader election in a ring 4 / 19

configuration and state

open util/ordering[Id]

sig Id {}

sig Node {
id : one Id,
succ : one Node,
var inbox : set Id,
var outbox : set Id

}

fact ring {
all i : Id | lone id.i
all n : Node | Node in n.^succ

}



specification and modeling / leader election in a ring 5 / 19

election

fun elected : set Node {
{ n : Node | once n.id in n.inbox }

}



specification and modeling / leader election in a ring 6 / 19

operations

pred send [n : Node] { ... }

pred compute [n : Node] {
some i : n.inbox {

n.inbox' = n.inbox - i
n.outbox' = n.outbox + (i - n.id.*(~next))

}
all m : Node - n | m.inbox' = m.inbox
all m : Node - n | m.outbox' = m.outbox

}

pred skip { ... }



specification and modeling / leader election in a ring 7 / 19

behavior

fact init {
no inbox
outbox = id

}

fact transitions {
always (skip or some n : Node | send[n] or compute[n])

}



specification and modeling / leader election in a ring 8 / 19



safety vs liveness



specification and modeling / safety vs liveness 10 / 19

safety properties

Something “bad” will never happen
A trace that violates a safety property has a “bad” prefix
I A prefix such that every possible continuation violates the property
I To understand a counter-example it su�ices to inspect such prefix

always p
always (p implies once q)
always (p implies after always not p)



specification and modeling / safety vs liveness 11 / 19

leader election

assert safety {
always lone elected

}



specification and modeling / safety vs liveness 12 / 19



specification and modeling / safety vs liveness 13 / 19

liveness properties

Something “good” will eventually happen
A property is a liveness property if any prefix can be extended to an infinite trace
satisfying it
I Much harder to check than safety properties
I Inspection of a prefix is not su�icient to understand a counter-example
I The full (infinite) trace must be observed

eventually p
always (p implies eventually q)
always eventually p



specification and modeling / safety vs liveness 14 / 19

leader election

assert liveness {
eventually some elected

}



specification and modeling / safety vs liveness 15 / 19



fairness



specification and modeling / fairness 17 / 19

fairness assumptions

Necessary for verifying most liveness properties
Exclude traces where an event becomes “continuously” enabled but never occurs
I continuously = infinitely o�en (strong)
I continuously = permanently (weak)

Strong fairness

(always eventually enabled) implies (always eventually happens)

Weak fairness

(eventually always enabled) implies (always eventually happens)
always ((always enabled) implies (eventually happens))



specification and modeling / fairness 18 / 19

leader election specification fixed

pred sendEnabled [n : Node] { some n.outbox }
pred computeEnabled [n : Node] { some n.inbox }
pred fairness {
all n : Node {
(eventually always sendEnabled[n]) implies
(always eventually send[n])

(eventually always computeEnabled[n]) implies
(always eventually compute[n])

}
}
assert liveness {
fairness implies eventually some elected

}



specification and modeling / fairness 19 / 19


	Leader Election in a Ring
	Safety vs Liveness
	Fairness

