
Alcino Cunha

specification and modeling
electrum overview

Universidade do Minho & INESC TEC

2019/20

specification and modeling 2 / 25

distributed atomic transaction protocol

Several distributed workers performing a joint task
If all succeed then all can commit the results
If some aborts then all must abort
A�er completing the task a worked is said to be prepared (to commit)

Design a protocol such that:

It is never the case that we have both committed and aborted workers
Once committed a worker stays committed (same for aborted)
Once one worker commits all will eventually commit

specification and modeling 3 / 25

our tasks for today

Design (a very abstract version of) the protocol
Validate the design using simulation
Verify that the design satisfies the expected properties

specification and modeling 4 / 25

modelling with transition systems

A reactive or distributed system design can be modelled with a transition system
States capture the global status of the system entities and environment
Transitions originate from events performed by entities or the environment
All states are assumed to always have at least one outgoing transition

specification and modeling 5 / 25

the protocol transition system

specification and modeling 6 / 25

state modelling

A state is an assignment of values to variables
In abstract design, use standard mathematical structures for variables

Alloy

State is modelled just with sets and relations
Inhabited by (tuples of) uninterpreted atoms
Sets are declared with the sig keyword

Electrum

Mutable sets and relations are declared with the var keyword

specification and modeling 7 / 25

the protocol state

sig Worker {}
var sig Prepared in Worker {}
var sig Committed in Prepared {}
var sig Aborted in Worker {}

specification and modeling 8 / 25

explicit behaviour modelling

A transition system behaviour can be modelled explicitly:
I Define which are the initial states
I Define, for each event, how the next state(s) can be obtained from the current one

SMV

The transition system behaviour is explicitly modelled with a DSL
SMV can detect deadlocks, states without outgoing transitions

specification and modeling 9 / 25

implicit behaviour modelling

The behaviour of a transition system can be abstracted by its set of infinite traces
I This is known as a linear model of time
This set of traces can be modelled implicitly:
I By a property that “recognises” the valid traces among all possibles sequences of states
I This property can be specified with a linear temporal logic
I Combined with first order logic to specify assertions about states

Electrum + TLA

The transition system behaviour is implicitly modelled with a first-order temporal
logic specification

Electrum

The specification is enclosed in a fact
The (infinite) traces satisfying this specification are also known as instances

specification and modeling 10 / 25

first order logic

Alloy Math

not ¬

and ∧

or ∨

implies →

all x : e | p [x · x ∈ e→ p
some x : e | p \x · x ∈ e ∧ p

specification and modeling 11 / 25

set operators

Alloy Math

in ⊆,∈
+ ∪

& ∩

- \

no e e = ∅
some e e , ∅

specification and modeling 12 / 25

linear temporal logic

Electrum Meaning

always p p is always true from now on
after p p is true in the next state

.
e' the value of e in the next state

specification and modeling 13 / 25

an electrum pattern for behaviour specification

fact init { ... }
fact transitions { always (event1 or event2 or ...) }

The specification of every event typically involves:
I Guard - a state formula that checks if the event can occur
I E�ect - a formula with primes specifying how some state variables change
I Frame - a formula with primes stating what does not change

specification and modeling 14 / 25

the protocol behaviour

fact init { no Prepared and no Aborted }

fact transitions {
always (
// finish
(some w: Worker | w not in Prepared and -- guard

Prepared' = Prepared + w and -- effect
Committed' = Committed and -- frame
Aborted' = Aborted) or

// commit
... or
// abort
...

)
}

specification and modeling 15 / 25

the protocol behaviour refactored with predicates

pred finish[w : Worker] {
w not in Prepared
Prepared' = Prepared + w
Committed' = Committed
Aborted' = Aborted

}

pred abort[w : Worker] {
w not in Aborted
w in Prepared implies some Aborted
Prepared' = Prepared - w
Committed' = Committed
Aborted' = Aborted + w

}

specification and modeling 16 / 25

the protocol behaviour refactored with predicates

pred commit[w : Worker] {
w in Prepared-Committed
no Aborted
Prepared' = Prepared
Committed' = Committed + w
Aborted' = Aborted

}

fact transitions {
always (
some w : Worker | finish[w] or commit[w] or abort[w]

)
}

specification and modeling 17 / 25

simulation

Models include analysis commands
A run command asks for an instance (checking the consistency of the facts)
Further instances can be obtained by an interactive exploration mode akin to
simulation
All commands have a scope that bounds the size of the signatures
The default is 3, but can be changed with the for keyword

specification and modeling 18 / 25

specification and modeling 19 / 25

the fixed protocol behaviour

pred finish[w : Worker] {
w not in Prepared
w not in Aborted
Prepared' = Prepared + w
Committed' = Committed
Aborted' = Aborted

}

specification and modeling 20 / 25

the fixed protocol behaviour

pred nop {
Prepared' = Prepared
Committed' = Committed
Aborted' = Aborted

}

fact transitions {
always (
nop or some w : Worker | finish[w] or commit[w] or abort[w]

)
}

specification and modeling 21 / 25

assertions

In Electrum, the same first order temporal logic is used for
I modelling the transition system
I specifying the expected properties (assertions)
The latter can be enclosed in named assert paragraphs

specification and modeling 22 / 25

the protocol assertions

assert Consistency {
-- It is never the case that we have both committed
-- and aborted workers
always (no Committed or no Aborted)

}

assert Stability {
-- Once committed a worker stays committed (same for aborted)
all w : Worker {

always (w in Committed implies always w in Committed)
always (w in Aborted implies always w in Aborted)

}
}

specification and modeling 23 / 25

verification

check commands are used to verify assertions
The verification is fully automatic, but limited to the specified scope
The set of counter-examples can be explored likewise instances

specification and modeling 24 / 25

specification and modeling 25 / 25

the fixed protocol behaviour

pred commit[w : Worker] {
Worker in Prepared
Prepared' = Prepared
Committed' = Committed + w
Aborted' = Aborted

}

