Alcino Cunha

SPECIFICATION AND MODELING

INTRODUCTION

Universidade do Minho & INESC TEC

2019/20



MOTIVATION



SPECIFICATION AND MODELING / MOTIVATION 3/22

THIS COURSE IN A NUTSHELL

s Languages and tools for (formal) software design:
> Languages to model the system being designed
> Languages to specify the expected properties
> Techniques and tools to analyse the design



SPECIFICATION AND MODELING / MOTIVATION 422

FORMAL SOFTWARE DESIGN

The design is a high-level abstraction of the desired system

A programming language is not adequate for software design
The language of mathematics, logic, is a much better alternative
It enables a formal approach to software design

Leslie Lamport

“If you’re not writing a program, don’t use a programming language”




SPECIFICATION AND MODELING / MOTIVATION 5/22

TYPICAL ANALYSES

e Simulate the design to validate and elicit requirements
e Check consistency of requirements
s Verify expected properties



SPECIFICATION AND MODELING / MOTIVATION 6/22

TARGET APPLICATIONS

. sbateoritt
® Reactive systems
e Distributed protocols



SPECIFICATION AND MODELING / MOTIVATION 7122

SEQUENTIAL ALGORITHMS

e Specification with pre- and post-conditions
s Deductive verification with Hoare logic

icro:

dafny =

Is this program correct?

1 method Mul(x: int, y: int) returns (r: int)
2 requires @ <= x 8&& 0 <=y
3 ensures r == x*y

4

5 r :=0;

6 var i := 0;

7 while (i <y)

8 invariant r == x*i

9 invariant i <=y

10

11 roi=r+Xx;

12 i:=1+1;

13}

14 §



SPECIFICATION AND MODELING / MOTIVATION 8/22

REACTIVE SYSTEMS

Typically non terminating systems reacting to environment
Cannot be specified with pre- and post-conditions
Non-determinism due to environment action
Specifications can be very complex temporal properties
Not amenable for deductive verification



SPECIFICATION AND MODELING / MOTIVATION

9/22

DISTRIBUTED PROTOCOLS

Several processes running concurrently in independent processors
Communicating with message passing

Local computation with simple algorithms

Non-determinism due to interleaving

Specifications are mostly invariants and simple progress properties
Deductive verification possible but not easy

> Most invariants are non inductive

> Must specify variants to verify progress



SPECIFICATION AND MODELING / MOTIVATION 10/22

MODEL CHECKING

Fully automatic verification technique for temporal properties
Either the specification is true or a counter-example is returned
No need to guess inductive invariants or variants

But unlike deductive verification it requires a finite state space



EXAMPLES



SPECIFICATION AND MODELING / EXAMPLES 12/22

LEADER ELECTION IN A RING

‘Verify the correctness of the protocol:

_® One leader will be elected




SPECIFICATION AND MODELING / EXAMPLES 13/22

CHORD DISTRIBUTED HASH-TABLE

| Explore variants of the protocol and verify correctness:

e Ifjoins and failures cease, the network will eventually become a ring




SPECIFICATION AND MODELING / EXAMPLES w/22

ALLOY4FUN

Commans -+ (oheck 1av20K 8]

7

[N

‘G_)j! =

| Explore design alternatives and elicit data invariants:

_® Non-shared stored models can have at most one derivation




SPECIFICATION AND MODELING / EXAMPLES 15/22

SAME ORIGIN POLICY

http://mybank.com/private.php

http://evilsite.com/page.php

http://evilsite.com/script.is

‘Understand and verify the policy:

e Resources can only access resources from the same origin




SPECIFICATION AND MODELING / EXAMPLES 16/22

HYBRID ERTMS/ETCS LEVEL 3

()
e
TR T ;

‘Verify the design of a railway traffic management system:

e Assigned movement authorities are safe




SYLLABUS AND ASSESSMENT



SPECIFICATION AND MODELING / SYLLABUS AND ASSESSMENT 18/22

LOGICS

‘First-order logic

The fundamental logic to specify properties about states

'Relational logic

A variant of FOL better suited for software design, where the state is typically
described by relationships between concepts or objects

| Temporal logic

A logic to specify properties about behaviours




SPECIFICATION AND MODELING / SYLLABUS AND ASSESSMENT 19/22

ANALYSIS TECHNIQUES

| Model-checking

Automatic verification of temporal properties

| Model-finding

Automatic generation of structures satisfying a set of constraints




SPECIFICATION AND MODELING / SYLLABUS AND ASSESSMENT 20/22

MAIN LANGUAGES AND TOOLS

‘Alloy

Native support for sets and relations, relational logic, and model-finding
Good for the design of complex (graph-like) structures

"Electrum (soon Alloy 6)

Extends Alloy with temporal logic and model-checking
Good for the design of systems with complex structures and many configurations




SPECIFICATION AND MODELING / SYLLABUS AND ASSESSMENT /22

OTHER LANGUAGES AND TOOLS

‘SMV

The quintessential model-checker, with support to various temporal logics
Good for the design of simple reactive systems or as a back-end analysis tool

TLA+

Supports many data-types and (limited) temporal logic specifications
Good for the design of distributed and concurrent algorithms




SPECIFICATION AND MODELING / SYLLABUS AND ASSESSMENT 2/22

ASSESSMENT

One individual test (60%, >= 8)

Several in-class individual assignments (20%)
One take-home group assignment (20%)

The exam replaces the test only



	Motivation
	Examples
	Syllabus and Assessment

