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distributed atomic transaction protocol trash

sig Worker {}
var sig Prepared in Worker {}
var sig Committed in Prepared {}
var sig Aborted in Worker {}

...

fact transitions {
always (
nop or some w : Worker | finish[w] or commit[w] or abort[w]

)
}



specification and modeling /distributed atomic transaction protocol 4 / 27

some desired protocol assertions

assert Consistency {
-- It is never the case that we have both committed
-- and aborted workers
always (no Committed or no Aborted)

}

assert Stability {
-- Once committed a worker stays committed (same for aborted)
all w : Worker {

always (w in Committed implies always w in Committed)
always (w in Aborted implies always w in Aborted)

}
}



specification and modeling /distributed atomic transaction protocol 5 / 27

other (hopefully) true protocol assertions

Once some worker is committed all will eventually be committed
A worker can only be committed a�er finishing its task
All workers will eventually be forever committed or aborted
A�er finishing its task a worker is prepared
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some false protocol assertions

The aborted workers never finished their task
A�er a worker finishes its task it will commit and remain prepared until then
Workers will repeatedly finish their tasks
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first-order linear temporal logic

Electrum includes temporal connectives from Linear Temporal Logic (LTL)
I Both future and past operators
But also the prime operator, that evaluates an expression in the next state
I Introduced by Lamport in the Temporal Logic of Actions (TLA)
I Since Electrum also has first-order quantifiers it does not increase expressivity, but

considerably simplifies specifications
A linear temporal formula is interpreted in a state of a trace (an infinite sequence
of states)
I A formula is satisfied in a trace i� it is satisfied in its initial state
I A formula is satisfied in a system i� it is satisfied in all possible traces
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future operators

Electrum Math Meaning

always φ Gφ � φ φ is always true from now on
eventually φ Fφ ^ φ φ will eventually be true

after φ Xφ # φ φ will be true in the next state
φ untilψ φ U ψ ψ will eventually be true and φ is true until then

φ releasesψ φ R ψ ψ can only be false a�er φ is true
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semantics by example

always φ

eventually φ

after φ
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semantics by example

φ untilψ

φ releasesψ
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past operators

Electrum Math Meaning

historically φ Hφ φ was always true
once φ Oφ φ was once true
before φ Yφ φ was true in the previous state
φ sinceψ φ S ψ ψ was once true and φ has been true a�erwards

φ triggeredψ φ T ψ ψ can only be false before φ was true
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semantics by example

historically φ

once φ

before φ
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semantics by example

φ sinceψ

φ triggeredψ



distributed atomic transaction protocol



specification and modeling /distributed atomic transaction protocol 16 / 27

other (hopefully) true protocol assertions

assert Prop {
-- Once some worker is committed all will eventually be committed
always (some Committed implies eventually Worker in Committed)

}
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other (hopefully) true protocol assertions

assert Prop {
-- A worker can only be committed after finishing its task
all w : Worker | finish[w] releases w not in Committed

}

assert Prop {
-- A worker can only be committed after finishing its task
all w : Worker | always (w in Committed implies once finish[w])

}
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other (hopefully) true protocol assertions

assert Prop {
-- All workers will eventually be forever committed or aborted
all w : Worker | eventually always w in Committed or

eventually always w in Aborted
}
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other (hopefully) true protocol assertions

assert Prop {
-- After finishing its task a worker is prepared
all w : Worker | always (finish[w] implies after w in Prepared)

}
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some false protocol assertions

assert Prop {
-- The aborted workers never finished their task
all w : Worker | always (w in Aborted implies

historically not finish[w])
}
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some false protocol assertions

assert Prop {
-- After a worker finishes its task it will eventually commit
-- and remain prepared until then
all w : Worker | always (finish[w] implies

after (w in Prepared until commit[w]))}
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some false protocol assertions

assert Prop {
-- Workers will repeatedly finish their tasks
all w : Worker | always eventually finish[w]

}



first-order linear temporal logic



specification and modeling / first-order linear temporal logic 24 / 27

syntax

φ ::= Gφ
| Fφ
| Xφ
| φ U ψ
| φ R ψ
| Hφ
| Oφ
| Yφ
| φ S ψ
| φ T ψ
| ...

Φ ::= Φ′

| ...
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first-order temporal structures

The semantics of a first-order temporal formula is defined over a first-order
temporal structureU,M where
I U is a non-empty domain (or universe) of interpretation with equality
I M is an infinite sequence of possible interpretations for constants, predicates, and

variables
I For all i ∈ Î, we have
• M(i)(c) ∈ U, withM(i)(c) =M(i′)(c) for all i′ ∈ Î
• M(i)(x) ∈ U
• M(i)(P) ⊆ Uar(P)

The fact that a formula φ is true in the i-th state of a modelM with universeU is
denoted byU,M, i |= φ
WhenU is implicit or clear from context we write justM, i |= φ
A formula φ is true in a modelM, denoted byM |= φ, i�M, 0 |= φ
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semantics

M, i |= Gφ i� [j ≥ i .M, j |= φ
M, i |= Fφ i� \j ≥ i .M, j |= φ
M, i |= Xφ i� M, i + 1 |= φ

M, i |= φ U ψ i� \j ≥ i . (M, j |= ψ ∧ [i ≤ k < j .M, k |= φ)
M, i |= φ R ψ i� [j ≥ i . (M, j |= ψ ∨ \i ≤ k < j .M, k |= φ)

M, i |= Hφ i� [0 ≤ j ≤ i .M, j |= φ
M, i |= Oφ i� \0 ≤ j ≤ i .M, j |= φ
M, i |= Yφ i� i > 0 ∧M, i − 1 |= φ

M, i |= φ S ψ i� \0 ≤ j ≤ i . (M, j |= ψ ∧ [j < k ≤ i .M, k |= φ)
M, i |= φ T ψ i� [0 ≤ j ≤ i . (M, j |= ψ ∨ \j < k ≤ i .M, k |= φ)
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semantics

M, i |= Φ ⊆ Ψ i� M, i |= [ ®x · Φ(®x) → Ψ(®x)
M, i |= P(®t) i� (M(i)(t1), ... ,M(i)(tn)) ∈ M(i)(P)
M, i |= Φ′(®t) i� M, i + 1 |= Φ(®t)
M, i |= [x · φ i� M[Î 7→ x 7→ a], i |= φ for all a ∈ U

...
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