Alcino Cunha

SPECIFICATION AND MODELING

FIRST-ORDER LOGIC

Universidade do Minho & INESC TEC

2019/20

SPECIFICATION AND MODELING

FROM PROPOSITIONAL TO FIRST-ORDER LOGIC

e Introduces a domain or universe of discourse
s Generalize propositional symbols to predicates
e Allows quantifiers and variables ranging over the domain

| Propositional logic

Workera_Prepared A Worker2_Prepared
Worker2_working_on_Taska

‘First-order logic

Prepared(Workeri) A Prepared(Worker2)
working_on(Worker2, Task1)
Vx.Prepared(x)

SPECIFICATION AND MODELING

PREDICATES (AKA SETS AND RELATIONS)

Prepared(Worker1)
Prepared(Workerz2) =
Prepared(_)

working_on(Worker1, Task1)
working_on(Worker1, Task2)
working_on(Worker2, Task3)

I
I B R S

working_on(_, _) =

Prepared {(Worker1), (Worker2)}
working_on = {(Workeri,Task1), (Workeri, Task2), (Worker2, Task3)}

SPECIFICATION AND MODELING

SYNTAX

Category

Identifier

Variables
Constants
Predicates
Terms
Formulas

XV, Z ...
ab,c, ...
P,Q,R, ...
t,u,v, ...
b, 0y, ...

SPECIFICATION AND MODELIN

SYNTAX

P(th) tar(P))
t=u

T
1

—¢

b1 AP,
$1V P,
b — P,
Vx- ¢

SPECIFICATION AND MODELING 6/

FIRST-ORDER STRUCTURES

e The semantics of a first-order formula is defined over a first-order structure U, M
where:
> U is a non-empty domain (or universe) of interpretation with equality
> M is an interpretation (model) for constants, predicates, and variables:
e M(c)eU
e Mx)elU
° M(F’) c rL{ar(P)
e The fact that a formula ¢ is valid in a model M with universe U is denoted by
UMEP

e When U is implicit or clear from context we write just M |= ¢

SPECIFICATION AND MODELING

EXAMPLE

s Assuming:

> U = {Worker1,Worker2, Task1, Task2}
M(worker) = {(Workerz1), (Worker2)}
M(Task) = {(Task1), (Task2)}
M(Prepared) = {(Worker1), (Worker2)}
M(working_on) = {(Worker2, Task1)}

vyvyyvyy

e We have:

M |= Vx - Worker(x) V Task(x)
M |= Vx - Worker(x) — Prepared(x)
M JE Vx - Worker(x) — Jy - Task(y) A working_on(x, y)

nnnnnnnnnnnnnnnnnnnnnn

SEMANTICS

M= P(ty, ..., ty)
MlEEt=u
MET
MIE L

M= —¢
M= A,
M|=¢1V¢2
M= ¢ — ¢,
ME=Vx-¢
Ml=3x-¢

(M(ty), ..., M(t,) € M(P)
M(t) = M(u)

MIE ¢

M= ¢p,and M |= ¢,

ME @ or M |= ¢,
MIEpor M= ¢,

Mx—a] |=¢forallae U
M[x > a] |= ¢ forsomea € U

SPECIFICATION AND MODELING

FIRST-ORDER LOGIC IN ALLOY

e The universe is a set of uninterpreted atoms

e No constants and no functions

e No false nor true

e Quantifications always range over a unary predicate

¢

P(x1, ... aXar(P))
xX=y

—¢

b1 NP,

$ Ve,

b — b,

Vx - P(x) = ¢
Ax - P(x) A @

SPECIFICATION AND MODELING

10/ 14

FIRST-ORDER LOGIC SYNTAX IN ALLOY

Alloy Math
X; =>...=>X,in P P(Xq, ..., Xn)
X, =>...=>X, not inP =P(Xq, ..., Xn)
X=y X=y
Xl=y ~(x=y)
not ¢ —¢
¢, and ¢, b1 A P
¢, or ¢, ¢V P,
¢, implies ¢, ¢ — ¢,
allx:P| ¢ Vx - P(x) = ¢
somex : P| ¢ Ix-P(x) A @

SPECIFICATION AND MODELING

PREDICATE DECLARATIONS IN ALLOY

e Unary predicates are known as signatures or sets
> Declared with the sig keyword
> Sub-set signatures are declared with the in keyword

e Predicates of higher arity are known as relations
> Declared inside signatures

sig Worker {

working_on : set Task
}
sig Prepared in Worker {}
sig Committed in Prepared {}
sig Aborted in Worker {}
sig Task {}

SPECIFICATION AND MODELING

PREDICATE DECLARATIONS IN ALLOY

e Declarations induce a set of implicit “typing” constraints
> Top-level (non sub-set) signatures are disjoint
> Sub-set signatures are indeed sub-sets of the parent signature
> Relations only contain tuples of the correct signatures
e Some special predicates are pre-defined
> univ is the union of all top-level signatures
> none is the empty set
> iden is the identity binary relation over univ

SPECIFICATION AND MODELING

FORMULA EXAMPLES

-- There are no prepared workers

all w : Worker | w not in Prepared

-- Every worker is either committed or aborted
all w : Worker | w in Committed or w in Aborted

all w : Worker | w in Committed implies w not in Aborted

-- No worker is working on a task

all w : Worker | all t : Task | w->t not in working_on
-- Every worker is working on at least one task

all w : Worker | some t : Task | w->t in working_on

-- Every worker is working on at most one task

all w : Worker, t,u : Task |

w->t in working_on and w->u in working_on implies t=u

SPECIFICATION AND MODELING w1

WHAT ABOUT SET INCLUSION AND SET OPERATORS?

e Setinclusion can be defined in first-order logic

ACB=Vx-Ax) — B(x)

Set operators act like combinators that build more complex (unary) predicates out
of simpler ones

(AU B)(X) = A(X) V B(x)

These (and other) combinators simplify the specification of constraints
They will be the subject of our next class about relational logic, the logic of Alloy!

