
Alcino Cunha

specification and modeling
ctl model checking

Universidade do Minho & INESC TEC

2019/20

computation tree logic

specification and modeling / computation tree logic 3 / 24

syntax

φ ::= p
| > | ⊥

| ¬φ

| φ1 ∧ φ2 | φ1 ∨ φ2

| φ1 → φ2

| AGφ | EGφ
| AFφ | EFφ
| AXφ | EXφ
| φ AU ψ | φ EU ψ
| φ AR ψ | φ ER ψ

specification and modeling / computation tree logic 4 / 24

semantics

Defined over a model (transition system) M
Technically, M should be a Kripke structure (S, I, R, L)
I S is a finite set of states
I I ⊆ S is the set of initial states
I R ⊆ S × S is a total transition relation
I L : S→ 2A is a function that labels each state with the set of atomic propositions valid

in that state (draw from domain A)
A formula is valid i� it holds in all initial states

M |= φ i� [s ∈ I · M, s |= φ

A formula is valid in a state i� it holds in the (infinite) computation tree unrolled
from that state

specification and modeling / computation tree logic 5 / 24

minimal syntax

All CTL formulas can be expressed using >, ¬, ∨, EX, EU, and EG

⊥ ≡ ¬>

φ ∧ψ ≡ ¬(¬φ ∨ ¬ψ)

φ → ψ ≡ ¬φ ∨ψ

AXφ ≡ ¬ EX¬φ

EFφ ≡ > EU φ

AGφ ≡ ¬ EF¬φ

AFφ ≡ ¬ EG¬φ

φ AR ψ ≡ ¬(¬φ EU ¬ψ)

φ ER ψ ≡ EGψ ∨ (ψ EU (φ ∧ψ))

φ AU ψ ≡ ¬(¬φ ER ¬ψ)

model checking

specification and modeling /model checking 7 / 24

(unbounded) model checking

Given a Kripke structure M = (S, I, R, L) and a temporal formula φ, the goal of a
model checking procedure is to find the set of all states in M that satisfy φ

ûφüM ≡ {s ∈ S | M, s |= φ}

specification and modeling /model checking 8 / 24

explicit vs symbolic model checking

Explicit model checking

Sets and transitions are encoded extensionally
Semantics of temporal operators is implemented by graph traversals

M |= φ i� I ⊆ ûφüM

Symbolic model checking

Sets and transitions are encoded intentionally by propositional formulas
Semantics of temporal operators is implemented by fixpoint computations

M |= φ i� I→ ûφüM

explicit ctl model checking

specification and modeling / explicit ctl model checking 10 / 24

explicit representation of the kripke structure

I = {s1}

R = {(s1, s2), (s2, s2)}

specification and modeling / explicit ctl model checking 11 / 24

propositional connectives and next

ûpü = {s ∈ S | p ∈ L(s)}

û>ü = S

û¬φü = S − ûφü

ûφ ∨ψü = ûφü ∪ ûψü

ûEXφü = {s ∈ S | \s′ ∈ ûφü · (s, s′) ∈ R} = R.ûφü

specification and modeling / explicit ctl model checking 12 / 24

until

ûφ EU ψü =
T ← ûψü
U← ûψü
while T , ∅

choose s ∈ T
T ← T − {s}
for t ∈ R.s

if t < U ∧ t ∈ ûφü
U← U ∪ {t}
T ← T ∪ {t}

return U

specification and modeling / explicit ctl model checking 13 / 24

always

To determine ûEGφüM it su�ices to restrict M to the states that satisfy φ

Mφ = (ûφü, I ∩ ûφü, R ∩ (ûφü × ûφü), L ∩ (ûφü × A))

M, s |= EG φ i� s ∈ ûφü and there exists a path in Mφ from s to some node in a
nontrivial strongly connected component of Mφ
A Strongly Connected Component (SCC) is a maximal subgraph where every node is
reachable from every other
A SCC is also nontrivial if it has at least one path (more than one node or one node
with a self-loop)
The nontrivial SCCs of Mφ can be computed e�iciently with Tarjan’s algorithm

scc(Mφ) ⊆ 2ûφü

specification and modeling / explicit ctl model checking 14 / 24

always

ûEGφü =
T ← ∪C∈scc(Mφ)
G← T
while T , ∅

choose s ∈ T
T ← T − {s}
for t ∈ Rφ .s

if t < G
G← G ∪ {t}
T ← T ∪ {t}

return G

specification and modeling / explicit ctl model checking 15 / 24

fairness

A typical fairness constraint imposesϕ to be recurrently true
This constraint cannot be expressed in CTL
CTL semantics must be adapted to handle fairness

M |= φ i� M |= φ andϕ is recurrently true in M

To model check EGφ it su�ices to restrict the model to fair SCCs, namely those
whereϕ is valid in some state
Given that
I A path is fair i� any of its su�ixes is fair
I EG> holds in a state i� there is a fair path starting at that state
to model check φ EU ψ it su�ices to check φ EU (ψ ∧ EG>) instead
Similarly for the remaining operators

symbolic ctl model checking

specification and modeling / symbolic ctl model checking 17 / 24

symbolic representation of the kripke structure

I = a ∧ ¬b

R = (a ∧ ¬b ∧ ¬a′ ∧ b′) ∨ (¬a ∧ b ∧ ¬a′ ∧ b′)

specification and modeling / symbolic ctl model checking 18 / 24

propositional connectives

ûpü = p

û>ü = >

û¬φü = ¬ûφü

ûφ ∨ψü = ûφü ∨ ûψü

specification and modeling / symbolic ctl model checking 19 / 24

always

From the EG expansion rule

EGφ ≡ φ ∧ EX(EGφ)

a greatest fixpoint algorithm can be directly obtained

ûEGφü = νZ .φ ∧ ûEX Zü

ûEG φü =
G← >
repeat

G′← G
G← ûφü ∧ ûEX Gü

until G ≡ G′

return G

specification and modeling / symbolic ctl model checking 20 / 24

until

From the EU expansion rule

φ EU ψ ≡ ψ ∨ (φ ∧ EX(φ EU ψ))

a smallest fixpoint algorithm can be directly obtained

ûφ EU ψü = µZ .ψ ∨ (φ ∧ ûEX Zü)

ûφ EU ψü =
U← ⊥
repeat

U′← U
U← ûψü ∨ (ûφü ∧ ûEXUü)

until U ≡ U′

return U

specification and modeling / symbolic ctl model checking 21 / 24

next

In symbolic model checking the transition relation R is a propositional formula with
normal and primed (propositional) variables
EXφ is valid in a state if there is some adjacent state where φ is valid

ûEXφü = \x′ · R ∧ ûφü′

ûφü′ is the formula obtained from ûφü by replacing all variables by the respective
primed version

The existential quantifier can be eliminated by expansion

\x · φ ≡ φ[>/x] ∨ φ[⊥/x]

specification and modeling / symbolic ctl model checking 22 / 24

next

R = (a ∧ ¬b ∧ ¬a′ ∧ b′) ∨ (¬a ∧ b ∧ ¬a′ ∧ b′)

ûEX bü = \a′, b′ · R ∧ b′

= \a′, b′ · R

= \a′ · R[>/b′] ∨ R[⊥/b′]

= \a′ · (a ∧ ¬b ∧ ¬a′) ∨ (¬a ∧ b ∧ ¬a′)

= (a ∧ ¬b) ∨ (¬a ∧ b)

ûEX aü = \a′, b′ · R ∧ a′

= \a′, b′ · (a ∧ ¬b ∧ ¬a′ ∧ b′ ∧ a′) ∨ ...

= ⊥

specification and modeling / symbolic ctl model checking 23 / 24

fairness

To model check EGφ under fairness constraintϕ a di�erent expansion rule (and
fixpoint algorithm) is required

EGφ ≡ φ ∧ EX(φ EU (ϕ ∧ EGφ))

Likewise to explicit model checking, to model check φ EU ψ symbolically it su�ices
to check φ EU (ψ ∧ EG>) instead
Similarly for the remaining operators

specification and modeling / symbolic ctl model checking 24 / 24

efficiency

Symbolic model checking requires procedures to check the validity and
equivalence of propositional formulas
These can be implemented e�iciently using SAT or Ordered Binary Decision
Diagrams
In most situations symbolic model checking is much faster then explicit model
checking

	Computation Tree Logic
	Model Checking
	Explicit CTL model checking
	Symbolic CTL model checking

