Alcino Cunha

SPECIFICATION AND MODELING

CTL MODEL CHECKING

Universidade do Minho & INESC TEC

2019/20

COMPUTATION TREE LOGIC

SPECIFICATION AND MODELING / COMPUTATION TREE LOGIC 3/2

SYNTAX

¢ == p
| T | L
| -
| 1A | Ve
| ¢ — ¢
| AG¢ | EG¢
| AF¢ | EF¢
| Aqu | EX¢
| AUy | PEUY
| ¢ARYy | @PERYy

SPECIFICATION AND MODELING / COMPUTATION TREE LOGIC 4l2n

SEMANTICS

Defined over a model (transition system) M

Technically, M should be a Kripke structure (S, I, R, L)

> Sisafinite set of states

> | C Sisthe set of initial states

> R C S X Sisatotal transition relation

> | :S — 2*isafunction that labels each state with the set of atomic propositions valid
in that state (draw from domain A)

e Aformula is valid iff it holds in all initial states

MEg¢g iff Vsel-Ms|=¢

A formula is valid in a state iff it holds in the (infinite) computation tree unrolled
from that state

SPECIFICATION AND MODELING / COMPUTATION TREE LOGIC

5/2

MINIMAL SYNTAX
e All CTL formulas can be expressed using T, =, V, EX, EU, and EG
1 =-T

Ay =(¢Vy)
poy=-¢dVvy

AXp = —EX ¢
EF¢p = TEU ¢
AG¢p = — EF ¢
AFp = —EG—¢p

@ ARy = =(=¢ EU ~y)
PERY =EGy V (y EU (¢ Ay))
¢ AUy = (¢ ER —y)

MODEL CHECKING

SPECIFICATION AND MODELING / MODEL CHECKING 7/2

(UNBOUNDED) MODEL CHECKING

s Given a Kripke structure M = (S, I, R, L) and a temporal formula ¢, the goal of a
model checking procedure is to find the set of all states in M that satisfy ¢

[¢llu = {s€s|Ms = ¢}

SPECIFICATION AND MODELING / MODEL CHECKING

8/2

EXPLICIT VS SYMBOLIC MODEL CHECKING

| Explicit model checking

s Sets and transitions are encoded extensionally
e Semantics of temporal operators is implemented by graph traversals

M@ iff 1C[ln

‘Symbolic model checking

e Sets and transitions are encoded intentionally by propositional formulas
e Semantics of temporal operators is implemented by fixpoint computations

M@ iff 1 [¢lu

EXPLICIT CTL MODEL CHECKING

SPECIFICATION AND MODELING / EXPLICIT CTL MODEL CHECKING

10/ 24

EXPLICIT REPRESENTATION OF THE KRIPKE STRUCTURE

S S2

I={s;}
R = {(51,52), (52, 52)}

DDDDDDDDDDDDDDDDDDDDDDDD | EXPLICIT CTL MODEL CHECKING

PROPOSITIONAL CONNECTIVES AND NEXT

[Pl ={ses|pelLis)}
[Tl=s
[-¢l=s- 1l
[¢Vvyl=Ilelvlvl
[EXpl = {sesS|3s" €[] (s,s") € R} =R.[P]

SPECIFICATION AND MODELING / EXPLICIT CTL MODEL CHECKING 12/24

UNTIL

[¢ EUy] =
T [yl

U [yl
while T # @

chooses €T
T« T-{s}
fort € R.s
iftéeUAte o]
U Uu{t}
T« TU{t}
return U

SPECIFICATION AND MODELING / EXPLICIT CTL MODEL CHECKING 13/24

ALWAYS

e To determine [[EG ¢]|u it suffices to restrict M to the states that satisfy ¢

Mg = ([ol. 10 [@1. RO ([@] x [@1). L N ([&] x A))

s M,s = EG ¢ iff s € [¢] and there exists a path in Mg from s to some node in a
nontrivial strongly connected component of Mg

e A Strongly Connected Component (SCC) is a maximal subgraph where every node is
reachable from every other

e ASCCis also nontrivial if it has at least one path (more than one node or one node
with a self-loop)

® The nontrivial SCCs of My can be computed efficiently with Tarjan’s algorithm

scc(Mg) C 2lel

SPECIFICATION AND MODELING / EXPLICIT CTL MODEL CHECKING L

ALWAYS

[EGc#] =
T« UCescc(M¢)
G«—T
while T # @
chooses € T
T« T-{s}
fort € Ry.s
iftéa
G «— GU {t}
T« TU({t}
return G

SPECIFICATION AND MODELING / EXPLICIT CTL MODEL CHECKING 15124

FAIRNESS

e Atypical fairness constraint imposes ¢ to be recurrently true
s This constraint cannot be expressed in CTL
e CTL semantics must be adapted to handle fairness

M|=¢ iff M|=¢ and e isrecurrently true in M

e To model check @ it suffices to restrict the model to fair SCCs, namely those
where ¢ is valid in some state
s Given that
> A path is fair iff any of its suffixes is fair
> EG T holds in a state iff there is a fair path starting at that state
to model check ¢ EU it suffices to check ¢ EU (¥ A EG T) instead
e Similarly for the remaining operators

SYMBOLIC CTL MODEL CHECKING

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING

7/

SYMBOLIC REPRESENTATION OF THE KRIPKE STRUCTURE

S S2

I=aA-b
R=(aA=bA=-a" Ab)V(maAbA=a Ab’)

PROPOSITIONAL CONNECTIVES

[pl=p
[Tl=T
[-¢1 = -[¢]

[¢ vyl =Ilelvivl

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING

19/24

ALWAYS

e From the EG expansion rule
EGp = ¢p A EX(EG @)

a greatest fixpoint algorithm can be directly obtained

[EGp] = vZ.¢ A [EXZ]
[EG o] =

G—T
repeat
G «—G
G «— [[¢] A [EXG]
untilG = G’
return G

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING

20/24

UNTIL

e From the EU expansion rule
PEUY =y V(P AEX(P EU y))

a smallest fixpoint algorithm can be directly obtained

[¢ EUy] =pz.y V(e A[EXZ])

[¢EVy] =
U L
repeat
U «—u
U [yl v el Alexul)
untilu = U’
return U

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING 21/24

NEXT

In symbolic model checking the transition relation R is a propositional formula with
normal and primed (propositional) variables
s EX¢ isvalid in a state if there is some adjacent state where ¢ is valid

[EX¢] = 3" -RA[&]

[@] is the formula obtained from [[¢] by replacing all variables by the respective
primed version

e The existential quantifier can be eliminated by expansion

Ix- ¢ =p[T/x]Vp[L/x]

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING

22/24

NEXT

R=(aA=bA=-a" Ab)V(-maAbA=a Ab’)

[EXb] = Ja’,b" -RAD’
=3d,b’-R
=3a’ - R[T/b’] VR[L/b]
=da’-(aA=bA=a")V(-aAbA-ad)
=(aA=b)V (-aAb)

[EXa]] = 3a’,b"-RA Q'
=3da’,b"-(aA=-bA=a"Ab Ad)V ..
=1

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING

FAIRNESS

23/24

e To model check EG ¢ under fairness constraint ¢ a different expansion rule (and
fixpoint algorithm) is required

EG) = ¢ A EX(@ EU (¢ AEGQ))

s Likewise to explicit model checking, to model check ¢ EU y symbolically it suffices
to check ¢ EU (w A EG T) instead
s Similarly for the remaining operators

SPECIFICATION AND MODELING / SYMBOLIC CTL MODEL CHECKING

EFFICIENCY

24/ 24

e Symbolic model checking requires procedures to check the validity and
equivalence of propositional formulas

e These can be implemented efficiently using SAT or Ordered Binary Decision
Diagrams

e In most situations symbolic model checking is much faster then explicit model
checking

	Computation Tree Logic
	Model Checking
	Explicit CTL model checking
	Symbolic CTL model checking

