
Alcino Cunha

specification and modeling
bounded model checking

Universidade do Minho & INESC TEC

2019/20



infinite traces



specification and modeling / infinite traces 3 / 17

why infinite traces only?

Semantic issues with finite traces

What formulas are true in the last state?
Di�erent possible semantics

In Electrum: infinite traces only

Caveat: no deadlock detection in general
But a finite trace can be represented by an infinite one stuttering on the last
state



specification and modeling / infinite traces 4 / 17

finite representation with lassos

Lasso trace

Some infinite traces can be represented by finite lasso traces

Notice some infinite traces cannot

Small-Model Property for LTL

If an LTL formula is satisfiable, then it is satisfied by at least one lasso trace.



bounded model checking



specification and modeling / bounded model checking 6 / 17

bounded model checking

Given a model of a system with
I I, a state formula with no primes and no temporal operators
I T, a transition formula with no temporal operators

fact { I and always T }

A BMC procedure verifies that a LTL formula φ is valid for all lasso traces of such
model of size up to k

check { φ } for ... but k steps



specification and modeling / bounded model checking 7 / 17

reducing validity to (un)satisfiability

To verify a formula φ it su�ices to search for a counter-example
I A lasso trace satisfying not φ
I If no counter-example exists the formula is valid

run { not φ } for ... but k steps

All sizes from 1 to k are searched iteratively
I So that counter-examples of minimal size are returned

run { not φ } for ... but exactly 1 steps
run { not φ } for ... but exactly 2 steps
...

run { not φ } for ... but exactly k steps



specification and modeling / bounded model checking 8 / 17

encoding lasso traces of size k in kodkod

Every mutable relation r originates k (static) relations r0 to rk−1
I The vector of all relations at state i will be denoted by ri
I Initial state formula I is defined over r
I The transition formula T is defined over r and r′

A lasso trace of model I, T with reentry at state 0 ≤ l < k is specified by formula

lûI, Tük ≡ I[r← r0] ∧
∧

0≤i<k−1

T[r← ri, r′← ri+1] ∧ T[r← rk−1, r′← rl]

The following formula can be used to generate an arbitrary lasso trace of size k of
the model I, T

k−1∨
l=0

lûI, Tük



specification and modeling / bounded model checking 9 / 17

trash example

var sig File {}
var sig Trash in File {}

fact {
no Trash
always (
-- empty trash or ...
(some Trash and no Trash' and File' = File - Trash) or ...

)
}

run {} for 3 but exactly 3 steps



specification and modeling / bounded model checking 10 / 17

kodkod translation

File0 :1 {} {(A),(B),(C)}
File1 :1 {} {(A),(B),(C)}
File2 :1 {} {(A),(B),(C)}
Trash0 :1 {} {(A),(B),(C)}
Trash1 :1 {} {(A),(B),(C)}
Trash2 :1 {} {(A),(B),(C)}

-- sub-typing constraints
-- always Trash in File
Trash0 in File0 and Trash1 in File1 and Trash2 in File2



specification and modeling / bounded model checking 11 / 17

kodkod translation

-- initial state
no Trash0

-- transitions
(some Trash0 and no Trash1 and File1 = File0 - Trash0) or ...
(some Trash1 and no Trash2 and File2 = File1 - Trash1) or ...

-- loop
((some Trash2 and no Trash0 and File0 = File2 - Trash2) or ...) or
((some Trash2 and no Trash1 and File1 = File2 - Trash2) or ...) or
((some Trash2 and no Trash2 and File2 = File2 - Trash2) or ...)



specification and modeling / bounded model checking 12 / 17

linear temporal relational logic abstract syntax

φ ::= Φ1 ⊆ Φ2

| ¬φ

| φ1 ∧ φ2

| Gφ
| Fφ
| Xφ
| ...

Φ ::= R
| Φ1 ∪ Φ2 ar(Φ) = ar(Ψ)
| Φ1 . Φ2 ar(Φ) + ar(Ψ) > 2
| Φ′

| ...



specification and modeling / bounded model checking 13 / 17

encoding temporal formulas in lasso traces

Unroll Gφ and Fφ to check φ in di�erent state of the trace
I The states to be checked depend on the current state and the re-entry state
For Xφ and Φ′, evaluate φ and Φ in the successor state

succ(i) =
{
i + 1 if i < k − 1
l if i = k − 1



specification and modeling / bounded model checking 14 / 17

encoding temporal formulas in lasso traces

lûφük ≡ lûφü
0
k

lûΦ ⊆ Ψü
i
k ≡ ûΦüi ⊆ ûΨüi

lû¬φü
i
k ≡ ¬ lûφü

i
k

lûφ ∧ψü
i
k ≡ lûφü

i
k ∧ lûψü

i
k

lûGφüik ≡
∧k−1

j=min(i,l) lûφü
j
k

lûFφüik ≡
∨k−1

j=min(i,l) lûφü
j
k

lûXφüik ≡ lûφü
succ(i)
k

ûRüi ≡ Ri
ûΦ ∪ Ψüi ≡ ûΦüi ∪ ûΨüi

ûΦ . Ψüi ≡ ûΦüi . ûΨüi

ûΦ′üi ≡ ûΦüsucc(i)



specification and modeling / bounded model checking 15 / 17

putting everything together

A (temporal) formula φ is satisfiable in a lasso trace of size k in model I, T i� the
following (non temporal) formula is satisfiable

k−1∨
l=0

(lûI, Tük ∧ lûφük)



specification and modeling / bounded model checking 16 / 17

trash example

var sig File {}
var sig Trash in File {}

fact {
no Trash
always (
-- empty trash or ...
(some Trash and no Trash' and File' = File - Trash) or ...

)
}

check {always some File} for 3 but exactly 3 steps



specification and modeling / bounded model checking 17 / 17

kodkod translation

-- initial state
no Trash0

-- transitions
(some Trash0 and no Trash1 and File1 = File0 - Trash0) or ...
(some Trash1 and no Trash2 and File2 = File1 - Trash1) or ...

-- loop
((some Trash2 and no Trash0 and File0 = File2 - Trash2) or ...) or
((some Trash2 and no Trash1 and File1 = File2 - Trash2) or ...) or
((some Trash2 and no Trash2 and File2 = File2 - Trash2) or ...)

-- eventually no File
no File0 or no File1 or no File2


	Infinite traces
	Bounded model checking

