
Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

CSI - A Calculus for
Information Systems

(2022/23)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 1 — About FM

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Global picture

Concerning software ‘engineering’:

Software

Process —

Product —

Formal methods provide an answer to the question mark
above.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Global picture

Concerning software ‘engineering’:

Credits: Zhenjiang Hu, NII, Tokyop JP

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Have you ever used a FM?

”Al-djabr” rule ? ”al-hatt” rule ?

These rules that you have used so many times were discovered by
Persian mathematicians, notably by Al-Huwarizmi (9c AD).

NB: “algebra” stems from ”al-djabr” and ”algarismo” from
Al-Huwarizmi.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Software problems

Now, suppose the problem
was

Please write a
program to list the
students of my class
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Software problems

Now, suppose the problem
was

Please write a
program to list the
students of my class
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Software problems

Now, suppose the problem
was

Please write a
program to list the
students of my class
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Software problems

Now, suppose the problem
was

Please write a
program to list the
students of my class
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

FM — scientific software design

What

calculate

||

specification (model)

Why

OO

justification

How

analyse

::

OO

implementation (program)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

FM — simplified life-cycle

client ′s problem // Requirements

specify

��

Specification

model check

%%

calculate
��

Model (Alloy)

revise

dd

Implementation

encode
��

designed solution Codeoo

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Notation matters!

Credits: Cliff B. Jones 1980 [4]

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Well-known FM notations / tools / resources

Just a sample, as there are many — follow the links (in alphabetic
order):

Notations:

• Alloy

• B-Method

• JML

• mCRL2

• SPARK-Ada

• TLA+

• VDM

• Z

Tools:

• Alloy 4

• Coq

• Frama-C

• NuSMV

• Overture

Resources:

• Formal Methods Europe

• Formal Methods wiki
(Oxford)

http://alloy.mit.edu/alloy/book.html
http://www.methode-b.com/
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.mcrl2.org/web/user_manual/index.html
http://www.adacore.com/sparkpro
http://lamport.azurewebsites.net/tla/hyperbook.html
https://web-beta.archive.org/web/20080828013815/http://www.vdmportal.org
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://alloy.mit.edu/alloy/download.html
https://coq.inria.fr/
http://frama-c.com/
http://nusmv.fbk.eu/
http://overturetool.org
http://www.fmeurope.org/
http://formalmethods.wikia.com/wiki/VL
http://formalmethods.wikia.com/wiki/VL

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

60+ years ago (1958-)

1958

t
IAL

(GAMM/ACM)

1960t
Algol 60

(Naur’s bnf)
(“Amsterdam plot”)

Recursive programming
(Dijkstra)

1962

t

WG2.1 (Poel)

Ginsburg & Rice’s
paper

1964t

Algol X+Y
(Tutzing meeting)

1965

t
Record handling

(Hoare)

Euler
(Wirth)

1966t
Algol 66

(“Kootwijk battle”)

1968

t

Algol 68
(München meeting)

NATO SE Conf.
(Garmisch)

1969t
Poel

steps down

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Hoare Logic — “turning point” (1968)

Floyd-Hoare logic for program correctness dates back to 1968:

(ADB/IFIP/1164;1456)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Inv/pre/post

Starting where (pure) functions stop:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Inv/pre/post

Error handling...

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Inv/pre/post
Pre-conditions?

Not everything is a list, a tree or a stream...

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Inv/pre/post

pre...? choice...?

• Non-determinism

• Parallelism

• Abstraction

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Inv/pre/post

pre...? choice...?

• Non-determinism

• Parallelism

• Abstraction

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Functions not enough!

Solution?

Relations (which extend functions)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Is “everything” a relation?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

How to “dematerialize“ them?

Software is pre-science — formal but not fully calculational

Software is too diverse — many approaches, lack of unity

Software is too wide a concept — from assembly to quantum
programming

Can you think of a unified theory able to express and reason
about software in general?

Put in another way:

Is there a “lingua franca” for the software sciences?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Check the pictures...

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Check the pictures

(Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Check the pictures

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Check the pictures

Which graphical device have you found common
to all pictures?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Arrows everywhere

Arrows! Thus we identify a (graphical) ingredient common to
describing (several) different fields of human activity.

For this ingredient to be able to support a generic theory of
systems, mind the remarks:

• We need a generic notation able to cope with very distinct
problem domains, e.g. process theory versus database theory,
for instance.

• Notation is not enough — we need to reason and calculate
about software.

• Semantics-rich diagram representations are welcome.

• System description may have a quantitative side too.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 2 — Going
Relational

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation algebra

In previous courses you may have used predicate logic, finite
automata, grammars etc to capture the meaning of real-life
problems.

Question:

Is there a unified formalism for formal modelling?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation algebra

Historically, predicate logic was
not the first to be proposed:

• Augustus de Morgan
(1806-71) — recall de
Morgan laws — proposed a
Logic of Relations as early
as 1867.

• Predicate logic appeared
later.

Perhaps de Morgan was right in the first place: in real life,
“everything is a relation”...

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Everything is a relation...

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Arrow notation for relations

The picture is a collection of relations — vulg. a semantic
network — elsewhere known as a (binary) relational system.

However, in spite of the use of
arrows in the picture (aside)
not many people would write

mother of : People → People

as the type of relation
mother of .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Pairs

Consider assertions

0 6 π

Catherine isMotherOf Anne

3 = (1+) 2

They are statements of fact concerning various kinds of object —
real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs

(0, π)

(Catherine, Anne)

(3, 2)

respectively.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Sets of pairs

So, we might have written instead:

(0, π) ∈ 6

(Catherine, Anne) ∈ isMotherOf

(3, 2) ∈ (1+)

What are (6), isMotherOf , (1+)?

• they could be regarded as sets of pairs

• better: they should be regarded as binary relations.

Therefore,

• orders — eg. (6) — are special cases of relations

• functions — eg. succ = (1+) — are special cases of relations.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types.

Writing

B A
Roo

means the same as

A
R // B .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Notation

Infix notation

The usual infix notation used in natural language — eg.
Catherine isMotherOf Anne — and in maths — eg.

0 6 π — extends to arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R: Matrix M:

In this case A = B = {1..11}. Relations A A
Roo over a single

type are also referred to as (directed) graphs.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Alloy: where “everything is a relation”

Declaring binary

relation A
R // B

is Alloy (aside).

Alloy is a tool
designed at MIT
(http://alloy.
mit.edu/alloy)

We shall be using
Alloy [3] in this
course.

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Functions are relations

Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a (1)

Therefore, we generalize

B A
foo

b = f a
to B A

Roo

b R a

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise

Taken from Propositiones ad acuendos iuuenes (“Problems
to Sharpen the Young”), by abbot Alcuin of York († 804):

XVIII. Propositio de homine et capra et lvpo.
Homo quidam debebat ultra fluuium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam nauem
inuenire, nisi quae duos tantum ex ipsis ferre ualebat.
Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis
illaesis transire potuit?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans.
(If left alone, the fox would eat the goose, and the goose
would eat the beans.) Can the farmer carry himself and
his purchases to the far bank of the river, leaving each
purchase intact?

Identify the main types and relations involved in the puzzle and
draw them in a diagram.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Data types:

Being = {Farmer ,Fox ,Goose,Beans} (2)

Bank = {Left,Right} (3)

Relations:

Being
Eats // Being

where
��

Bank
cross // Bank

(4)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Specification source written in Alloy:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? — specification too loose...

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Composition

Recall function
composition (aside).

We extend f · g to
relational composition
R · S in the obvious way:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(5)

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Composition

That is:

B A
Roo C

Soo

R·S

gg

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (6)

Example: Uncle = Brother · Parent, that expands to
u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

Note how this rule removes ∃ when applied from right to left.

Notation R · S is said to be point-free (no variables, or points).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Check generalization

Back to functions, (6) becomes1

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c (1) }

〈∃ a :: b f a ∧ a = g c〉

≡ { ∃-trading (197) ; b f a means b = f a (1) }

〈∃ a : a = g c : b = f a〉

≡ { ∃-one point rule (201) }

b = f (g c)

So, we easily recover what we had before (5).

1Check the appendix on predicate calculus.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation inclusion

Relation inclusion generalizes function equality:

Equality on functions

f = g ≡ 〈∀ a :: f a = g a〉 (7)

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (8)

(read R ⊆ S as “R is at most S”).

Inclusion is typed:

For R ⊆ S to hold both R and S need to be of the same type,

say B A
R,Soo .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation inclusion

R ⊆ S is a partial order, that is, it is

reflexive,

id ⊆ R (9)

transitive

R ⊆ S ∧ S ⊆ Q⇒ R ⊆ Q (10)

and antisymmetric:

R ⊆ S ∧ S ⊆ R ≡ R = S (11)

Therefore:

R = S ≡ 〈∀ b, a :: b R a ≡ b S a〉 (12)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational equality

Both (12) and (11) establish relation equality, resp. in PW/PF
fashion.

Rule (11) is also called “ping-pong” or cyclic inclusion, often
taking the format

R

⊆ { }

S

⊆ { }

R

:: { “ping-pong” (11) }

R = S

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Indirect relation equality

Most often we prefer an indirect way of proving relation equality:

Indirect equality rules:

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (13)

≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X)〉 (14)

Compare with eg. equality of sets in discrete maths:

A = B ≡ 〈∀ a :: a ∈ A ≡ b ∈ B〉

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Indirect relation equality

The typical layout is e.g.

X ⊆ R

≡ { ... }
X ⊆ . . .

≡ { ... }
X ⊆ S

:: { indirect equality (13) }
R = S

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
>oo , which is such that, for all b, a,

b>a ≡ True

Every type A Aoo has the

• identity relation A A
idoo which is nothing but function

id a = a (15)

Clearly, for every R,

⊥ ⊆ R ⊆ > (16)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Diagrams

Assertions of the form X ⊆ Y where X and Y are relation
compositions can be represented graphically by square-shaped
diagrams, see the following exercise.

Exercise 1: Let a S n mean: “student a is assigned number n”. Using
(6) and (8), check that assertion

S ·> ⊆ > · S depicted by diagram

N

S

��

N

S

��

>oo

⊆

A A
>

oo

means that numbers are assigned to students sequentially. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Diagrams

Pointfree:

A

S

��

B

Q

��

Roo

⊆

C D
P

oo

S · R ⊆ P · Q

Pointwise:

∃ a d

S · R ⇒ P · Q

∀ c b c b

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 2: Use (6) and (8) and predicate calculus to show that

R · id = R = id · R (17)

R · ⊥ = ⊥ = ⊥ · R (18)

hold and that composition is associative:

R · (S · T) = (R · S) · T (19)
�

Exercise 3: Use (7), (8) and predicate calculus to show that

f ⊆ g ≡ f = g

holds (moral: for functions, inclusion and equality coincide). �

(NB: see the appendix for a compact set of rules of the predicate
calculus.)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Converses

Every relation B A
Roo has a converse B

R◦ // A which is
such that, for all a, b,

a(R◦)b ≡ b R a (20)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (21)

and with itself:

(R◦)◦ = R (22)

Converse captures the passive voice: Catherine eats the apple —
R = (eats) — is the same as the apple is eaten by Catherine —
R◦ = (is eaten by).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful!) property,

(f b)R(g a) ≡ b(f ◦ · R · g)a (23)

cf. diagram:
C D

Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Therefore (tell why):

b(f ◦ · g)a ≡ f b = g a (24)

Let us see an example of using these rules.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 3 — The “Zoo” of
Binary Relations

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

PF-transform at work

Transforming a well-known PW-formula into PF notation:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x : (f y) = (f x) : y = x〉

≡ { (24) for f = g }

〈∀ y , x : y(f ◦ · f)x : y = x〉

≡ { (23) for R = f = g = id }

〈∀ y , x : y(f ◦ · f)x : y(id)x〉

≡ { go pointfree (8) i.e. drop y , x }

f ◦ · f ⊆ id

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

The other way round

Now check what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (8) }

〈∀ y , x : y(id)x : y(f · f ◦)x〉

≡ { identity relation ; composition (6) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-one point (200) ; converse (20) }

〈∀ x :: 〈∃ z :: x f z ∧ x f z〉〉

≡ { trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉 (check as homework);

• Say R is coreflexive (or diagonal) iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Alloy: checking for coreflexive relations

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Kernels of functions

Meaning of ker f :

a′(ker f)a

≡ { substitution }

a′(f ◦ · f)a

≡ { rule (24) }

f a′ = f a

In words: a′(ker f)a means a′

and a “have the same
f -image”.

Exercise 4: Let K be a
nonempty data domain, k ∈ K
and k be the “everywhere k”
function:

k : A // K
k a = k

(25)

Compute which relations are
defined by the following
expressions:

ker k , b · c◦, img k (26)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Binary relation taxonomy

Topmost criteria:

binary relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(27)

Facts:

ker (R◦) = img R (28)

img (R◦) = ker R (29)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Binary relation taxonomy

The whole picture:

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(30)

Exercise 5: Resort to (28,29) and (27) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

The same in Alloy

(Courtesy of Alcino Cunha.)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 6: Label the items (uniquely) in these drawings2

and compute, in each case, the kernel and the image of each relation.

Why are all these relations functions? �

2Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html.

http://www.matematikaria.com/unit/injective-surjective-bijective.html

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 7: Prove the following fact

A relation f is a bijection iff its converse f ◦ is a function (31)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f ◦) ∧ img (f ◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection
�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Exercise 8: Let relation Bank
cross // Bank (4) be defined by:

Left cross Right

Right cross Left

It therefore is a bijection. Why? �

Exercise 9: Check which of the following properties,

simple, entire,
injective,
surjective,
reflexive,
coreflexive

Eats Fox Goose Beans Farmer

Fox 0 1 0 0
Goose 0 0 1 0
Beans 0 0 0 0
Farmer 0 0 0 0

hold for relation Eats (4) above (“food chain” Fox > Goose > Beans).

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Exercise 10: Relation where : Being → Bank should obey the following
constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Express such constraints in relational terms. Conclude that where should

be a function. �

Exercise 11: There are only two constant functions (25) in the type

Being // Bank of where. Identify them and explain their role in the

puzzle. �

Exercise 12: Two functions f and g are bijections iff f ◦ = g , recall

(31). Convert f ◦ = g to point-wise notation and check its meaning. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Adding detail to the
previous Alloy
model (aside)

(More about Alloy
syntax and semantics
later.)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Functions in one slide

Recapitulating: a function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by
lowercase characters (eg. f , g , φ) or identifiers starting with lowercase
characters, and function application will be denoted by juxtaposition, eg.
f a instead of f (a).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (32)

R · f ◦ ⊆ S ≡ R ⊆ S · f (33)

Equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (34)

Rule (34) follows from (32,33) by “cyclic inclusion” (next slide).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Proof of functional equality rule (34)

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g
≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

Then:

f = g

≡ { cyclic inclusion (11) }

f ⊆ g ∧ g ⊆ f

≡ { aside }

f ⊆ g

≡ { aside }

g ⊆ f

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Dividing functions

f

g
= g◦ · f cf .

B

g ��

A

f��

f
goo

C

(35)

Exercise 13: Check the properties:

f

id
= f (36)

f · h
g · k

= k◦ · f

g
· h (37)

f

f
= ker f (38)(

f

g

)◦
=

g

f
(39)

�

Exercise 14: Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple)

from the shunting rules (32) or (33). �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Dividing functions

By (23) we have:

b
f

g
a ≡ g b = f a (40)

How useful is this? Think of the following sentence:

Mary lives where John was born.

By (40), this can be expressed by a division:

Mary
birthplace

residence
John ≡ residence Mary = birthplace John

In general,

b f
g a means “the g of b is the f of a”.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 4 — On
Endo-Relations

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Endo-relations

A relation A
R // A whose input and output types coincide is

called an

endo-relation.

This special case of relation is gifted with an extra taxonomy and
many applications.

We have already seen them: ker R and img R are endo-relations.

Graphs, orders, the identity, equivalences and so on are all
endo-relations as well.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Taxonomy of endo-relations

Besides

reflexive: iff id ⊆ R (41)

coreflexive: iff R ⊆ id (42)

an endo-relation A A
Roo can be

transitive: iff R · R ⊆ R (43)

symmetric: iff R ⊆ R◦(≡ R = R◦) (44)

anti-symmetric: iff R ∩ R◦ ⊆ id (45)

irreflexive: iff R ∩ id = ⊥
connected: iff R ∪ R◦ = > (46)

where, in general, for R, S of the same type:

b (R ∩ S) a ≡ b R a ∧ b S a (47)

b (R ∪ S) a ≡ b R a ∨ b S a (48)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Taxonomy of endo-relations

Combining these criteria, endo-relations A A
Roo can further be

classified as

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Taxonomy of endo-relations

In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x .

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.

• Linear orders are connected partial orders
Example: y 6 x in N

• Equivalences are symmetric preorders
Example: age y = age x . 3

• Pers are partial equivalences
Example: y IsBrotherOf x .

3Kernels of functions are always equivalence relations, see exercise 21.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 15: Consider the relation

b R a ≡ team b is playing against team a at the moment

Is this relation: reflexive? irreflexive? transitive? anti-symmetric?

symmetric? connected? �

Exercise 16: Check which of the following properties,

transitive, symmetric, anti-symmetric, connected

hold for the relation Eats of exercise 9. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 17: A relation R is said to be co-transitive or dense iff the
following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (49)

Write the formula above in PF notation. Find a relation (eg. over

numbers) which is co-transitive and another which is not. �

Exercise 18: Expand criteria (43) to (46) to pointwise notation. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 19: The teams (T) of a football league play games (G) at
home or away, and every game takes place in some date:

T G
homeoo away //

date
��

T

D

Moreover, (a) No team can play two games on the same date; (b) All
teams play against each other but not against themselves; (c) For each
home game there is another game away involving the same two teams.
Show that

id ⊆ away

home
· away

home
(50)

captures one of the requirements above (which?) and that (50) amounts

to forcing home · away◦ to be symmetric. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Formalizing ER diagrams

So-called “Entity-Relationship” (ER) diagrams are commonly
used to capture relational information, e.g.4

ER-diagrams can be formalized in A
R // B notation, see e.g.

the following relational algebra (RA) diagram.

4Credits: https://dba.stackexchange.com/questions.

https://dba.stackexchange.com/questions

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise

Teacher Program

IsPartOf

��
Student

isMentorOf

OO

Course

teaches

ee

Enrols
oo

(51)

Exercise 20: Looking at diagram (51),

• Specify the property: mentors of students necessarily are among
their teachers.

• Specify the relation R between students and teachers such that
t R s means: t is the mentor of s and also teaches one of her/his
courses.

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Meet and join

Recall meet (intersection) and join (union), introduced by (47)
and (48), respectively.

They lift pointwise conjunction and disjunction, respectively, to the
pointfree level.

Their meaning is nicely captured by the following universal
properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (52)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (53)

NB: recall the generic notions of greatest lower bound and least
upper bound, respectively.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

In summary

Type B Aoo forms a lattice:

> “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S meet, glb (“greatest lower bound”)

⊥ “bottom”

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

How universal properties help

Using (52) i.e.

X ⊆ R ∩ S ≡
{

X ⊆ R
X ⊆ S

as example, similarly for (53).

Cancellation
(X := R ∩ S):{

R ∩ S ⊆ R
R ∩ S ⊆ S

(54)

R ∩ > = R why? Use
indirect equality

X ⊆ R ∩ >
≡ { universal property }{

X ⊆ R
X ⊆ >

≡ { > is above anything }

X ⊆ R

:: { indirect equality }

R ∩ > = R

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

How universal properties help

Meet and join have other
expected properties, e.g.
associativity

(R ∩ S) ∩ T = R ∩ (S ∩ T)

again proved aside by
indirect equality.

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (52) twice }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T)

≡ { ∩-universal (52) twice }

X ⊆ R ∩ (S ∩ T)

:: { indirection (13) }

(R ∩ S) ∩ T = R ∩ (S ∩ T)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Distributivity

As we will prove later, composition distributes over union

R · (S ∪ T) = (R · S) ∪ (R · T) (55)

(S ∪ T) · R = (S · R) ∪ (T · R) (56)

while distributivity over intersection is side-conditioned:

(S ∩ Q) · R = (S · R) ∩ (Q · R) ⇐

Q · img R ⊆ Q

∨
S · img R ⊆ S

(57)

R · (Q ∩ S) = (R · Q) ∩ (R · S) ⇐

(ker R) · Q ⊆ Q

∨
(ker R) · S ⊆ S

(58)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Back to our running example, we specify:

Being at the same bank:

SameBank = ker where =
where

where
Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

Then

“Starvation” is ensured by Farmer present at the same
bank:

CanEat ⊆ SameBank · Farmer (59)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

By (32), “starvation” property (59) converts to:

where · CanEat ⊆ where · Farmer

In this version, (59) can be depicted as a diagram:

Being

where
��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

(60)

which “reads” in a nice way:

where (somebody) CanEat (somebody else) (that’s)

where (the) Farmer (is).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Properties which —
such as (60) — are
desirable and must
always hold are
called invariants.

See aside the
‘starvation’
invariant (60)
written in Alloy.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Carefully observe
instance of such an
invariant (aside):

• SameBank is an
equivalence —
exactly the
kernel of where

• Eats is simple
but not
transitive

• cross is a
bijection

• CanEat is empty

• etc

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Another
instance of the
same invariant,
in which:

• CanEat is
not empty

(Fox can
eat Goose!)

• but Farmer
is on the
same bank
:-)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Why is SameBank an equivalence?

Recall that SameBank = ker where. Then SameBank is an equivalence
relation by the exercise below.

Exercise 21: Knowing that property

f · f ◦ · f = f (61)

holds for every function f , prove that ker f = f
f (38) is an equivalence

relation. �

Equivalence relations expressed in this way are captured in natural
language by the textual pattern

a(ker f)b means “a and b have the same f ”

which is very common in requirements.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

“D. Acácia grocery”

Client Sale
clientoo

date

##

SoldProduct
saleoo

product
��

Cupon

cupon

hh

Used

OO

expiry
))

Product

Date

(6)

PP

Specify the property:

Coupons cannot be used beyond their expiry date.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

“D. Acácia grocery”

Client Sale
clientoo

date

##

SoldProduct
saleoo

product
��

Cupon

cupon

hh

Used

OO

expiry
))

Product

Date

(6)

PP

Specify the property:

Coupons can only be used by clients who own them.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 5 — Design patterns
(relationally)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams

Recall

A

S

��

C

Q

��

Roo

⊆

B D
P

oo

S · R ⊆ P · Q

... i.e. the pointwise:

∃ a d

S · R ⇒ P · Q

∀ b c b c

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams

Now consider the special case

A

f

��

A

f

��

(v)oo

⊆

B B
(6)

oo

f · (v) ⊆ (6) · f

where (v) and (6) are preorders.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams

Do we need...

∃ a b′

f · (v) ⇒ (6) · f

∀ b a′ b a′

as before?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams

No — for functions things are much easier:

f · (v) ⊆ (6) · f

≡ { (32) }

(v) ⊆ f ◦ · (6) · f

≡ { (23) }

〈∀ a, a′ : a v a′ : f a 6 f a′〉

In summary,

f · (v) ⊆ (6) · f (62)

states that f is a monotonic function.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams

Now consider yet another special case:

A

f

��

A

g

��

idoo

⊆

B B
(6)

oo

f ⊆ (6) · g

Likewise, f ⊆ (6) · g will unfold to

〈∀ a :: f a 6 g a〉

meaning that

f is pointwise-smaller than g wrt. (6).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams

Now consider yet another special case:

A

f

��

A

g

��

idoo

⊆

B B
(6)

oo

f ⊆ (6) · g

Likewise, f ⊆ (6) · g will unfold to

〈∀ a :: f a 6 g a〉

meaning that

f is pointwise-smaller than g wrt. (6).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

f
.
6 g

Usual abbreviation: f
.
6 g ≡ f ⊆ (6) · g .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational patterns: the pre-order f ◦ · (6) · f
Given a preorder (6), a function f function taking values on the
carrier set of (6), define

(6f) = f ◦ · (6) · f

It is easy to show that:

b 6f a ≡ (f b) 6 (f a)

That is, we compare objects a and b with respect to their
attribute f .

Exercise 22:

1. Show that (6f) is a preorder.

2. Show that (6f) is not (in general) a total order even in the case
(6) is so.

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 23: Show that 1 1
>oo = 1 1

!oo = id . �

Exercise 24: As generalization of exercise 1, draw the most general
type diagram that accommodates relational assertion:

M · R◦ ⊆ > ·M (63)

�

Exercise 25: Type the following relational assertions

M · N◦ ⊆ ⊥ (64)

M · N◦ ⊆ id (65)

M◦ · > · N ⊆ > (66)

and check their pointwise meaning. Confirm your intuitions by repeating

this exercise in Alloy. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise

Exercise 26: Let bag : A∗ → NA be the function that, given a finite
sequence (list) indicates the number of occurrences of its elements, for
instance,

bag [a, b, a, c] a = 2

bag [a, b, a, c] b = 1

bag [a, b, a, c] c = 1

Let ordered : A∗ → B be the obvious predicate assuming a total order
predefined in A. Finally, let true = True. Having defined

S =
bag

bag
∩ true

ordered
(67)

identify the type of S and, going pointwise and simplifying, tell which

operation is specified by S . �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Monotonicity

All relational combinators studied so far are ⊆-monotonic, namely:

R ⊆ S ⇒ R◦ ⊆ S◦ (68)

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V (69)

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V (70)

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V (71)

etc hold.

Exercise 27: Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (72)

Derive from (72) the corresponding rule for injective relations. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Proofs by ⊆-transitivity

Wishing to prove R ⊆ S , the following rules are of help by relying on a
“mid-point” M (analogy with interval arithmetics):

• Rule A: lowering the upper side

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ (10) }

R ⊆ M

and then proceed with R ⊆ M.

• Rule B: raising the lower side

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }

M ⊆ S

and then proceed with M ⊆ S .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Example

Proof of shunting rule (32):

R ⊆ f ◦ · S
⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S
⇐ { monotonicity of (f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }

f · R ⊆ f · f ◦ · S
⇐ { monotonicity of (f ·) }

R ⊆ f ◦ · S

Thus the equivalence in (32) is established by circular implication.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises (monotonicity and transitivity)

Exercise 28: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

• R ∩ S is injective (simple) provided one of R or S is so

• R ∪ S is entire (surjective) provided one of R or S is so.

�

Exercise 29: Prove that relational composition preserves all relational

classes in the taxonomy of (30). �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Meaning of f · r = id

On the one hand,

f · r = id

≡ { equality of functions }

f · r ⊆ id

≡ { shunting }

r ⊆ f ◦

Since f is simple:

• f ◦ is injective

• and so is r , because “smaller than injective is injective”.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Meaning of f · r = id

On the other hand,

f · r = id

≡ { equality of functions }

id ⊆ f · r
≡ { shunting }

r◦ ⊆ f

Since r is entire:

• r◦ is surjective

• and so is f because “larger that surjective is surjective”.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Meaning of f · r = id

We conclude that

f is surjective and r is injective wherever f · r = id
holds.

Since both are functions, we furthermore conclude that

f is an abstraction and r is a representation

Exercise 30: Why are π1 and π2 surjective and i1 and i2 injective?

Why are isomorphisms bijections? �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 6 — Pairs and sums

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational pairing

Recall:

A A× B
π1oo π2 // B

C
f

bb

〈f ,g〉

OO

g

<< 〈f , g〉 c = (f c, g c) (73)

Clearly:

(a, b) = 〈f , g〉 c

≡ { 〈f , g〉 c = (f c, g c) (73) ; equality of pairs }{
a = f c
b = g c

≡ { y = f x ≡ y f x }{
a f c
b g c

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational pairing

That is:

(a, b) 〈f , g〉 c ≡ a f c ∧ b g c

This suggests the generalization

(a, b) 〈R, S〉 c ≡ a R c ∧ b S c (74)

from which one immediately derives the (’Kronecker’) product:

R × S = 〈R · π1, S · π2〉 (75)

(75) unfolds to the pointwise:

(b, d)(R × S)(a, c) ≡ b R a ∧ d S c (76)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational pairing example (in matrix layout)

Example — given relations

where◦ =

Left Right

Fox 1 0
Goose 0 1
Beans 0 1

and cross =
Left Right

Left 0 1
Right 1 0

pairing them up evaluates to:

〈where◦, cross〉 =

Left Right

(Fox , Left) 0 0
(Fox ,Right) 1 0

(Goose, Left) 0 1
(Goose,Right) 0 0

(Beans, Left) 0 1
(Beans,Right) 0 0

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 31: Show that

(b, c)〈R,S〉a ≡ b R a ∧ c S a

PF-transforms to:

〈R,S〉 = π◦1 · R ∩ π◦2 · S (77)

Then infer universal property

X ⊆ 〈R,S〉 ≡ π1 · X ⊆ R ∧ π2 · X ⊆ S (78)

from (77) via indirect equality (13). �

Exercise 32: What can you say about (78) in case X , R and S are

functions? �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 33: Unconditional distribution laws

(P ∩ Q) · S = (P · S) ∩ (Q · S)

R · (P ∩ Q) = (R · P) ∩ (R · Q)

will hold provide one of R or S is simple and the other injective. Tell

which (justifying). �

Exercise 34: Derive from

〈R,S〉◦ · 〈X ,Y 〉 = (R◦ · X) ∩ (S◦ · Y) (79)

the following properties:

ker 〈R,S〉 = ker R ∩ ker S (80)�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Injectivity preorder

ker R = R◦ · R measures the level of injectivity of R according to
the preorder (6) defined by

R 6 S ≡ ker S ⊆ ker R (81)

telling that R is less injective or more defined (entire) than S —
for instance:

6

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Injectivity preorder

Restricted to functions, (6) is universally bounded by

! 6 f 6 id

Also easy to show:

id 6 f ≡ f is injective (82)

Exercise 35: Let f and g be the two functions depicted on the right.

Check the assertions:

1. f 6 g

2. g 6 f

3. Both hold

4. None holds.

C W
foo g // IN0

"Armstrong"
� //

(
tt

9

’A’ "Albert"
� //�oo 6

’M’ "Minho"
� //�oo 5

’B’ "Braga"
(

44

�oo

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

The specification pattern h 6 〈f , g〉

As illustration of the use of this ordering in formal specification,
suppose one writes

room 6 〈lect, slot〉

in the context of the data model

Teacher Class
lectoo room //

slot
��

Room

TD

where TD abbreviates time and date.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

The specification pattern h 6 〈f , g〉
What are we telling about this model by writing

room 6 〈lect, slot〉?

Unfolding it:

room 6 〈lect, slot〉

≡ { (81) }

ker 〈lect, slot〉 ⊆ ker room

≡ { (80) ; (38) }

lect

lect
∩ slot

slot
⊆ room

room

≡ { going pointwise, for all c1, c2 ∈ Class }{
lect c1 = lect c2

slot c1 = slot c2
⇒ room c1 = room c2

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

The specification pattern h 6 〈f , g〉

That is, room 6 〈lect, slot〉 imposes that

a given lecturer cannot be in two different rooms at the
same time.

(Think of c1 and c2 as classes shared by different courses, possibly
of different degrees.)

In the standard terminology of database theory this is called a
functional dependency, meaning that:

• room is dependent on lect and slot, i.e.

• lect and slot determine room.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Generalization: the “agenda design pattern”

Nobody can be in different places at the same time

where 6 〈who,when〉

in the context of the generic data model:

Who Meeting
whooo where //

when
��

Where

When

Exercise 36: Do who 6 〈where,when〉 and when 6 〈who,where〉
express reasonable facts? �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

The specification pattern h 6 〈f , g〉

Let h := id in this pattern:

Two functions f and g are said to be complementary
wherever id 6 〈f , g〉.

For instance:

π1 and π2 are complementary since 〈π1, π2〉 = id by
×-reflection.

Informal interpretation:

Non-injective f and g compensate each other’s lack of
injectivity so that their pairing is injective.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Universal property

〈R, S〉 6 X ≡ R 6 X ∧ S 6 X (83)

Cancellation of (83) means that pairing always increases injectivity:

R 6 〈R,S〉 and S 6 〈R,S〉. (84)

(84) unfolds to ker 〈R,S〉 ⊆ (ker R) ∩ (ker S), confirming (80).

Injectivity shunting law:

R · g 6 S ≡ R 6 S · g◦ (85)

Exercise 37: 〈R, id〉 is always injective — why? �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation pairing continued

The fusion-law of relation pairing requires a side condition:

〈R,S〉 · T = 〈R · T ,S · T 〉
⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S

(86)

The absorption law

(R × S) · 〈P,Q〉 = 〈R · P,S · Q〉 (87)

holds unconditionally.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 38: Recalling (31), prove that

swap = 〈π2, π1〉 (88)

is a bijection. (Assume property (R ∩ S)◦ = R◦ ∩ S◦.) �

Exercise 39: Derive from the laws of pairing studied thus far the
following facts about relational product:

id × id = id (89)

(R × S) · (P × Q) = (R · P)× (S · Q) (90)

�

Exercise 40: Show that (86) holds. Suggestion: recall (57). From this

infer that no side-condition is required for T simple. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 41:

Consider the adjacency relation A
defined by clauses:
(a) A is symmetric;
(b) id × (1+) ∪ (1+)× id ⊆ A

(y + 1, x)

(y, x − 1) (y, x) (y, x + 1)

(y − 1, x)

Show that A is neither transitive nor reflexive.

NB: consider (1+) : Z→ Z a bijection, i.e. pred = (1+)◦ is a function.

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))

Bool + String

[Boo ,Err]
��

String
i2oo

Err
uuX

(91)

where

[R ,S] = (R · i◦1) ∪ (S · i◦2) cf. A
i1 //

R
%%

A + B

[R ,S]
��

B
i2oo

S
yy

CDually: R + S = [i1 · R , i2 · S]

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational sums

From [R , S] = (R · i◦1) ∪ (S · i◦2) above one easily infers, by
indirect equality,

[R ,S] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2

(check this).

It turns out that inclusion can be strengthened to equality, and
therefore relational coproducts have exactly the same properties
as functional ones, stemming from the universal property:

[R ,S] = X ≡ R = X · i1 ∧ S = X · i2 (92)

Thus [i1 , i2] = id — solve (92) for R and S when X = id , etc etc.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Divide and conquer

The property for sums (coproducts) corresponding to (79) for
products is:

[R ,S] · [T ,U]◦ = (R · T ◦) ∪ (S · U◦) (93)

NB: This divide-and-conquer rule is essential to parallelizing
relation composition by block decomposition.

Exercise 42: Show that:

img [R ,S] = img R ∪ img S (94)

img i1 ∪ img i2 = id (95)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 43: The type declaration

data Maybe a = Nothing | Just a

in Haskell corresponds, as is known, to the declaration of the
isomorphism:

in : 1 + A→ Maybe A
in = [Nothing , Just]

Show that the relation

R = i1 · Nothing◦ ∪ i2 · Just◦

is a function. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 44: Consider the following definition of a relation

A A∗
Roo ,

R · in = [⊥ , π1 ∪ R · π2]

where

in = [nil , cons] (96)

nil = [] (97)

cons (h, t) = h : t (98)

(a) Rely on the co-product laws to derive (formally) the pointwise
definition of R.

(b) Based on this, spell out the meaning of a R x in you own words. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

+ meets ×
The exchange law

[〈R,S〉 , 〈T ,V 〉] = 〈[R ,T], [S ,V]〉 (99)

holds for all relations as in diagram

A
i1 //

R

�� S
))

A + B B

T

uu

V

��

i2oo

C C × D
π1

oo
π2

// D

and the fusion law

〈R,S〉 · f = 〈R · f ,S · f 〉 (100)

also holds, where f is a function. (Why?)

Exercise 45: Relying on both (92) and (100) prove (99). �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

On key-value (KV) data models

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

On key-value data models

Simple relations abstract what is currently known as the
key-value-pair (KV) data model in modern databases

E.g. Hbase, Amazon DynamoDB etc

In each such relation K
S // V , K is said to be the key and V

the value.

No-SQL, columnar database trend.

Example above:

PartitionKey × SortKey︸ ︷︷ ︸
K

→ Type × . . .︸ ︷︷ ︸
V

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

On key-value data models

“Schema is
defined per
item”...

In this example:

V = Title × (1 + Author × (1 + Date × . . .))

This shows the expressiveness of products and coproducts in
data modelling.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 7 — Relational
division

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational division

In the same way

z × y 6 x ≡ z 6 x ÷ y

means that x ÷ y is the largest number which multiplied by y
approximates x ,

Z · Y ⊆ X ≡ Z ⊆ X/Y (101)

means that X/Y is the largest relation which pre-composed with
Y approximates X .

What is the pointwise meaning of X/Y ?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

We reason:

First, the types of

Z · Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Next, the calculation:

c (X/Y) a

≡ { introduce points C 1
coo and A 1

aoo }

x(c◦ · (X/Y) · a)x

≡ { one-point (200) }

x ′ = x ⇒ x ′(c◦ · (X/Y) · a)x

Proceed by going pointfree:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

We reason

id ⊆ c◦ · (X/Y) · a

≡ { shunting rules }

c · a◦ ⊆ X/Y

≡ { universal property (101) }

c · a◦ · Y ⊆ X

≡ { now shunt c back to the right }

a◦ · Y ⊆ c◦ · X
≡ { back to points via (23) }

〈∀ b : a Y b : c X b〉

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Outcome

In summary:

c (X/Y) a ≡ 〈∀ b : a Y b : c X b〉 a?
X/Y

��
c b

_
Y

OO

�
X
oo

(102)

Example:

a Y b = passenger a chooses flight b

c X b = company c operates flight b

c (X/Y) a = company c is the only one trusted by passenger
a, that is, a only flies c .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Pattern X / Y

Informally, c (X / Y) a captures the linguistic pattern

a only Y those b’s
such that c X b.

a?
X/Y

��
c b

_
Y

OO

�
X
oo

For instance,

Students enrolled
in courses only
dealing with
particular subjects

student2
Dealt in/Enrolled

yy
subject course

_
Enrolled

OO

�
Dealt in
oo

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Pointwise meaning in full

The full pointwise encoding of

Z · Y ⊆ X ≡ Z ⊆ X/Y

is:

〈∀ c , b : 〈∃ a : cZa : aYb〉 : cXb〉
≡
〈∀ c , a : cZa : 〈∀ b : aYb : cXb〉〉

If we drop variables and regard the uppercase letters as denoting Boolean
terms dealing without variable c , this becomes

〈∀ b : 〈∃ a : Z : Y 〉 : X 〉 ≡ 〈∀ a : Z : 〈∀ b : Y : X 〉〉

recognizable as the splitting rule (208) of the Eindhoven calculus.

Put in other words: existential quantification is lower adjoint to
universal quantification.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 46: Prove the equalities

X · f = X/f ◦ (103)

X/⊥ = > (104)

X/id = X (105)

and check their pointwise meaning. �

Exercise 47: Define

X \ Y = (Y ◦/X ◦)◦ (106)

and infer:

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (107)

R · X ⊆ Y ≡ X ⊆ R \ Y (108)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams (again!)

Back to our good old ”rectangle”:

A

S

��

C

Q

��

Roo

⊆

B D
P

oo

S · R ⊆ P · Q

... i.e. the pointwise:

∃ a d

S · R ⇒ P · Q

∀ b c b c

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams - very special case

Again assuming two preorders (v) and (6):

A

f ◦

��

A

g

��

(v)oo

=

B B
(6)

oo

f ◦ · (v) = (6) · g

f b v a ≡ b 6 g a (109)

In this very special situation,
f and g in

(A,v)

g
**
(B,6)

f

jj

are said to be Galois
connected (GC) and we
write

f ` g (110)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams - very special case

Again assuming two preorders (v) and (6):

A

f ◦

��

A

g

��

(v)oo

=

B B
(6)

oo

f ◦ · (v) = (6) · g

f b v a ≡ b 6 g a (109)

In this very special situation,
f and g in

(A,v)

g
**
(B,6)

f

jj

are said to be Galois
connected (GC) and we
write

f ` g (110)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams - even more special case

Preorders (v) and (6) are the identity:

A

f ◦

��

A

g

��

idoo

=

B B
id

oo

f ◦ = g

f b = a ≡ b = g a (111)

That is to say,

A

g

''∼= B

f

gg

Isomorphisms are
special cases of
Galois
connections.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Patterns in diagrams - even more special case

Preorders (v) and (6) are the identity:

A

f ◦

��

A

g

��

idoo

=

B B
id

oo

f ◦ = g

f b = a ≡ b = g a (111)

That is to say,

A

g

''∼= B

f

gg

Isomorphisms are
special cases of
Galois
connections.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GC — mechanics analogy

Stability:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GC — mechanics analogy

Instability:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GC — mechanics analogy

Stability restored:

“Restauratio” rule (Middle Ages).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Example of GC

Integer division:

z × y 6 x ≡ z 6 x ÷ y

that is:

z ×y︸︷︷︸
f

6 x ≡ z 6 x ÷y︸︷︷︸
g

So:

(×y) ` (÷y)

Principle:

Difficult (÷y) explained by easy (×y).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GCs

Interpreting:

f ◦ · (v) = (6) · g , ie.
f b v a ≡ b 6 g a, ie.

f ` g

• f b is the smallest a such that b 6 g a holds.

• g a is the largest b such that f b v a holds.

Thus z × y 6 x ≡ z 6 x ÷ y reads like this:

x ÷ y is the largest z such that z × y 6 x.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Yes! (back to the primary school desk)

The whole division algorithm

7 2
1 3

2× 3 + 1 = 7 , “i.e.“ 3 = 7÷ 2

However

7 2
3 2

2× 2 + 3 = 7 ∧ 2 6= 7÷ 2

7 2
5 1

2× 1 + 5 = 7 ∧ 1 6= 7÷ 2

That is:

x y
... x ÷ y

z × y 6 x ⇒ z 6 x ÷ y
x ÷ y largest z
such that
z × y 6 x .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GCs as specifications

Thus:

z × y 6 x ≡ z 6 x ÷ y is a specification of x ÷ y

How does it relate to its implementation, e.g.

x ÷ y =
if x < y then 0
else 1 + (x − y)÷ y

?

It’s a long story. For the moment, let us appreciate the power of
the GC concept.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GCs as specifications

Consider the following requirements about the take function in
Haskell:

take n xs should yield the longest possible prefix of xs
not exceeding n in length.

Warming up examples:

take 2 [10, 20, 30] = [10, 20]
take 20 [10, 20, 30] = [10, 20, 30]
...

How do we write a formal specification for these requirements?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Specifying functions on lists

Clearly,

• take n xs is a prefix of xs — specify this as e.g.

take n xs � xs

where � denotes the prefix partial order.

• the length of take n xs cannot exceed n — easy to specify:

length (take n xs) 6 n

Altogether:

length (take n xs) 6 n ∧ take n xs � xs (112)

But this is not enough — (silly) implementation take n xs = []
meets (112)!

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Superlatives...

The crux is how to formally specify the superlative in

...take n xs should yield the longest possible prefix...

This is the hard part but there is a standard method to follow:

• think of an arbitrary list ys also satisfying (112)

length ys 6 n ∧ ys � xs

• Then (from above) ys should be a prefix of take n xs:

length ys 6 n ∧ ys � xs ⇒ ys � take n xs (113)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Final touch

So we have two clauses,

a easy one (112)

and

a hard one (113).

Interestingly, (112) can be derived from (113) itself,

length ys 6 n ∧ ys � xs ⇐ ys � take n xs

by letting ys := take n xs and simplifying.

So a single line is enough to formally specify take:

length ys 6 n ∧ ys � xs ≡ ys � take n xs (114)

— a GC.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Reasoning about specifications (GCs)

One of the advantages of formal specification is that one may
quest the specification (aka model) to derive useful properties of
the design before the implementation phase.

GCs + indirect equality (on partial orders) yield much in this
process — see the following exercise.

Exercise 48: Solely relying on specification (114) use indirect equality
to prove that

take (length xs) xs = xs (115)

take 0 xs = [] (116)

take n [] = [] (117)

hold. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

GCs: many properties for free

(f b) 6 a ≡ b v (g a)

Description f = g [g = f]

Definition f b =
∧
{a : b v g a} g a =

⊔
{b : f b 6 a}

Cancellation f (g a) 6 a b v g(f b)
Distribution f (b t b′) = (f b) ∨ (f b′) g(a′ ∧ a) = (g a′) u (g a)

Monotonicity b v b′⇒ f b 6 f b′ a 6 a′⇒ g a v g a′

Exercise 49: Derive from (109) that both f and g are monotonic. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Remark on GCs

Galois connections originate from the
work of the French mathematician
Evariste Galois (1811-1832). Their main
advantages,

simple, generic and highly
calculational

are welcome in proofs in computing,
due to their size and complexity, recall
E. Dijkstra:

elegant ≡ simple and
remarkably effective.

In the sequel we will re-interpret the relational operators we’ve
seen so far as Galois adjoints.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Examples

Not only

z (×y)︸ ︷︷ ︸
f z

6 x ≡ z 6 x (÷y)︸ ︷︷ ︸
g n

but also the two shunting rules,

(h·)X︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ (h◦·)Y︸ ︷︷ ︸
g Y

X (·h◦)︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ Y (·h)︸ ︷︷ ︸
g Y

as well as converse,

X ◦︸︷︷︸
f X

⊆ Y ≡ X ⊆ Y ◦︸︷︷︸
g Y

and so and so forth — are adjoints of GCs: see the next slides.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Converse

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

converse ()◦ ()◦ b R◦ a ≡ a R b

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Exercise 50: Why is it that converse-monotonicity can be strengthened

to an equivalence? �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Example of calculation from the GC

Converse involution (cancellation):

(R◦)◦ = R (118)

Proof of (118):

(R◦)◦ = R

≡ { antisymmetry (”ping-pong”) }

(R◦)◦ ⊆ R ∧ R ⊆ (R◦)◦

≡ { ◦-universal X ◦ ⊆ Y ≡ X ⊆ Y ◦ twice }

R◦ ⊆ R◦ ∧ R◦ ⊆ R◦

≡ { reflexivity (twice) }

True

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational division

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

right-division (·R) (/ R) right-factor
left-division (R·) (R \) left-factor

that is,

X · R ⊆ Y ≡ X ⊆ Y / R (119)

R · X ⊆ Y ≡ X ⊆ R \ Y (120)

Immediate: (R·) and (·R) are monotonic and distribute over union:

R · (S ∪ T) = (R · S) ∪ (R · T)

(S ∪ T) · R = (S · R) ∪ (T · R)

(\R) and (/R) are monotonic and distribute over ∩.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Functions

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

shunting rule (h·) (h◦·) NB: h is a function
“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: R · h = R/h◦

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Other operators

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

implication (R ∩) (R ⇒) b(R ⇒ X)a ≡ bRa⇒ bXa

difference (− R) (R ∪) b (X − R) a ≡
{

b X a
¬ (b R a)

Thus the universal properties of implication and difference,

R ∩ X ⊆ Y ≡ X ⊆ R ⇒ Y (121)

X − R ⊆ Y ≡ X ⊆ R ∪ Y (122)

are GCs — etc, etc

Exercise 51: Show that R ∩ (R ⇒ Y) ⊆ Y (“modus ponens”) holds
and that R − R = ⊥− R = ⊥. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation shrinking

Given relations R : A← B and S : A← A, define R � S : A← B,
pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (123)

cf. diagram:

B

R
��

R�S

��
A A

S
oo

Property (123) states that R � S is
the largest part of R such that, if it
yields an output for an input x , this
must be a ‘maximum, with respect
to S , among all possible outputs of
x by R.

Exercise 52: Show, by indirect equality, that (123) is equivalent to:

R � S = R ∩ S/R◦ (124)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation shrinking

Given relations R : A← B and S : A← A, define R � S : A← B,
pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (123)

cf. diagram:

B

R
��

R�S

��
A A

S
oo

Property (123) states that R � S is
the largest part of R such that, if it
yields an output for an input x , this
must be a ‘maximum, with respect
to S , among all possible outputs of
x by R.

Exercise 53: Show, by indirect equality, that (123) is equivalent to:

R � S = R ∩ S/R◦ (124)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation shrinking

Example Given

Examiner ×Mark Student
Roo =

Examiner Mark Student
Smith 10 John
Smith 11 Mary
Smith 15 Arthur
Wood 12 John
Wood 11 Mary
Wood 15 Arthur

suppose we wish to choose the best mark for each student.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation shrinking

Then S = π1 · R is the relation

Mark Student
π1·Roo =

Mark Student

10 John
11 Mary
12 John
15 Arthur

and

Mark Student
S�(>)oo =

Mark Student

11 Mary
12 John
15 Arthur

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Properties of shrinking

Two fusion rules:

(S · f) � R = (S � R) · f (125)

(f · S) � R = f · (S � (f ◦ · R · f)) (126)

“Chaotic optimization”:

R �> = R (127)

“Impossible optimization”:

R �⊥ = ⊥ (128)

“Brute force” determinization:

R � id = largest simple fragment of R (129)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation overriding

The relational overriding combinator

R † S = S ∪ R ∩ ⊥/S◦ (130)

yields the relation which contains the whole of S and that part of
R where S is undefined — read R † S as “R overridden by S”.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise on relation overriding

Let R : A→ B be given as in
the picture, where
A = {a1, a2, a3, a4, a5} and
B = {b1, b2, b3, b4}:

Represent as a Boolean matrix the following relation overriding:

P = > † R =

a1 a2 a3 a4 a5

b1 0 0 0 0 0

b2 0 0 0 0 0

b3 0 0 0 0 0

b4 0 0 0 0 0

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise on relation overriding

And now this other one:

Q = R † (b4 · a2
◦) =

a1 a2 a3 a4 a5

b1 0 0 0 0 0

b2 0 0 0 0 0

b3 0 0 0 0 0

b4 0 0 0 0 0
�

Exercise 54: (a) Show that ⊥ † S = S , R † ⊥ = R and R † R = R hold.
(b) Infer the universal property:

X ⊆ R † S ≡ X − S ⊆ R ∧ (X − S) · S◦ = ⊥ (131)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 8 — Programming
from GCs

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to take

In exercise 48 we inferred

take 0 xs = []

take n [] = []

from the specification of take (114).

The remaining case is, by pattern matching

take (n + 1) (h : xs) (132)

Can this be inferred from (114) too?

Let us unfold (132) and see what happens. NB: We will need the
following fact about list-prefixing:

s � (h : t) ≡ s = [] ∨ 〈∃ s ′ : s = (h : s ′) : s ′ � t〉 (133)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to take

In exercise 48 we inferred

take 0 xs = []

take n [] = []

from the specification of take (114).

The remaining case is, by pattern matching

take (n + 1) (h : xs) (132)

Can this be inferred from (114) too?

Let us unfold (132) and see what happens. NB: We will need the
following fact about list-prefixing:

s � (h : t) ≡ s = [] ∨ 〈∃ s ′ : s = (h : s ′) : s ′ � t〉 (133)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to take
ys � take (n + 1) (h : xs)

≡ { GC (114) ; prefix (133) }

length ys 6 n + 1 ∧ (ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : ys ′ � xs〉)

≡ { distribution ; length [] 6 n + 1 }

ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : length ys 6 n + 1 ∧ ys ′ � xs〉

≡ { length (h : t) = 1 + length t }

ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : length ys ′ 6 n ∧ ys ′ � xs〉

≡ { GC (114) }

ys = [] ∨ 〈∃ ys ′ : ys = (h : ys ′) : ys ′ � take n xs〉

≡ { fact (133) }

ys � h : take n xs

:: { indirect equality over list prefixing (�) }

take (n + 1) (h : xs) = h : take n xs

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to take

Altogether, we’ve calculated the implementation of take

take 0 _ = []

take _ [] = []

take(n+1) (h:xs) = h:take n xs

from its specification

length ys 6 n ∧ ys � xs ≡ ys � take n xs

(a GC), by indirect equality.

A clear illustration of the FM golden triad:

• specification — what the program should do;

• implementation — how the program does it;

• justification — why the program does it (CbC in this case).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to take

Altogether, we’ve calculated the implementation of take

take 0 _ = []

take _ [] = []

take(n+1) (h:xs) = h:take n xs

from its specification

length ys 6 n ∧ ys � xs ≡ ys � take n xs

(a GC), by indirect equality.

A clear illustration of the FM golden triad:

• specification — what the program should do;

• implementation — how the program does it;

• justification — why the program does it (CbC in this case).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise

Exercise 55: Follow the specification method of the previous example
to formally specify the requirements

The function takeWhile p xs should yield the longest prefix of
xs such that all x in such a prefix satisfy predicate p.

and

The function filter p xs should yield the longest sublist of xs
such that all x in such a sublist satisfy predicate p.

NB: assume the existence of the sublist ordering ys v xs such that e.g.

"ab" v "acb" holds but "ab" v "bca" does not hold. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Putting (more) relational combinators together

We define the lexicographic chaining of two (endo) relations

A A
R;Soo as follows,

R ; S = R ∩ (R◦⇒ S) (134)

recalling (135):

R ∩ X ⊆ Y ≡ X ⊆ (R ⇒ Y)

Thus:

b (R ; S) a ≡ b R a ∧ (a R b ⇒ b S a)

Exercise 56: Show by indirect equality that (134) is the same as the
universal property

X ⊆ R ; S ≡ X ⊆ R ∧ X ∩ R◦ ⊆ S (135)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Putting (more) relational combinators together

We define relational projection as follows:

πg ,f R
def
= g · R · f ◦ B

g
��

A
Roo

f
��

C D
πg,f R
oo

(136)

By indirect equality we obtain:

πg ,f R ⊆ X ≡ R ⊆ g◦ · X · f (137)

— that is,

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

projection (πg ,f) (g◦ · · f)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Putting (more) relational combinators together

Thus:

Projection πg ,f R is the smallest relation which, wherever
b is R-related to a, relates (g b) to (f a).

Regarding relations as sets of pairs, we have

πg ,f R
def
= {(g b, f a) | (b, a) ∈ R } (138)

NB: This generalizes the homonymous SQL projection operator, in
the context of which functions f and g are regarded as attributes.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relations as functions — the power transpose

Implicit in how e.g. Alloy works is the fact that relations can be

represented by functions. Let A
R // B be a relation in

ΛR : A→ P B
ΛR a = {b | b R a}

such that:

ΛR = f ≡ 〈∀ b, a :: b R a ≡ b ∈ f a〉

That is (universal property):

A→ P B

(∈·)
**∼= A→ B

Λ

jj f = ΛR ≡ ∈ · f = R (139)

In words: any relation can be represented by set-valued function.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relations as functions — the “Maybe” transpose

Let A
S // B be a simple relation. Define the function

ΓS : A→ B + 1

such that:

ΓS = f ≡ 〈∀ b, a :: b S a ≡ (i1 b) = f a〉

That is:

A→ B + 1

(i◦1 ·)
**∼= A→ B

Γ

jj f = ΓS ≡ S = i◦1 · f (140)

In words: simple relations can be represented by “pointer”-valued
functions.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

“Maybe” transpose in action (Haskell)

(Or how data becomes functional.)

For finite relations, and assuming these represented extensionally
as lists of pairs, the function

mT = flip lookup :: Eq a⇒ [(a, b)]→ (a→ Maybe b)

implements the “Maybe”-transpose

A→ B + 1

(i◦1 ·)
**∼= A→ B

Γ

jj f = ΓS ≡ S = i◦1 · f

in Haskell.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Data ”functionalization”

Inspired by (140), we may implement

Just◦ ·mT

in Haskell,

pap :: Eq a⇒ [(a, t)]→ a→ t
pap m = unJust · (mT m) where unJust (Just a) = a

which converts a list of key-value pairs into a partial function.

NB: pap abbreviates “partial application”.

In this way, the columnar approach to data processing
can be made functional.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 9 — Predicates
become relations

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

How predicates become relations

Recall from (35) the notation

f

g
= g◦ · f

and, given predicate B A
poo , the relation A X

true
poo , where

true is the everywhere-True constant function.

Now define:

Φp = id ∩ true

p
(141)

Clearly, Φp is the coreflexive relation which represents predicate
p as a binary relation — see the following exercise.

Exercise 57: Show that y Φp x ≡ y = x ∧ p x �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Φeven

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Predicates become relations

Moreover,

Φp · > =
true

p
(142)

thanks to distributive property (57) and

k · R ⊆ k

Then:

Φp · R = R ∩ Φp · > (143)

R · Φq = R ∩ > · Φq (144)

These are called post and pre restrictions of R.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational restrictions

Pre restriction R · Φp:

Post restriction Φq · R:

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Distinguished coreflexives: domain and range

Do you remember...

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦

How about intersecting both with id?

δR = ker R ∩ id (145)

ρR = img R ∩ id (146)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Distinguished coreflexives: domain and range

Clearly:

a′ δR a ≡ a′ = a ∧ 〈∃ b : b R a′ : b R a〉

that is

δR = Φp where p a = 〈∃ b :: b R a〉

Thus δR captures all a which R reacts to.

Dually,

ρR = Φq where q b = 〈∃ a :: b R a〉

Thus ρR captures all b which R hits as target.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Distinguished coreflexives: domain and range

As was to be expected:

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

domain δ (>·) left ⊆ restricted to coreflexives

range ρ (·>) left ⊆ restricted to coreflexives

Spelling out these GC:

δX ⊆ Y ≡ X ⊆ > · Y (147)

ρR ⊆ Y ≡ R ⊆ Y · > (148)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Propositio de homine et capra et lvpo

Recalling the data model (4)

Being
Eats // Being

where
��

Bank
cross // Bank

we specify the move of Beings to the other bank is an example of
relational restriction and overriding:

carry(where,who) = where † (cross · where · Φwho) (149)

In Alloy syntax:

fun carry[where: Being -> one Bank,

who: set Being]: Being -> one Bank

{ where ++ (who <: where).cross }

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 58: Prove the distributive property:

g◦ · (R ∩ S) · f = g◦ · R · f ∩ g◦ · S · f (150)

Then show that

g◦ · Φp · f =
f

g
∩ true

p · g
(151)

holds (both sides of the equality mean g b = f a ∧ p (g b)). �

Exercise 59: Infer

Φq · Φp = Φq ∩ Φp (152)

from properties (144) and (143). �

Exercise 60: Derive (138) from (136). �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 61: (a) From (135) infer:

⊥⇒ R = > (153)

R ⇒> = > (154)

(b) via indirect equality over (134) show that

> ; S = S (155)

holds for any S and that, for R symmetric, we have:

R ; R = R (156)

�

Exercise 62: Show that R − S ⊆ R, R −⊥ = R and R − R = ⊥
hold. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 63: Let students in a course have two numeric marks,

N Student
mark1oo mark2 // N

and define the preorders:

6mark1 = mark1◦ ·6 ·mark1

6mark2 = mark2◦ ·6 ·mark2

Spell out in pointwise notation the meaning of lexicographic ordering

6mark1 ;6mark2

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 64: Show that

R † f = f

holds, arising from (131,122) — where f is a function, of course. �

Exercise 65: Function move (149) could have been defined by

move = wherecross
who

using the following (generic) selective update operator:

R f
p = R † (f · R · Φp) (157)

Prove the equalities: R id
p = R, R f

false = R and R f
true = f · R.

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 66: A relation R is said to satisfy functional dependency

(FD) g → f , written g
R // // f wherever projection πf ,gR (136) is

simple.

1. Recalling (81), prove the equivalence:

g
R // // f ≡ f 6 g · R◦ (158)

2. Show that (158) trivially holds wherever g is injective and R is
simple, for all (suitably typed) f .

3. Prove the composition rule of FDs:

h g
S·Roooo ⇐ h f

Soooo ∧ f g
Roooo (159)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 10 — Contracts

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to pre/post relational restrictions

Looking at the types in a pre
restriction

A

R

��

A
Φpoo

B

... and those in a post
restriction

A

R

��
B B

Φq

oo

we immediately realize they
fit together into a “magic”
square...

A

R

��

A
Φpoo

R

��

⊆

B B
Φq

oo

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to pre/post relational restrictions

Looking at the types in a pre
restriction

A

R

��

A
Φpoo

B

... and those in a post
restriction

A

R

��
B B

Φq

oo

we immediately realize they
fit together into a “magic”
square...

A

R

��

A
Φpoo

R

��

⊆

B B
Φq

oo

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Back to pre/post relational restrictions

Looking at the types in a pre
restriction

A

R

��

A
Φpoo

B

... and those in a post
restriction

A

R

��
B B

Φq

oo

we immediately realize they
fit together into a “magic”
square...

A

R

��

A
Φpoo

R

��

⊆

B B
Φq

oo

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Our good old ”square” (again!!)

A

R

��

A
Φpoo

R

��

⊆

B B
Φq

oo

R · Φp ⊆ Φq · R

What does this mean?

Let us see this for the (simpler) case in which R is a function f :

A

f

��

A
Φpoo

f

��

⊆

B B
Φq

oo

f · Φp ⊆ Φq · f (160)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Contracts

By shunting, (160) is the same as Φp ⊆ f ◦ · Φq · f , therefore meaning:

〈∀ a : p a : q (f a)〉 (161)

by exercise 57.

In words:

For all inputs a such that condition p a holds, the output f a
satisfies condition q.

In software design, this is known as a (functional) contract, which we
shall write

p
f // q (162)

— a notation that generalizes the type of f . Important: thanks to
(143), (160) can also be written: f · Φp ⊆ Φq · >.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Weakest pre-conditions

Note that more than one
(pre) condition p may
ensure (post) condition q
on the outputs of f .

Indeed, contract

false
f // q always

holds, but pre-condition
false is useless (“too
strong”).

The weaker p, the better.
Now, is there a weakest
such p?

See the calculation aside.

f · Φp ⊆ Φq · f
≡ { see above (143) }

f · Φp ⊆ Φq · >
≡ { shunting (32); (142) }

Φp ⊆ f ◦ · trueq
≡ { (37) }

Φp ⊆ true
q·f

≡ { Φp ⊆ id ; (52) }
Φp ⊆ id ∩ true

q·f

≡ { (141) }
Φp ⊆ Φq·f

We conclude that q · f is such a
weakest pre-condition.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Weakest pre-conditions

Notation wp(f , q) = q · f is often used for weakest pre-conditions.

Exercise 67: Calculate the weakest pre-condition wp(f , q) for the
following function / post-condition pairs:

• f x = x2 + 1 , q y = y 6 10 (in R)

• f = N succ // N , q = even

• f x = x2 + 1 , q y = y 6 0 (in R)

�

Exercise 68: Show that q p
g ·foo holds provided r p

foo and

q r
goo hold. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Invariants versus contracts

In case contract

q
f // q

holds (162), we say that q is an invariant of f — meaning that
the “truth value” of q remains unchanged by execution of f .

More generally, invariant q is preserved by function f provided

contract p
f // q holds and p ⇒ q, that is, Φp ⊆ Φq.

Some pre-conditions are weaker than others:

We shall say that w is the weakest pre-condition for f to
preserve invariant q wherever wp(f , q) = w ∧ q, where
Φ(p∧q) = Φp · Φq.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Invariants versus contracts

Recalling the Alcuin puzzle,
let us define the starvation
invariant as a predicate on the
state of the puzzle, passing
the where function as a
parameter w :

Being

w

��

Being
CanEatoo

Farmer

��

⊆

Bank Beingw
oo

R · Φp ⊆ Φq · R

starving w = w · CanEat ⊆ w · Farmer

Recalling (149),

carry(where,who) = where † (cross · where · Φwho)

we also define:

trip b w = carry (w , b) (163)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Invariants versus contracts

Then the contract

starving
trip b // starving

would mean that the function trip b — that should carry b to the
other bank of the river — always preserves the invariant:
wp(trip b, starving) = starving .

Things are not that easy, however: there is a need for a
pre-condition ensuring that b is on the Farmer ’s bank and is the
right being to carry !

Let us see a simpler example first.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

ISBN Name

Title Book
titleoo

Auth
��

isbn

OO

R // User
addr

//

card
��

name

OO

Address

Author Id

u R b means “book b currently on loan to library user u”.

Desired properties:

• same book not on loan to more than one user;

• no book with no authors;

• no two users with the same card Id.

NB: lowercase arrow labels denote functions, as usual.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

Encoding of desired properties:

• no book on loan to more than one user:

Book
R // User is simple

• no book without an author:

Book
Auth // Author is entire

• no two users with the same card Id:

User
card // Id is injective

NB: as all other arrows are functions, they are simple+entire.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

Encoding of desired properties as relational invariants:

• no book on loan to more than one user:

img R ⊆ id (164)

• no book without an author:

id ⊆ ker Auth (165)

• no two users with the same card Id:

ker card ⊆ id (166)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

Now think of two operations on User Book
Roo , one that

returns books to the library and another that records new
borrowings:

return S R = R − S (167)

borrow S R = S ∪ R (168)

Clearly, these operations only change the books-on-loan relation R,
which is conditioned by invariant

inv R = img R ⊆ id (169)

The question is, then: are the following “types”

inv inv
return Soo (170)

inv inv
borrow Soo (171)

ok? We check (170,171) below.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

Checking (170):

inv (return S R)

≡ { inline definitions }

img (R − S) ⊆ id

⇐ { since img is monotonic }

img R ⊆ id

≡ { definition }

inv R

�

So, for all R, inv R ⇒ inv (return S R) holds — invariant inv is
preserved.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

At this point note that (170) was checked only as a warming-up
exercise — we don’t need to worry about it! Why?

As R − S is smaller than R (exercise 62) and “smaller
than injective is injective” (exercise 28), it is immediate
that inv (169) is preserved.

To see this better, unfold and draw definition (169):

inv R =

Book

R

��

User
R◦oo

id

��
⊆

User User
id

oo

As R is on the lower-path of the square, it can always get smaller.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example

This “rule of thumb” does not work for borrow S because, in
general, R ⊆ borrow S R.

So R gets bigger, not smaller, and we have to check the contract:

inv (borrow S R)

≡ { inline definitions }

img (S ∪ R) ⊆ id

≡ { exercise 27 }

img R ⊆ id ∧ img S ⊆ id ∧ S · R◦ ⊆ id

≡ { definition of inv }

inv R ∧ img S ⊆ id ∧ S · R◦ ⊆ id︸ ︷︷ ︸
wp(borrow S,inv)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

In practice, our proposed workflow does not go immediately to the
calculation of the weakest precondition of a contract.

We model-check the contract first, in order to save the process
from childish errors:

What is the point in trying to prove something that a
model checker can easily tell is a nonsense?

This follows a systematic process, illustrated next.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relation Algebra + Alloy round-trip

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

First we write the Alloy model of what we have thus far:

sig Book {
title : one Title,
isbn : one ISBN,
Auth : some Author ,
R : lone User
}
sig User {

name : one Name,
add : some Address,
card : one Id
}
sig Title, ISBN,Author ,

Name,Address, Id { }

fact {
card .˜ card in iden

-- card is injective
}
fun borrow

[S ,R : Book → lone User] :
Book → lone User {

R + S
}
fun return

[S ,R : Book → lone User] :
Book → lone User {

R − S
}

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

As we have seen, return is no problem, so we focus on borrow .

Realizing that most attributes of Book and User don’t matter wrt.
checking borrow , we comment them all, obtaining a much smaller model:

sig Book {R : lone User }
sig User { }
fun borrow

[S ,R : Book → lone User] :
Book → lone User {

R + S
}

Next, we single out the
invariant, making it explicit as a
predicate (aside).

sig Book {R : User }
sig User { }
pred inv {

R in Book → lone User
}
fun borrow

[S ,R : Book → User] :
Book → User {

R + S
}

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

In the step that follows, we make the model dynamic, in the sense
that we need at least two instances of relation R — one before
borrow is applied and the other after.

We introduce Time as a way
of recording such two
moments, pulling R out of
Book

sig Time {r : Book → User }
sig Book { }
sig User { }

and re-writing inv accordingly
(aside).

pred inv [t : Time] {
t · r in Book → lone User
}

Note how
r : Time → (Book → User) is
a function — it yields, for
each t ∈ Time, the relation

Book
r t // User .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

This makes it possible to express contract inv
borrow S // inv in

terms of t ∈ Time,

〈∀ t, t ′ : inv t ∧ r t ′ = borrow S (r t) : inv t ′〉

i.e. in Alloy:

assert contract {
all t, t ′ : Time,S : Book → User |

inv [t] and t ′ · r = borrow [t · r , S]⇒ inv [t ′]
}

Once we check this, for instance running

check contract for 3 but exactly 2 Time

we shall obtain counter-examples. (These were expected...)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

The counter-examples will quickly tell us what the problems are,
guiding us to add the following pre-condition to the contract:

pred pre [t : Time,S : Book → User] {
S in Book → lone User
∼S · (t · r) in iden
}

The fact that this does not yield counter-examples anymore does
not tell us that

• pre is enough in general

• pre is weakest.

This we have to prove by calculation — as we have seen before.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example (Alloy)

Note that pre-conditioned borrow S · Φpre is not longer a
function, because it is not entire anymore.

We can encode such a relation in Alloy in an easy-to-read way, as a
predicate structured in two parts — pre-condition and
post-condition:

pred borrow [t, t ′ : Time,S : Book → User] {
-- pre-condition
S in Book → lone User
∼S · (t · r) in iden
-- post-condition
t ′ · r = t · r + S
}

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Alloy + Relation Algebra round-trip

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Summary

• The Alloy + Relation Algebra round-trip enables us to take
advantage of the best of the two verification strategies.

• Diagrams of invariants help in detecting which contracts
don’t need to be checked.

• Functional specifications are good as starting point but soon
evolve towards becoming relations, comparable to the
methods of an OO programming language.

• Time was added to the model just to obtain more than one
”state”. In general, Time will be linearly ordered so that the
traces of the model can be reasoned about.5

5In Alloy, just declare: open util/ordering[Time].

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example revisited

More detailed data model of our library with invariants captured
by diagram

ISBN

M

�

ISBN × UID

R

�

π1oo π2 // UID

N

�
⊇ ⊆

Title ×
Publisher >

// Date
Name×
Address×
Phone

>
oo

(172)

where

• M — records books on loan, identified by ISBN;

• N — records library users (identified by user id’s in UID);

(both simple) and

• R — records loan dates.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example revisited

The two squares in the diagram impose bounds on R:

• Non-existing books cannot be on loan (left square);

• Only known users can take books home (right square).

(NB: in the database terminology these are known as integrity
constraints.)

Exercise 69: Add variables to both squares in (172) so that the same
conditions are expressed pointwise. Then show that the conjunction of
the two squares means the same as assertion

R◦ ⊆ 〈M◦ · >,N◦ · >〉 (173)

and draw this in a diagram. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example revisited

Exercise 70: Consider implementing M, R and N as files in a relational
database. For this, think of operations on the database such as, for
example, that which records new loans (K):

borrow(K , (M,R,N)) = (M,R ∪ K ,N) (174)

It can be checked that the pre-condition

pre-borrow(K , (M,R,N)) = R · K◦ ⊆ id

is necessary for maintaining (172) (why?) but it is not enough. Calculate

— for a rectangle in (172) of your choice — the corresponding clause to

be added to pre-borrow . �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Library loan example revisited

Exercise 71: The operations that buy new books

buy(X , (M,R,N)) = (M ∪ X ,R,N) (175)

and register new users

register(Y , (M,R,N)) = (M,R,N ∪ Y) (176)

don’t need any pre-conditions. Why? (Hint: compute their WP.) �

NB: see annex on proofs by ⊆-monotonicity for a strategy
generalizing the exercise above.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relational contracts

Finally, let the following definition

p
R // q ≡ R · Φp ⊆ Φq · R (177)

generalize functional contracts (160) to arbitrary relations,
meaning:

〈∀ b, a : b R a : p a⇒ q b〉 (178)

— see the exercise below.

Exercise 72: Sow that an alternative way of stating (177) is

p
R // q ≡ R · Φp ⊆ Φq · > (179)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercise 19 (continued)

Exercise 73: Recalling exercise 19, let the following relation specify
that two dates are at least one week apart in time:

d Ok d ′ ≡ | d − d ′ | >1 week

Looking at the type diagram below right, say in your own words the
meaning of the invariant specified by the relational type (??) statement
below, on the left:

ker (home ∪ away)− id
date // Ok

G
home∪away //

date
��

T

D G

home∪away

OO

date
oo

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Case study: railway topologies

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Case study: railway topologies

Sw N
Soo N

Roo P // Sl

where

Sw − switches (‘agulhas ′)

Sl − signals (‘sinais ′)

�

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Case study: railway topologies

Sw N
Soo N

Roo P // Sl

Switches:

switchOk(S ,R,P) = δS ⊆ R◦ · (6=) · R

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Case study: railway topologies

Sw N
Soo N

Roo P // Sl

Add a switch:

addSwitch (s, n) (S ,R,P) = (S ∪ s · n◦,R,P)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Case study: railway topologies

switchOk (addSwitch (s, n) (S ,R,P))

≡ { }

δ(S ∪ s · n◦) ⊆ R◦ · (6=) · R

≡ { }

switchOk (S ,R,P) ∧ n · > · n◦ ⊆ R◦ · (6=) · R

≡ { }

switchOk (S ,R,P) ∧ > ⊆ n◦ · R◦ · (6=) · R · n

≡ { }

switchOk (S ,R,P) ∧ 〈∃ n1, n2 : n1 6= n2 : n R◦ n1 ∧ n2 R n〉

≡ { }

switchOk (S ,R,P) ∧ 〈∃ n1, n2 : n1 6= n2 : n1 R n ∧ n2 R n〉︸ ︷︷ ︸
WP

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Case study: railway topologies

Sw N
Soo N

Roo P // Sl

Switches:

switchOk(S ,R,P) = δS ⊆ R◦ · (6=) · R

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Class 11 — Theorems for
free

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Parametric polymorphism by example

Function

countBits : IN0← Bool?

countBits [] = 0
countBits(b:bs) = 1 + countBits bs

and

countNats : IN0← IN?

countNats [] = 0
countNats(b:bs) = 1 + countNats bs

are both subsumed by generic (parametric):

count : (∀a) IN0← a?

count [] = 0
count(a:as) = 1 + count as

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Parametric polymorphism: why?

• Less code (specific solution = generic solution +
customization)

• Intellectual reward

• Last but not least, quotation from Theorems for free!, by
Philip Wadler [6]:

From the type of a polymorphic function we can
derive a theorem that it satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

• No doubt: free theorems are very useful!

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following ”grammar”
of types:

t ::= t ′ ← t ′′

t ::= F(t1, . . . , tn) type constructor F
t ::= v type variables v , cf. polymorphism

What does it mean for f to be parametrically polymorphic?

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all
such Rv are functions).

• Rt be a relation defined inductively as follows:

Rt:=v = Rv (180)

Rt:=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) (181)

Rt:=t′←t′′ = Rt′ ← Rt′′ (182)

Questions: What does F in the RHS of (181) mean? What kind
of relation is Rt′ ← Rt′′? See next slides.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Background: relators

Parametric datatype G is said to be a relator [2] wherever, given a
relation from A to B, GR extends R to G-structures: it is a relation

A

R

��

GA

GR
��

B GB

(183)

from GA to GB which obeys the following properties:

Gid = id (184)

G (R · S) = (G R) · (G S) (185)

G(R◦) = (G R)◦ (186)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (187)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relators: “Maybe” example

A

R

��

GA = 1 + A

GR=id+R

��
B GB = 1 + B

(Read 1 + A as “maybe A”)

Unfolding GR = id + R:

y(id + R)x

≡ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] }

y(i1 · i◦1 ∪ i2 · R · i◦2)x

≡ { relational union (48); image }

y(img i1)x ∨ y(i2 · R · i◦2)x

≡ { let NIL be the inhabitant of the singleton type }

y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relators: R∗ example

Take FX = X ?.

Then, for some B A
Roo , relator B? A?

R?
oo is the relation

R∗ = [nil , cons · (R × R∗)] · out (188)

Why? Look at this diagram:

A

R
��

A∗

R∗

��

out // 1 + A× A∗

id+id×R∗
��

B B∗ 1 + B × B∗
in

oo 1 + A× B∗
id+R×id
oo

NB: in = [nil , cons] where nil = [] and cons (h, t) = h : t.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Relators: R∗ example

Take FX = X ?.

Then, for some B A
Roo , relator B? A?

R?
oo is the relation

R∗ = [nil , cons · (R × R∗)] · out (188)

Why? Look at this diagram:

A

R
��

A∗

R∗

��

out // 1 + A× A∗

id+id×R∗
��

B B∗ 1 + B × B∗
in

oo 1 + A× B∗
id+R×id
oo

NB: in = [nil , cons] where nil = [] and cons (h, t) = h : t.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

About R∗

Then:

R∗ · in = [nil , cons · (R × R∗)]

≡ { in = [nil , cons] etc }{
R∗ · nil = nil
R∗ · cons = cons · (R × R∗)

that is: {
y R∗ [] ≡ y = []
y R∗ (h : t) ≡ 〈∃ b, x : y = (b : x) : b R a ∧ x R∗ t〉

In case R := f , R∗ = map f .

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 74: Inspect the meaning of properties (184) and (186) for the

list relator R∗ defined above. �

Exercise 75: Show that the identity relator I, which is such that

I R = R and the constant relator K (for a given data type K)

which is such that K R = idK are indeed relators. �

Exercise 76: Show that (Kronecker) product

A

R

��

C

S

��

G(A,C) = A× C

G(R,S)=R×S
��

B D G(B,D) = B × D

is a (binary) relator. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Background: “Reynolds arrow” operator

The following relation on functions

f (R ← S)g ≡ f · S ⊆ R · g A

f
��

B
Soo

g
��

C D
R
oo

(189)

is another instance of our ”magic rectangle”.

That is to say, A B
Soo

C D
Roo

CA DBR←Soo

For instance, f (id ← id)g ≡ f = g that is, id ← id = id

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Free theorem (FT) of type t

The free theorem (FT) of type t is the following
(remarkable) result due to J. Reynolds [5],
advertised by P. Wadler [6] and re-written by
Backhouse [1] in the pointfree style:

Given any function θ : t, and V as
above, then θ Rt θ holds, for any
relational instantiation of type variables
in V . J.C. Reynolds

(1935–2013)

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any polymorphic function of type t

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

First example (id)

The target function:

θ = id : a← a

Calculation of Rt=a←a:

Ra←a

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra ← Ra

Calculation of FT (Ra abbreviated to R):

id(R ← R)id

≡ { (189) }

id · R ⊆ R · id

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

First example (id)

In case R is a function f , the FT theorem boils down to id ’s
natural property:

id · f = f · id

cf.

a

f
��

a
idoo

f
��

b b
id
oo

which can be read alternatively as stating that id is the unit of
composition.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Second example (reverse)

The target function: θ = reverse : a? ← a?.

Calculation of Rt=a?←a? :

Ra?←a?

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra? ← Ra?

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) }

Ra
? ← Ra

?

where s R?s ′ is given by (188). The calculation of FT follows.

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Second example (reverse)

The FT itself will predict (Ra abbreviated to R):

reverse(R?← R?)reverse

≡ { definition f (R ← S)g ≡ f · S ⊆ R · g }

reverse · R? ⊆ R? · reverse

In case R is a function r , the FT theorem boils down to reverse’s
natural property:

reverse · r? = r? · reverse

that is,

reverse [r a | a← l] = [r b | b← reverse l]

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Second example (reverse)

Further calculation (back to R):

reverse · R? ⊆ R? · reverse

≡ { shunting rule (32) }

R? ⊆ reverse◦ · R? · reverse

≡ { going pointwise (8, 23) }

〈∀ s, r :: s R?r ⇒ (reverse s)R?(reverse r)〉

An instance of this pointwise version of reverse-FT will state that,
for example, reverse will respect element-wise orderings (R :=<):

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Third example: FT of sort

Our next example calculates the FT of

sort : a? ← a? ← (Bool ← (a× a))

where the first parameter stands for the chosen ordering relation,
expressed by a binary predicate:

sort(R(a?←a?)←(Bool←(a×a)))sort

≡ { (181, 180, 182); abbreviate Ra := R }

sort((R? ← R?)← (RBool ← (R × R)))sort

≡ { Rt:=Bool = id (constant relator) — cf. exercise 75 }

sort((R? ← R?)← (id ← (R × R)))sort

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Third example: FT of sort

sort((R? ← R?)← (id ← (R × R)))sort

≡ { (189) }

sort · (id ← (R × R)) ⊆ (R? ← R?) · sort

≡ { shunting (32) }

(id ← (R × R)) ⊆ sort◦ · (R? ← R?) · sort

≡ { introduce variables f and g (8, 23) }

f (id ← (R × R))g ⇒ (sort f)(R? ← R?)(sort g)

≡ { (189) twice }

f · (R × R) ⊆ g ⇒ (sort f) · R? ⊆ R? · (sort g)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Third example: FT of sort
Case R := r :

f · (r × r) = g ⇒ (sort f) · r? = r? · (sort g)

≡ { introduce variables }〈
∀ a, b ::

f (r a, r b) = g(a, b)

〉
⇒

〈
∀ l ::

(sort f)(r? l) = r?(sort g l)

〉
Denoting predicates f , g by infix orderings 6,�:〈

∀ a, b ::
r a 6 r b ≡ a � b

〉
⇒

〈
∀ l ::

sort (6)(r? l) = r?(sort (�) l)

〉
That is, for r monotonic and injective,

sort (6) [r a | a← l]

is always the same list as

[r a | a← sort (�) l]

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 77: Let C be a nonempty data domain and let and c ∈ C .
Let c be the “everywhere c” function, recall (25). Show that the free
theorem of c reduces to

〈∀ R :: R ⊆ >〉 (190)

�

Exercise 78: Calculate the free theorem associated with the projections

A A× B
π1oo π2 // B and instantiate it to (a) functions; (b)

coreflexives. Introduce variables and derive the corresponding pointwise

expressions. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 79: Consider higher order function const: a -> b -> a

such that, given any x of type a, produces the constant function const x .
Show that the equalities

const(f x) = f · (const x) (191)

(const x) · f = const x (192)

(const x)◦ · (const x) = > (193)

arise as corollaries of the free theorem of const. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 80: The following is a well-known Haskell function

filter :: (a→ B)→ [a]→ [a]

Calculate the free theorem associated with its type

filter : a? ← a? ← (Bool ← a)

and instantiate it to the case where all relations are functions. �

Exercise 81: In many sorting problems, data are sorted according to a
given ranking function which computes each datum’s numeric rank (eg.
students marks, credits, etc). In this context one may parameterize
sorting with an extra parameter f ranking data into a fixed numeric
datatype, eg. the integers: serial : (a→ IN)→ a? → a?.

Calculate the FT of serial . �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 82: Consider the following function from Haskell’s Prelude:

findIndices :: (a→ B)→ [a]→ [Z]
findIndices p xs = [i | (x , i)← zip xs [0 . .], p x]

which yields the indices of elements in a sequence xs which satisfy p. For

instance, findIndices (< 0) [1,−2, 3, 0,−5] = [1, 4]. Calculate the FT of

this function. �

Exercise 83: Choose arbitrary functions from Haskell’s Prelude and

calculate their FT. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Exercises

Exercise 84: Wherever two equally typed functions f , g such that
f a 6 g a, for all a, we say that f is pointwise at most g and write

f
.
6 g . In symbols:

f
.
6 g = f ⊆ (6) · g cf. diagram A

f

��
g

��
⊆

B B
6
oo

(194)

Show that implication

f
.
6 g ⇒ (map f)

.

6? (map g) (195)

follows from the FT of the function map : (a→ b)→ a? → b?. �

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender’s home page:

http: // www-ps. iai. uni-bonn. de/ ft

Relators in our calculational style are implemented in this
automatic generator by structural lifting.

Exercise 85: Infer the FT of the following function, written in Haskell

syntax,

while :: (a→ B)→ (a→ a)→ (a→ b)→ a→ b
while p f g x = if ¬ (p x) then g x else while p f g (f x)

which implements a generic while-loop. Derive its corollary for functions

and compare your result with that produced by the tool above. �

http://www-ps.iai.uni-bonn.de/ft

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Background — Eindhoven quantifier calculus

Trading:

〈∀ k : R ∧ S : T 〉 = 〈∀ k : R : S ⇒ T 〉 (196)

〈∃ k : R ∧ S : T 〉 = 〈∃ k : R : S ∧ T 〉 (197)

de Morgan:

¬〈∀ k : R : T 〉 = 〈∃ k : R : ¬T 〉 (198)

¬〈∃ k : R : T 〉 = 〈∀ k : R : ¬T 〉 (199)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (200)

〈∃ k : k = e : T 〉 = T [k := e] (201)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

Background — Eindhoven quantifier calculus
Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (202)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (203)

Rearranging-∀:

〈∀ k : R ∨ S : T 〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : S : T 〉 (204)

〈∀ k : R : T ∧ S〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : R : S〉 (205)

Rearranging-∃:

〈∃ k : R : T ∨ S〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : R : S〉 (206)

〈∃ k : R ∨ S : T 〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : S : T 〉 (207)

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉(208)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉(209)

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

References

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations
and Galois connections.
SCP, 15(1–2):153–196, 2004.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.
Polynomial relators.
In AMAST’91, pages 303–362. Springer-Verlag, 1992.

D. Jackson.
Software Abstractions: Logic, Language, and Analysis.
The MIT Press, Cambridge Mass., 2012.
Revised edition, ISBN 0-262-01715-2.

C.B. Jones.
Software Development — A Rigorous Approach.
Series in Computer Science. Prentice-Hall International, Upper
Saddle River, NJ, USA, 1980.
C.A.R. Hoare (series editor).

Motivation Binary Relations Design patterns Programming from GCs Contracts TFF Background

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513–523, 1983.

P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347–359,
London, Sep. 1989. ACM.

	Motivation
	Binary Relations
	Design patterns
	Programming from GCs
	Contracts
	TFF
	Background

