CSI - A Calculus for Information Systems (2022/23)

Class 1 - About FM

Global picture

Concerning software 'engineering':

Software
 Process

 Product (2)

Formal methods provide an answer to the question mark above.

Global picture

Concerning software 'engineering':

Software Engineering

Civil Engineering

Gates Computer Science Building
30-Year Life Cycle Cost
(in millions of dollars)

Credits: Zhenjiang Hu, NII, Tokyop JP

Have you ever used a FM?

Of course you have! Check this:

A problem
My three children
were born at a 3 year
interval rate.
Altogether, they are as old as me. I am 48. How old are they?

A model
$x+(x+3)+(x+6)=48$

Some calculations

Have you ever used a FM?

Of course you have! Check this:

A problem
My three children
were born at a 3 year
interval rate.
Altogether, they are as old as me. I am 48. How old are they?

A model

$$
x+(x+3)+(x+6)=48
$$

- maths description of the problem.

Some calculations

Have you ever used a FM?

Of course you have! Check this:

A problem
My three children
were born at a 3 year
interval rate.
Altogether, they are as old as me. I am 48. How old are they?

A model

$$
x+(x+3)+(x+6)=48
$$

- maths description of the problem.

Some calculations

$$
\begin{gathered}
3 x+9=48 \\
\equiv \quad\{\text { "al-djabr" rule }\} \\
3 x=48-9 \\
\equiv \quad\{\text { "al-hatt" rule }\} \\
\\
x=16-3
\end{gathered}
$$

The solution

Have you ever used a FM?

Of course you have! Check this:

A problem
My three children
were born at a 3 year
interval rate.
Altogether, they are as old as me. I am 48. How old are they?

A model

$$
x+(x+3)+(x+6)=48
$$

- maths description of the problem.

Some calculations

$$
\begin{gathered}
3 x+9=48 \\
\equiv \quad\{\text { "al-djabr" rule }\} \\
\\
\equiv \quad \begin{array}{c}
3 x=48-9
\end{array} \\
\quad \begin{array}{l}
\text { "al-hatt" rule }\}
\end{array} \\
x=16-3
\end{gathered}
$$

The solution

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

Have you ever used a FM?

"Al-djabr" rule ? "al-hatt" rule ?

al-djabr

$$
x-z \leq y \equiv x \leq y+z
$$

all-hatt

$$
\begin{equation*}
x * z \leq y \equiv x \leq y * z^{-1} \tag{z>0}
\end{equation*}
$$

These rules that you have used so many times were discovered by Persian mathematicians, notably by Al-Huwarizmi (9c AD).

NB: "algebra" stems from "al-djabr" and "algarismo" from Al-Huwarizmi.

Software problems

Now, suppose the problem was

Please write a
program to list the
students of my class
ordered by their marks.

Is there a mathematical model for this problem?

Software problems

Now, suppose the problem was

Please write a program to list the
students of my class
ordered by their marks.

Is there a mathematical model for this problem?

Yes, of course there is - see aside:
sort $\subseteq \frac{\text { bag }}{\text { bag }} \cap \frac{\text { true }}{\text { sorted }}$

where

$$
\begin{aligned}
& \text { sorted }=\ldots \text { marks } \ldots \\
& \text { bag }=\ldots .
\end{aligned}
$$

Software problems

Now, suppose the problem was

Please write a program to list the students of my class ordered by their marks.

Is there a mathematical model for this problem?

Yes, of course there is - see aside:
sort $\subseteq \frac{\text { bag }}{\text { bag }} \cap \frac{\text { true }}{\text { sorted }}$

where

$$
\begin{aligned}
& \text { sorted = . . marks . . . } \\
& \text { bag }=\ldots .
\end{aligned}
$$

But,

- what do $X \cap Y, \frac{f}{g}$... mean here?
- Is there an "algebra" for such symbols?

Software problems

Now, suppose the problem was

Please write a program to list the students of my class ordered by their marks.

Is there a mathematical model for this problem?

Yes, of course there is - see aside:
sort $\subseteq \frac{\text { bag }}{\text { bag }} \cap \frac{\text { true }}{\text { sorted }}$

where

$$
\begin{aligned}
& \text { sorted }=\ldots \text { marks } \ldots \\
& \text { bag }=\ldots .
\end{aligned}
$$

But,

- what do $X \cap Y, \frac{f}{g}$... mean here?
- Is there an "algebra" for such symbols?

Yes - Wait and see :-)

FM — scientific software design

FM - simplified life-cycle

Notation matters!

Are you sure there isn't a simpler means of writing
'The Pharaoh had 10,000 solutiers?'

Credits: Cliff B. Jones 1980 [4]

Well-known FM notations / tools / resources

Just a sample, as there are many - follow the links (in alphabetic order):

```
Notations:
- Alloy
- B-Method
- JML
- mCRL2
- SPARK-Ada
- TLA+
- VDM
- Z
```


Tools:

- Alloy 4
- Coq
- Frama-C
- NuSMV
- Overture

Resources:

- Formal Methods Europe
- Formal Methods wiki (Oxford)

60+ years ago (1958-)

Hoare Logic - "turning point" (1968)

Floyd-Hoare logic for program correctness dates back to 1968:

```
Summary.
This paper illustrates the manner in which the axiomatic method may be applied to the rigorous definition of a programming language. It deals with the dynamic aspects of the behaviour of a program, which is an aspect considered to be most far removed from traditional mathematics. However, it appears that the axiomatic method not only shows how programmine is closely related to traditional branches of logic and mathematics, but also formalises the techniques which may be used to prove the correctness of a program over its intended area of application.
```


Inv/pre/post

Starting where (pure) functions stop:

```
PPrelude> :{
[Prelude| get :: [a] -> (a, [a])
[Prelude| get x = (head x, tail x)
[Prelude| :}
PPrelude>
PPrelude> get [1..10]
    (1, [2,3,4,5,6,7,8,9,10])
[Prelude> get [1]
    (1,[])
[Prelude> get []
    (*** Exception: Prelude.head: empty list
```


Inv/pre/post

Error handling...

```
[Prelude> get [] = Nothing ; get x = Just (head x, tail x)
[Prelude> get []
Nothing
Prelude> get [1]
Just (1, [])
PPrelude> :t get
get :: [a] -> Maybe (a, [a])
Prelude>
```


Inv/pre/post

Pre-conditions?

get :: [a] -> (a, [a])
pres $\mathrm{x}=\mathrm{x} /=$ []
get $\mathrm{x}=($ head x , tail x)

Not everything is a list, a tree or a stream...
get :: \{a\} -> (a, \{a\})
pres $x=x /=\{ \}$
get $\mathrm{x}=$ let $\mathrm{a}=$ choice x in ($a, x-\{a\}$)

Inv/pre/post

pre...? choice...?

- Non-determinism

- Parallelism
- Abstraction

Inv/pre/post

pre...? choice...?

- Non-determinism
- Parallelism
- Abstraction

Functions not enough!

Solution?

Relations (which extend functions)

Is "everything" a relation?

How to "dematerialize" them?

Software is pre-science - formal but not fully calculational
Software is too diverse - many approaches, lack of unity
Software is too wide a concept - from assembly to quantum programming

Can you think of a unified theory able to express and reason about software in genera?

Put in another way:
Is there a "lingua franca" for the software sciences?

Check the pictures...

Check the pictures

(Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)

Check the pictures

Check the pictures

Which graphical device have you found common to all pictures?

11

Arrows everywhere

Arrows! Thus we identify a (graphical) ingredient common to describing (several) different fields of human activity.

For this ingredient to be able to support a generic theory of systems, mind the remarks:

- We need a generic notation able to cope with very distinct problem domains, e.g. process theory versus database theory, for instance.
- Notation is not enough - we need to reason and calculate about software.
- Semantics-rich diagram representations are welcome.
- System description may have a quantitative side too.

Class 2 - Going Relational

Relation algebra

In previous courses you may have used predicate logic, finite automata, grammars etc to capture the meaning of real-life problems.

Question:

Is there a unified formalism for formal modelling?

Relation algebra

Historically, predicate logic was not the first to be proposed:

- Augustus de Morgan
(1806-71) - recall de Morgan laws - proposed a Logic of Relations as early as 1867.
- Predicate logic appeared later.

Perhaps de Morgan was right in the first place: in real life, "everything is a relation"...

Everything is a relation...

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)

Arrow notation for relations

The picture is a collection of relations - vulg. a semantic network - elsewhere known as a (binary) relational system.

However, in spite of the use of arrows in the picture (aside) not many people would write

$$
\text { mother_of : People } \rightarrow \text { People }
$$

as the type of relation mother_of.
Lady Catherine de Bourgh

Pairs

Consider assertions

$$
\begin{array}{rcl}
0 & \leqslant & \pi \\
\text { Catherine } & \text { isMotherOf } & \text { Anne } \\
3 & =(1+) & 2
\end{array}
$$

They are statements of fact concerning various kinds of object real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs
$(0, \pi)$
(Catherine, Anne)
$(3,2)$
respectively.

Sets of pairs

So, we might have written instead:

$$
\begin{aligned}
(0, \pi) & \in \leqslant \\
\text { (Catherine, Anne) } & \in \text { isMotherOf } \\
(3,2) & \in(1+)
\end{aligned}
$$

What are (\leqslant), isMotherOf, $(1+)$?

- they could be regarded as sets of pairs
- better: they should be regarded as binary relations.

Therefore,

- orders - eg. (\leqslant) - are special cases of relations
- functions - eg. succ $=(1+)$ - are special cases of relations.

Binary Relations

Binary relations are typed:
Arrow notation. Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).
A, B are types.
Writing

$$
B \stackrel{R}{\leftarrow} A
$$

means the same as

$$
A \xrightarrow{R} B .
$$

Notation

Infix notation

The usual infix notation used in natural language - eg. Catherine isMotherOf Anne - and in maths - eg. $0 \leqslant \pi-$ extends to arbitrary $B<R$ R : we write $b R$ a
to denote that $(b, a) \in R$.

Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R :

Matrix M:

| | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ |
| $\mathbf{3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{4}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{5}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{8}$ | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 |
| $\mathbf{9}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ |
| $\mathbf{1 0}$ | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ |
| $\mathbf{1 1}$ | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 |

In this case $A=B=\{1 . .11\}$. Relations $A \leftarrow^{R} A$ over a single type are also referred to as (directed) graphs.

Alloy: where "everything is a relation"

Declaring binary relation $A \xrightarrow{R} B$ is Alloy (aside).

Alloy is a tool designed at MIT (http://alloy. mit.edu/alloy)

We shall be using Alloy [3] in this course.

sig B \{\}
$\operatorname{sig} A\{R: B\}$
-- Checking that R exists
run \{ some R \}

Line 10, Column 16 [modified]

Functions are relations

Lowercase letters (or identifiers starting by one such letter) will denote special relations known as functions, eg. f, g, succ, etc.

We regard function $f: A \longrightarrow B$ as the binary relation which relates b to a iff $b=f a$. So,

$$
\begin{equation*}
b f a \text { literally means } b=f a \tag{1}
\end{equation*}
$$

Therefore, we generalize

$$
\begin{gathered}
B \leftarrow_{f}^{f} A \\
b=f a
\end{gathered}
$$

$$
\begin{gathered}
B \underset{b}{<}=\frac{R}{b} A
\end{gathered}
$$

Exercise

Taken from Propositiones ad acuendos iuuenes ("Problems to Sharpen the Young"), by abbot Alcuin of York ($\dagger 804$):
XVIII. Propositio de homine et capra et lvpo. Homo quidam debebat ultra fluuium transferre lupum, capram, et fasciculum cauli. Et non potuit aliam nauem inuenire, nisi quae duos tantum ex ipsis ferre ualebat. Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa omnino transferret. Dicat, qui potest, quomodo eis illaesis transire potuit?

Exercise

XVIII. Fox, goose and bag of beans puzzle. A farmer goes to market and purchases a fox, a goose, and a bag of beans. On his way home, the farmer comes to a river bank and hires a boat. But in crossing the river by boat, the farmer could carry only himself and a single one of his purchases - the fox, the goose or the bag of beans. (If left alone, the fox would eat the goose, and the goose would eat the beans.) Can the farmer carry himself and his purchases to the far bank of the river, leaving each purchase intact?

Identify the main types and relations involved in the puzzle and draw them in a diagram.

PRopositio de homine et capra et lvpo

Data types:

$$
\begin{align*}
\text { Being } & =\{\text { Farmer, Fox, Goose, Beans }\} \tag{2}\\
\text { Bank } & =\{\text { Left, Right }\} \tag{3}
\end{align*}
$$

Relations:

Bank $\xrightarrow{\text { cross }}$ Bank

Propositio de homine et capra et lvpo

Specification source written in Alloy:

Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:

Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? - specification too loose...

Composition

Recall function

 composition (aside).We extend $f \cdot g$ to relational composition
$R \cdot S$ in the obvious way:

$$
b(R \cdot S) c \equiv\langle\exists a:: b R a \wedge a S c\rangle
$$

Composition

That is:

$$
\begin{align*}
& B \underset{R \cdot S}{\stackrel{R}{\leftrightarrows} A \stackrel{S}{\leftrightarrows}} C \\
& b(R \cdot S) c \equiv\langle\exists a:: b R \text { a } \wedge a S c\rangle \tag{6}
\end{align*}
$$

Example: Uncle $=$ Brother \cdot Parent, that expands to u Uncle $c \equiv\langle\exists p:: u$ Brother $p \wedge p$ Parent $c\rangle$

Note how this rule removes \exists when applied from right to left.
Notation $R \cdot S$ is said to be point-free (no variables, or points).

Check generalization

Back to functions, (6) becomes ${ }^{1}$

$$
\begin{aligned}
& b(f \cdot g) c \equiv\langle\exists a:: b f a \wedge a g c\rangle \\
& \equiv \quad\{a g \subset \text { means } a=g \subset(1)\} \\
& \langle\exists a:: b f a \wedge a=g c\rangle \\
& \equiv \quad\{\exists \text {-trading (197) ; bf a means } b=f a(1)\} \\
& \langle\exists a: a=g c: b=f a\rangle \\
& \equiv \quad\{\exists \text {-one point rule (201) }\} \\
& b=f\left(\begin{array}{ll}
g & c
\end{array}\right)
\end{aligned}
$$

So, we easily recover what we had before (5).
${ }^{1}$ Check the appendix on predicate calculus.

Relation inclusion

Relation inclusion generalizes function equality:

Equality on functions

$$
\begin{equation*}
f=g \equiv\langle\forall a:: f a=g a\rangle \tag{7}
\end{equation*}
$$

generalizes to inclusion on relations:

$$
\begin{equation*}
R \subseteq S \equiv\langle\forall b, a: b R a: b S a\rangle \tag{8}
\end{equation*}
$$

(read $R \subseteq S$ as " R is at most S ").

Inclusion is typed:

For $R \subseteq S$ to hold both R and S need to be of the same type, say $B \leftarrow^{R, S} A$.

Relation inclusion

$R \subseteq S$ is a partial order, that is, it is
reflexive,

$$
\begin{equation*}
i d \subseteq R \tag{9}
\end{equation*}
$$

transitive

$$
\begin{equation*}
R \subseteq S \wedge S \subseteq Q \Rightarrow R \subseteq Q \tag{10}
\end{equation*}
$$

and antisymmetric:

$$
\begin{equation*}
R \subseteq S \wedge S \subseteq R \equiv R=S \tag{11}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
R=S \equiv\langle\forall b, a:: b R a \equiv b S a\rangle \tag{12}
\end{equation*}
$$

Relational equality

Both (12) and (11) establish relation equality, resp. in PW/PF fashion.

Rule (11) is also called "ping-pong" or cyclic inclusion, often taking the format

$$
\begin{array}{lll}
& R & \\
\subseteq & & \{\ldots .\} \\
& S & \\
\subseteq & & \{\ldots .\} \\
& R & \\
: & & \{\text { "ping-pong" (11) }\} \\
& R=S
\end{array}
$$

Indirect relation equality

Most often we prefer an indirect way of proving relation equality:

Indirect equality rules:

$$
\begin{align*}
R=S & \equiv\langle\forall X:: \quad(X \subseteq R \equiv X \subseteq S)\rangle \tag{13}\\
& \equiv\langle\forall X:: \quad(R \subseteq X \equiv S \subseteq X)\rangle \tag{14}
\end{align*}
$$

Compare with eg. equality of sets in discrete maths:

$$
A=B \equiv\langle\forall a:: a \in A \equiv b \in B\rangle
$$

Indirect relation equality

Special relations

Every type $B \longleftarrow<A$ has its

- bottom relation $B \leftarrow^{\perp} A$, which is such that, for all b, a, $b \perp a \equiv$ FALSE
- topmost relation $B \longleftarrow^{\top} A$, which is such that, for all b, a, $b \top a \equiv$ TRUE

Every type $A \longleftarrow A$ has the

- identity relation $A<{ }^{\text {id }} A$ which is nothing but function

$$
\begin{equation*}
i d a=a \tag{15}
\end{equation*}
$$

Clearly, for every R,

$$
\begin{equation*}
\perp \subseteq R \subseteq \top \tag{16}
\end{equation*}
$$

Diagrams

Assertions of the form $X \subseteq Y$ where X and Y are relation compositions can be represented graphically by square-shaped diagrams, see the following exercise.

Exercise 1: Let a $S n$ mean: "student a is assigned number n". Using (6) and (8), check that assertion

means that numbers are assigned to students sequentially. \square

Diagrams

Pointfree:

$S \cdot R \subseteq P \cdot Q$

Pointwise:

Exercises

Exercise 2: Use (6) and (8) and predicate calculus to show that

$$
\begin{align*}
& R \cdot i d=R=i d \cdot R \tag{17}\\
& R \cdot \perp=\perp=\perp \cdot R \tag{18}
\end{align*}
$$

hold and that composition is associative:

$$
\begin{equation*}
R \cdot(S \cdot T)=(R \cdot S) \cdot T \tag{19}
\end{equation*}
$$

Exercise 3: Use (7), (8) and predicate calculus to show that

$$
f \subseteq g \equiv f=g
$$

holds (moral: for functions, inclusion and equality coincide).
(NB: see the appendix for a compact set of rules of the predicate calculus.)

Converses

Every relation $B<^{R} A$ has a converse $B \xrightarrow{R^{\circ}} A$ which is such that, for all a, b,

$$
\begin{equation*}
a\left(R^{\circ}\right) b \equiv b R a \tag{20}
\end{equation*}
$$

Note that converse commutes with composition

$$
\begin{equation*}
(R \cdot S)^{\circ}=S^{\circ} \cdot R^{\circ} \tag{21}
\end{equation*}
$$

and with itself:

$$
\begin{equation*}
\left(R^{\circ}\right)^{\circ}=R \tag{22}
\end{equation*}
$$

Converse captures the passive voice: Catherine eats the apple $R=$ (eats) - is the same as the apple is eaten by Catherine $R^{\circ}=($ is eaten by $)$.

Function converses

Function converses f°, g° etc. always exist (as relations) and enjoy the following (very useful!) property,

$$
\begin{equation*}
(f b) R(g \quad a) \equiv b\left(f^{\circ} \cdot R \cdot g\right) a \tag{23}
\end{equation*}
$$

cf. diagram:

Therefore (tell why):

$$
\begin{equation*}
b\left(f^{\circ} \cdot g\right) a \equiv f b=g a \tag{24}
\end{equation*}
$$

Let us see an example of using these rules.

Class 3 - The "Zoo" of Binary Relations

PF-transform at work

Transforming a well-known PW-formula into PF notation:

f is injective

$\equiv \quad\{$ recall definition from discrete maths $\}$

$$
\begin{aligned}
& \langle\forall y, x:(f y)=(f x): y=x\rangle \\
\equiv & \{(24) \text { for } f=g\} \\
& \left\langle\forall y, x: y\left(f^{\circ} \cdot f\right) x: y=x\right\rangle \\
\equiv & \{(23) \text { for } R=f=g=i d\} \\
& \left\langle\forall y, x: y\left(f^{\circ} \cdot f\right) x: y(i d) x\right\rangle \\
\equiv & \quad\{\text { go pointfree (8) i.e. drop } y, x\} \\
& f^{\circ} \cdot f \subseteq i d
\end{aligned}
$$

The other way round

Now check what id $\subseteq f \cdot f^{\circ}$ means:

$$
\begin{aligned}
& i d \subseteq f \cdot f^{\circ} \\
& \equiv \quad\{\text { relational inclusion (8) \}} \\
& \left\langle\forall y, x: y(i d) x: y\left(f \cdot f^{\circ}\right) x\right\rangle \\
& \equiv \quad\{\text { identity relation ; composition (6) \}} \\
& \left\langle\forall y, x: y=x:\left\langle\exists z:: y f z \wedge z f^{\circ} x\right\rangle\right\rangle \\
& \equiv \quad\{\forall \text {-one point (200) ; converse (20) }\} \\
& \langle\forall x::\langle\exists z:: x f z \wedge x f z\rangle\rangle \\
& \equiv \quad\{\text { trivia; function } f \text { \} } \\
& \langle\forall x::\langle\exists z:: x=f z\rangle\rangle \\
& \equiv \quad\{\text { recalling definition from maths }\} \\
& f \text { is surjective }
\end{aligned}
$$

Why id (really) matters

Terminology:

- Say R is reflexive iff id $\subseteq R$ pointwise: $\quad\langle\forall$ a $::$ a R a〉 (check as homework);
- Say R is coreflexive (or diagonal) iff $R \subseteq$ id pointwise: $\langle\forall b, a: b R a: b=a\rangle \quad$ (check as homework).

Define, for $B \lll \ll$:

Kernel of R	Image of R
$\begin{gathered} A \stackrel{\text { ker } R}{\xlongequal{\text { def }}} A \\ \operatorname{ker} R \stackrel{\circ}{=} R^{\circ} \end{gathered}$	$\begin{aligned} & B \stackrel{\operatorname{img} R}{\underset{\operatorname{img}}{ } R \stackrel{\text { def }}{=} R \cdot R^{\circ}} \end{aligned}$

Alloy: checking for coreflexive relations

Kernels of functions

Meaning of ker f :

$$
\begin{aligned}
& \begin{array}{c}
a^{\prime}(\operatorname{ker} f) a \\
\equiv
\end{array} \\
& \{\text { substitution }\} \\
& a^{\prime}\left(f^{\circ} \cdot f\right) a \\
\equiv & \{\text { rule }(24)\} \\
& f a^{\prime}=f a
\end{aligned}
$$

In words: $a^{\prime}(\operatorname{ker} f) a$ means a^{\prime} and a "have the same f-image".

Exercise 4: Let K be a nonempty data domain, $k \in K$ and \underline{k} be the "everywhere k " function:

$$
\begin{align*}
\underline{k} & : A \longrightarrow K \tag{25}\\
\underline{k} a & =k
\end{align*}
$$

Compute which relations are defined by the following expressions:

$$
\begin{equation*}
\operatorname{ker} \underline{k}, \quad \underline{b} \cdot \underline{c}^{\circ}, \quad \operatorname{img} \underline{k} \tag{26}
\end{equation*}
$$

Binary relation taxonomy

Topmost criteria:

Definitions:

	Reflexive	Coreflexive
$\operatorname{ker} R$	entire R	injective R
$\operatorname{img} R$	surjective R	simple R

Facts:

$$
\begin{align*}
\operatorname{ker}\left(R^{\circ}\right) & =\operatorname{img} R \tag{28}\\
\operatorname{img}\left(R^{\circ}\right) & =\operatorname{ker} R \tag{29}
\end{align*}
$$

Binary relation taxonomy

The whole picture:

Exercise 5: Resort to $(28,29)$ and (27) to prove the following rules of thumb:

- converse of injective is simple (and vice-versa)
- converse of entire is surjective (and vice-versa)

The same in Alloy

A lone -> B	A \rightarrow some B		A \rightarrow lone B		A
injective	entire		simple		
A lone -> some B		A -> one B			me ->
representation		function			stra
A lone -> one B			A some -> one B		
injection			surjection		
A one -> one B					
bijection					

(Courtesy of Alcino Cunha.)

Exercises

Exercise 6: Label the items (uniquely) in these drawings ${ }^{2}$

Injective Not surjective

Surjective
Not injective

Bijective
(injective and surjective)
and compute, in each case, the kernel and the image of each relation.
Why are all these relations functions?

[^0]
Exercises

Exercise 7: Prove the following fact
A relation f is a bijection iff its converse f° is a function
by completing:

$$
\begin{aligned}
& \equiv \begin{array}{c}
f \text { and } f^{\circ} \text { are functions } \\
\{\ldots\} \\
\equiv \\
\equiv \begin{array}{c}
(i d \subseteq \operatorname{ker} f \wedge \operatorname{img} f \subseteq i d) \wedge\left(i d \subseteq \operatorname{ker}\left(f^{\circ}\right) \wedge \operatorname{img}\left(f^{\circ}\right) \subseteq i d\right) \\
\\
\vdots \ldots\}
\end{array} \\
\equiv \begin{array}{c}
\\
\equiv \\
\\
f \text { is a bijection }
\end{array}
\end{array} . \begin{array}{l}
\{\ldots\}
\end{array} \\
& \hline
\end{aligned}
$$

PROPOSITIO DE HOMINE ET CAPRA ET LVPO

Exercise 8: Let relation Bank cross Bank (4) be defined by:

$$
\begin{array}{rll}
\text { Left } & \text { cross } & \text { Right } \\
\text { Right } & \text { cross } & \text { Left }
\end{array}
$$

It therefore is a bijection. Why?
Exercise 9: Check which of the following properties,

$$
\begin{aligned}
& \text { simple, entire, } \\
& \text { injective, } \\
& \text { surjective, } \\
& \text { reflexive, } \\
& \text { coreflexive }
\end{aligned}
$$

Eats	Fox	Goose	Beans	Farmer
Fox	0	1	0	0
Goose	0	0	1	0
Beans	0	0	0	0
Farmer	0	0	0	0

hold for relation Eats (4) above ("food chain" Fox > Goose > Beans).

Propositio de homine et capra et lvpo

Exercise 10: Relation where : Being \rightarrow Bank should obey the following constraints:

- everyone is somewhere in a bank
- no one can be in both banks at the same time.

Express such constraints in relational terms. Conclude that where should be a function. \square

Exercise 11: There are only two constant functions (25) in the type Being \longrightarrow Bank of where. Identify them and explain their role in the puzzle. \square

Exercise 12: Two functions f and g are bijections iff $f^{\circ}=g$, recall (31). Convert $f^{\circ}=g$ to point-wise notation and check its meaning. \square

PRopositio de homine et capra et lvpo

Adding detail to the previous Alloy model (aside)
(More about Alloy syntax and semantics later.)

Line 20, Column 7 [modified]

Functions in one slide

Recapitulating: a function f is a binary relation such that

Pointwise	Pointfree	(f is simple)
"Left" Uniqueness		
$b f a \wedge b^{\prime} f a \Rightarrow b=b^{\prime}$	$\operatorname{img} f \subseteq i d$	
Leibniz principle		
$a=a^{\prime} \Rightarrow f a=f a^{\prime}$	id \subseteq ker f	(f is entire)

NB: Following a widespread convention, functions will be denoted by lowercase characters (eg. f, g, ϕ) or identifiers starting with lowercase characters, and function application will be denoted by juxtaposition, eg. $f a$ instead of $f(a)$.

Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

$$
\begin{align*}
f \cdot R \subseteq S & \equiv R \subseteq f^{\circ} \cdot S \tag{32}\\
R \cdot f^{\circ} \subseteq S & \equiv R \subseteq S \cdot f \tag{33}
\end{align*}
$$

Equality rule:

$$
\begin{equation*}
f \subseteq g \equiv f=g \equiv f \supseteq g \tag{34}
\end{equation*}
$$

Rule (34) follows from $(32,33)$ by "cyclic inclusion" (next slide).

Proof of functional equality rule (34)

$$
\begin{array}{cc}
& f \subseteq g \\
\equiv & \{\text { identity }\} \\
& f \cdot i d \subseteq g \\
\equiv & \{\text { shunting on } f\} \\
& i d \subseteq f^{\circ} \cdot g \\
\equiv & \{\text { shunting on } g\} \\
& i d \cdot g^{\circ} \subseteq f^{\circ} \\
\equiv & \{\text { converses; identity }\} \\
& g \subseteq f
\end{array}
$$

Then:

Dividing functions

Exercise 13: Check the properties:

$$
\begin{align*}
\frac{f}{i d} & =f & \frac{f}{f} & =\operatorname{ker} f \tag{36}\\
\frac{f \cdot h}{g \cdot h} & =k^{\circ} \cdot \frac{f}{g} \cdot h & (37) & \left(\frac{f}{g}\right)^{\circ}
\end{align*}=\frac{g}{f}
$$

Exercise 14: Infer id $\subseteq \operatorname{ker} f$ (f is total) and $\operatorname{img} f \subseteq$ id (f is simple) from the shunting rules (32) or (33). \square

Dividing functions

By (23) we have:

$$
\begin{equation*}
b \frac{f}{g} a \equiv g b=f a \tag{40}
\end{equation*}
$$

How useful is this? Think of the following sentence:
Mary lives where John was born.
By (40), this can be expressed by a division:

$$
\text { Mary } \frac{\text { birthplace }}{\text { residence }} \text { John } \equiv \text { residence Mary }=\text { birthplace John }
$$

In general,

$$
b \frac{f}{g} \text { a means "the } g \text { of } b \text { is the } f \text { of } a \text { ". }
$$

Class 4 - On Endo-Relations

Endo-relations

A relation $A \xrightarrow{R} A$ whose input and output types coincide is called an
endo-relation.

This special case of relation is gifted with an extra taxonomy and many applications.

We have already seen them: ker R and $\operatorname{img} R$ are endo-relations.
Graphs, orders, the identity, equivalences and so on are all endo-relations as well.

Taxonomy of endo-relations

Besides

$$
\begin{array}{ll}
\text { reflexive: } & \text { iff id } \subseteq R \\
\text { coreflexive: } & \text { iff } R \subseteq \text { id } \tag{42}
\end{array}
$$

an endo-relation $A \longleftarrow R$ R can be

transitive:	iff $R \cdot R \subseteq R$
symmetric:	iff $R \subseteq R^{\circ}\left(\equiv R=R^{\circ}\right)$
anti-symmetric:	iff $R \cap R^{\circ} \subseteq i d$
irreflexive:	iff $R \cap i d=\perp$
connected:	iff $R \cup R^{\circ}=\top$

where, in general, for R, S of the same type:

$$
\begin{align*}
b(R \cap S) a & \equiv b R a \wedge b S a \tag{47}\\
b(R \cup S) a & \equiv b R a \vee b S a \tag{48}
\end{align*}
$$

Taxonomy of endo-relations

Combining these criteria, endo-relations $A<^{R} A$ can further be classified as

Taxonomy of endo-relations

In summary:

- Preorders are reflexive and transitive orders.

Example: age $y \leqslant$ age x.

- Partial orders are anti-symmetric preorders

Example: $y \subseteq x$ where x and y are sets.

- Linear orders are connected partial orders

Example: $y \leqslant x$ in \mathbb{N}

- Equivalences are symmetric preorders

Example: age $y=$ age $x .^{3}$

- Pers are partial equivalences

Example: y IsBrotherOf x.

[^1]
Exercises

Exercise 15: Consider the relation
$b R a \equiv$ team b is playing against team a at the moment
Is this relation: reflexive? irreflexive? transitive? anti-symmetric? symmetric? connected? \square

Exercise 16: Check which of the following properties, transitive, symmetric, anti-symmetric, connected
hold for the relation Eats of exercise 9. \square

Exercises

Exercise 17: A relation R is said to be co-transitive or dense iff the following holds:

$$
\begin{equation*}
\langle\forall b, a: b R a:\langle\exists c: b R c: c R a\rangle\rangle \tag{49}
\end{equation*}
$$

Write the formula above in PF notation. Find a relation (eg. over numbers) which is co-transitive and another which is not. \square

Exercise 18: Expand criteria (43) to (46) to pointwise notation. \square

Exercises

Exercise 19: The teams (T) of a football league play games (G) at home or away, and every game takes place in some date:

$$
T \stackrel{\text { home }}{\longleftrightarrow} G \stackrel{\text { away }}{\longrightarrow} T
$$

Moreover, (a) No team can play two games on the same date; (b) All teams play against each other but not against themselves; (c) For each home game there is another game away involving the same two teams. Show that

$$
\begin{equation*}
i d \subseteq \frac{\text { away }}{\text { home }} \cdot \frac{\text { away }}{\text { home }} \tag{50}
\end{equation*}
$$

captures one of the requirements above (which?) and that (50) amounts to forcing home \cdot away ${ }^{\circ}$ to be symmetric.

Formalizing ER diagrams

So-called "Entity-Relationship" (ER) diagrams are commonly used to capture relational information, e.g. ${ }^{4}$

ER-diagrams can be formalized in $A \xrightarrow{R} B$ notation, see e.g. the following relational algebra (RA) diagram.

[^2]
Exercise

Exercise 20: Looking at diagram (51),

- Specify the property: mentors of students necessarily are among their teachers.
- Specify the relation R between students and teachers such that $t R s$ means: t is the mentor of s and also teaches one of her/his courses.

Meet and join

Recall meet (intersection) and join (union), introduced by (47) and (48), respectively.

They lift pointwise conjunction and disjunction, respectively, to the pointfree level.

Their meaning is nicely captured by the following universal properties:

$$
\begin{align*}
& X \subseteq R \cap S \equiv X \subseteq R \wedge X \subseteq S \tag{52}\\
& R \cup S \subseteq X \equiv R \subseteq X \wedge S \subseteq X \tag{53}
\end{align*}
$$

NB: recall the generic notions of greatest lower bound and least upper bound, respectively.

In summary

Type $B \longleftarrow \quad A$ forms a lattice:

How universal properties help

Using (52) i.e.

$$
X \subseteq R \cap S \equiv\left\{\begin{array}{l}
X \subseteq R \\
X \subseteq S
\end{array}\right.
$$

as example, similarly for (53).
Cancellation $(X:=R \cap S)$:

$$
\left\{\begin{array}{l}
R \cap S \subseteq R \tag{54}\\
R \cap S \subseteq S
\end{array}\right.
$$

$R \cap \top=R$ why? Use
indirect equality

$$
\begin{gathered}
\equiv \begin{array}{c}
X \subseteq R \cap \top \\
\{\text { universal property }\}
\end{array} \\
\equiv \begin{array}{c}
X \subseteq R \\
X \subseteq \top
\end{array} \\
\\
: \begin{array}{c}
X \subseteq R
\end{array} \\
: \quad\{\text { indirect equality }\} \\
\\
\\
\\
R \cap \top=R
\end{gathered}
$$

How universal properties help

$$
\begin{array}{cc}
& X \subseteq(R \cap S) \cap T \\
\equiv & \{\cap \text {-universal (52) twice }\} \\
& (X \subseteq R \wedge X \subseteq S) \wedge X \subseteq T \\
\equiv & \{\wedge \text { is associative }\} \\
& X \subseteq R \wedge(X \subseteq S \wedge X \subseteq T) \\
\equiv & \{\cap \text {-universal (52) twice }\} \\
& X \subseteq R \cap(S \cap T) \\
: & \{\text { indirection (13) }\} \\
& (R \cap S) \cap T=R \cap(S \cap T)
\end{array}
$$

Distributivity

As we will prove later, composition distributes over union

$$
\begin{align*}
& R \cdot(S \cup T)=(R \cdot S) \cup(R \cdot T) \tag{55}\\
& (S \cup T) \cdot R=(S \cdot R) \cup(T \cdot R) \tag{56}
\end{align*}
$$

while distributivity over intersection is side-conditioned:

$$
\begin{align*}
(S \cap Q) \cdot R=(S \cdot R) \cap(Q \cdot R) & \Leftarrow\left\{\begin{array}{c}
Q \cdot \operatorname{img} R \subseteq Q \\
V \\
S \cdot \operatorname{img} R \subseteq S
\end{array}\right. \tag{57}\\
R \cdot(Q \cap S)=(R \cdot Q) \cap(R \cdot S) & \Leftarrow\left\{\begin{array}{c}
(\operatorname{ker} R) \cdot Q \subseteq Q \\
\vee \\
(\operatorname{ker} R) \cdot S \subseteq S
\end{array}\right. \tag{58}
\end{align*}
$$

PRopositio de homine et capra et LVpo

Back to our running example, we specify:

Being at the same bank:

$$
\text { SameBank }=\text { ker where }=\frac{\text { where }}{\text { where }}
$$

Risk of somebody eating somebody else:

$$
\text { CanEat }=\text { SameBank } \cap \text { Eats }
$$

Then
"Starvation" is ensured by Farmer present at the same bank:

$$
\text { CanEat } \subseteq \text { SameBank •Farmer }
$$

PRopositio de homine et capra et lvpo

By (32), "starvation" property (59) converts to:

```
where\cdotCanEat \subseteq where. Farmer
```

In this version, (59) can be depicted as a diagram:

which "reads" in a nice way:
where (somebody) CanEat (somebody else) (that's)
where (the) Farmer (is).

PRopositio de homine et capra et lvpo

> Properties which such as (60) - are desirable and must always hold are called invariants.

See aside the 'starvation' invariant (60) written in Alloy.


```
abstract sig Being {
    Eats: set Being, -- Eats is a relation
    where : one Bank, -- where is a function
    CanEat, SameBank: set Being -- both are relations
}
one sig Fox, Goose, Beans, Farmer extends Being {}
abstract sig Bank {cross: one Bank } -- cross is a function
one sig Left, Right extends Bank {}
```

```
fact {
```

fact {
Eats = Fox -> Goose + Goose -> Beans
Eats = Fox -> Goose + Goose -> Beans
cross = Left -> Right + Right -> Left -- a bijection
cross = Left -> Right + Right -> Left -- a bijection
SameBank = where. ~where -- an equivalence relation
SameBank = where. ~where -- an equivalence relation
CanEat = SameBank \& Eats
CanEat = SameBank \& Eats
}

```
}
```

-- Finding instances satisfying the invariant
run \{ CanEat. where in (Being->Farmer) . where \}
Line 21, Column 47 [modified]

Propositio de homine et capra et lvpo

Carefully observe instance of such an invariant (aside):

- SameBank is an equivalence exactly the kernel of where
- Eats is simple but not transitive
- cross is a bijection
- CanEat is empty
- etc

Propositio de homine et capra et lvpo

Another

instance of the same invariant, in which:

- CanEat is not empty
(Fox can eat Goose!)
- but Farmer is on the same bank
:-)

Why is SameBank an equivalence?

Recall that SameBank = ker where. Then SameBank is an equivalence relation by the exercise below.

Exercise 21: Knowing that property

$$
\begin{equation*}
f \cdot f^{\circ} \cdot f=f \tag{61}
\end{equation*}
$$

holds for every function f, prove that $\operatorname{ker} f=\frac{f}{f}$ (38) is an equivalence relation. \square

Equivalence relations expressed in this way are captured in natural language by the textual pattern

```
a(\operatorname{ker}f)b means "a and b have the same f"
```

which is very common in requirements.

"D. Acácia grocery"

Specify the property:

Coupons cannot be used beyond their expiry date.

"D. Acácia grocery"

Specify the property:

Coupons can only be used by clients who own them.

Class 5 - Design patterns (relationally)

Patterns in diagrams

Recall

... i.e. the pointwise:

Patterns in diagrams

Now consider the special case

$$
\begin{aligned}
& f \cdot(\sqsubseteq) \subseteq(\leqslant) \cdot f
\end{aligned}
$$

where (\sqsubseteq) and (\leqslant) are preorders.

Patterns in diagrams

Do we need...

as before?

Patterns in diagrams

No - for functions things are much easier:

$$
\begin{array}{cc}
& f \cdot(\sqsubseteq) \subseteq(\leqslant) \cdot f \\
\equiv & \{(32)\} \\
& (\sqsubseteq) \subseteq f^{\circ} \cdot(\leqslant) \cdot f \\
\equiv & \{(23)\} \\
& \left\langle\forall a, a^{\prime}: a \sqsubseteq a^{\prime}: f a \leqslant f a^{\prime}\right\rangle
\end{array}
$$

In summary,

$$
\begin{equation*}
f \cdot(\sqsubseteq) \subseteq(\leqslant) \cdot f \tag{62}
\end{equation*}
$$

states that f is a monotonic function.

Patterns in diagrams

Now consider yet another special case:

$$
f \subseteq(\leqslant) \cdot g
$$

Likewise, $f \subseteq(\leqslant) \cdot g$ will unfold to
meaning that
f is pointwise-smaller than g wrt. (\leqslant).

Patterns in diagrams

Now consider yet another special case:

Likewise, $f \subseteq(\leqslant) \cdot g$ will unfold to

$$
\langle\forall a:: f a \leqslant g a\rangle
$$

meaning that
f is pointwise-smaller than g wrt. (\leqslant).

$$
f \leqslant g
$$

Usual abbreviation: $f \leqslant g \equiv f \subseteq(\leqslant) \cdot g$.

Relational patterns: the pre-order $f^{\circ} \cdot(\leqslant) \cdot f$

Given a preorder (\leqslant), a function f function taking values on the carrier set of (\leqslant), define

$$
\left(\leqslant_{f}\right)=f^{\circ} \cdot(\leqslant) \cdot f
$$

It is easy to show that:

$$
b \leqslant_{f} a \equiv(f b) \leqslant(f a)
$$

That is, we compare objects a and b with respect to their attribute f.

Exercise 22:

1. Show that $\left(\leqslant_{f}\right)$ is a preorder.
2. Show that $\left(\leqslant_{f}\right)$ is not (in general) a total order even in the case (\leqslant) is so.

Exercises

Exercise 23: Show that $1 \leftarrow^{\top} 1=1<!\leqslant 1=i d . \square$
Exercise 24: As generalization of exercise 1, draw the most general type diagram that accommodates relational assertion:

$$
\begin{equation*}
M \cdot R^{\circ} \subseteq \top \cdot M \tag{63}
\end{equation*}
$$

Exercise 25: Type the following relational assertions

$$
\begin{align*}
M \cdot N^{\circ} & \subseteq \quad \perp \tag{64}\\
M \cdot N^{\circ} & \subseteq i d \tag{65}\\
M^{\circ} \cdot T \cdot N & \subseteq \tag{66}
\end{align*}
$$

and check their pointwise meaning. Confirm your intuitions by repeating this exercise in Alloy. \square

Exercise

Exercise 26: Let bag : $A^{*} \rightarrow \mathbb{N}^{A}$ be the function that, given a finite sequence (list) indicates the number of occurrences of its elements, for instance,

$$
\begin{aligned}
& \operatorname{bag}[a, b, a, c] a=2 \\
& \operatorname{bag}[a, b, a, c] b=1 \\
& \operatorname{bag}[a, b, a, c] c=1
\end{aligned}
$$

Let ordered : $A^{*} \rightarrow \mathbb{B}$ be the obvious predicate assuming a total order predefined in A. Finally, let true $=$ True. Having defined

$$
\begin{equation*}
S=\frac{b a g}{b a g} \cap \frac{\text { true }}{\text { ordered }} \tag{67}
\end{equation*}
$$

identify the type of S and, going pointwise and simplifying, tell which operation is specified by S. \square

Monotonicity

All relational combinators studied so far are \subseteq-monotonic, namely:

$$
\begin{align*}
R \subseteq S & \Rightarrow R^{\circ} \subseteq S^{\circ} \tag{68}\\
R \subseteq S \wedge U \subseteq V & \Rightarrow R \cdot U \subseteq S \cdot V \tag{69}\\
R \subseteq S \wedge U \subseteq V & \Rightarrow R \cap U \subseteq S \cap V \tag{70}\\
R \subseteq S \wedge U \subseteq V & \Rightarrow R \cup U \subseteq S \cup V \tag{71}
\end{align*}
$$

etc hold.

Exercise 27: Prove the union simplicity rule:

$$
\begin{equation*}
M \cup N \text { is simple } \equiv M, N \text { are simple and } M \cdot N^{\circ} \subseteq i d \tag{72}
\end{equation*}
$$

Derive from (72) the corresponding rule for injective relations. \square

Proofs by \subseteq-transitivity

Wishing to prove $R \subseteq S$, the following rules are of help by relying on a "mid-point" M (analogy with interval arithmetics):

- Rule A : lowering the upper side

$$
\Leftarrow \quad \begin{aligned}
& R \subseteq S \\
& \qquad \quad\{M \subseteq S \text { is known ; transitivity of } \subseteq(10)\} \\
& R \subseteq M
\end{aligned}
$$

and then proceed with $R \subseteq M$.

- Rule B : raising the lower side

$$
\begin{aligned}
& R \subseteq S \\
\Leftarrow \quad & \{R \subseteq M \text { is known; transitivity of } \subseteq\} \\
& M \subseteq S
\end{aligned}
$$

and then proceed with $M \subseteq S$.

Example

Proof of shunting rule (32):

$$
\left.\begin{array}{ll}
& R \subseteq f^{\circ} \cdot S \\
\Leftarrow & \left\{i d \subseteq f^{\circ} \cdot f ; \text { raising the lower-side }\right\}
\end{array}\right\} \begin{gathered}
f^{\circ} \cdot f \cdot R \subseteq f^{\circ} \cdot S \\
\Leftarrow
\end{gathered} \quad\left\{\text { monotonicity of }\left(f^{\circ} \cdot\right)\right\}
$$

Thus the equivalence in (32) is established by circular implication.

Exercises (monotonicity and transitivity)

Exercise 28: Prove the following rules of thumb:

- smaller than injective (simple) is injective (simple)
- larger than entire (surjective) is entire (surjective)
- $R \cap S$ is injective (simple) provided one of R or S is so
- $R \cup S$ is entire (surjective) provided one of R or S is so.

Exercise 29: Prove that relational composition preserves all relational classes in the taxonomy of (30). \square

Meaning of $f \cdot r=i d$

On the one hand,

$$
\begin{array}{ll}
& f \cdot r=i d \\
\equiv & \{\text { equality of functions }\} \\
& f \cdot r \subseteq \text { id } \\
\equiv & \{\text { shunting }\} \\
& r \subseteq f^{\circ}
\end{array}
$$

Since f is simple:

- f° is injective
- and so is r, because "smaller than injective is injective".

Meaning of $f \cdot r=i d$

On the other hand,

$$
\begin{array}{cc}
& f \cdot r=i d \\
\equiv & \{\text { equality of functions }\} \\
& i d \subseteq f \cdot r \\
\equiv & \{\text { shunting }\} \\
& r^{\circ} \subseteq f
\end{array}
$$

Since r is entire:

- r° is surjective
- and so is f because "larger that surjective is surjective".

Meaning of $f \cdot r=i d$

We conclude that
f is surjective and r is injective wherever $f \cdot r=i d$ holds.

Since both are functions, we furthermore conclude that f is an abstraction and r is a representation

Exercise 30: Why are π_{1} and π_{2} surjective and i_{1} and i_{2} injective?
Why are isomorphisms bijections? \square

Class 6 - Pairs and sums

Relational pairing

Recall:

Clearly:

$$
\left.\left.\begin{array}{rl}
& (a, b)=\langle f, g\rangle c \\
\equiv & \quad\{\langle f, g\rangle c=(f c, g c)(73) ; \text { equality of pairs }\}
\end{array}\right\} \begin{array}{l}
a=f c \\
b=g c
\end{array}\right\} \begin{aligned}
& \{y=f x \equiv y f x\} \\
& \equiv \\
& \left\{\begin{array}{l}
a f c \\
b g c
\end{array}\right.
\end{aligned}
$$

Relational pairing

That is:

$$
(a, b)\langle f, g\rangle c \equiv a f c \wedge b g c
$$

This suggests the generalization

$$
\begin{equation*}
(a, b)\langle R, S\rangle c \equiv a R c \wedge b S c \tag{74}
\end{equation*}
$$

from which one immediately derives the ('Kronecker') product:

$$
\begin{equation*}
R \times S=\left\langle R \cdot \pi_{1}, S \cdot \pi_{2}\right\rangle \tag{75}
\end{equation*}
$$

(75) unfolds to the pointwise:

$$
\begin{equation*}
(b, d)(R \times S)(a, c) \equiv b R a \wedge d S c \tag{76}
\end{equation*}
$$

Relational pairing example (in matrix layout)

Example - given relations

where $^{\circ}=$\begin{tabular}{r|rc}
\& Left \& Right

Fox \& 1 \& 0

Goose \& 0 \& 1

Beans \& 0 \& 1

\quad and \quad cross $=$

\& \& Left

Right

\hline Left \& 0 \& 1

Right \& 1 \& 0
\end{tabular}

pairing them up evaluates to:

Exercises

Exercise 31: Show that

$$
(b, c)\langle R, S\rangle a \equiv b R a \wedge c S a
$$

PF-transforms to:

$$
\begin{equation*}
\langle R, S\rangle=\pi_{1}^{\circ} \cdot R \cap \pi_{2}^{\circ} \cdot S \tag{77}
\end{equation*}
$$

Then infer universal property

$$
\begin{equation*}
X \subseteq\langle R, S\rangle \quad \equiv \pi_{1} \cdot X \subseteq R \wedge \pi_{2} \cdot X \subseteq S \tag{78}
\end{equation*}
$$

from (77) via indirect equality (13). \square

Exercise 32: What can you say about (78) in case X, R and S are functions? \square

Exercises

Exercise 33: Unconditional distribution laws

$$
\begin{aligned}
& (P \cap Q) \cdot S=(P \cdot S) \cap(Q \cdot S) \\
& R \cdot(P \cap Q)=(R \cdot P) \cap(R \cdot Q)
\end{aligned}
$$

will hold provide one of R or S is simple and the other injective. Tell which (justifying). \square

Exercise 34: Derive from

$$
\begin{equation*}
\langle R, S\rangle^{\circ} \cdot\langle X, Y\rangle=\left(R^{\circ} \cdot X\right) \cap\left(S^{\circ} \cdot Y\right) \tag{79}
\end{equation*}
$$

the following properties:
\square

$$
\begin{equation*}
\operatorname{ker}\langle R, S\rangle=\operatorname{ker} R \cap \operatorname{ker} S \tag{80}
\end{equation*}
$$

Injectivity preorder

ker $R=R^{\circ} \cdot R$ measures the level of injectivity of R according to the preorder (\leqslant) defined by

$$
\begin{equation*}
R \leqslant S \equiv \operatorname{ker} S \subseteq \operatorname{ker} R \tag{81}
\end{equation*}
$$

telling that R is less injective or more defined (entire) than S for instance:

Injectivity preorder

Restricted to functions, (\leqslant) is universally bounded by

$$
!\leqslant f \leqslant i d
$$

Also easy to show:

$$
\begin{equation*}
\text { id } \leqslant f \equiv f \text { is injective } \tag{82}
\end{equation*}
$$

Exercise 35: Let f and g be the two functions depicted on the right.
Check the assertions:

The specification pattern $h \leqslant\langle f, g\rangle$

As illustration of the use of this ordering in formal specification, suppose one writes

$$
\text { room } \leqslant\langle l e c t, \text { slot }\rangle
$$

in the context of the data model

where $T D$ abbreviates time and date.

The specification pattern $h \leqslant\langle f, g\rangle$

What are we telling about this model by writing

$$
\text { room } \leqslant\langle\text { lect, slot }\rangle ?
$$

Unfolding it:

$$
\begin{aligned}
& \text { room } \leqslant\langle\text { lect, slot }\rangle \\
& \equiv \quad\{(81)\} \\
& \text { ker }\langle\text { lect, slot }\rangle \subseteq \text { ker room } \\
& \equiv \quad\{(80) ;(38)\} \\
& \frac{\text { lect }}{\text { lect }} \cap \frac{\text { slot }}{\text { slot }} \subseteq \frac{\text { room }}{\text { room }} \\
& \equiv \quad\left\{\text { going pointwise, for all } c_{1}, c_{2} \in \text { Class }\right\} \\
& \left\{\begin{array}{l}
\text { lect } c_{1}=\text { lect } c_{2} \\
\text { slot } c_{1}=\text { slot } c_{2}
\end{array} \Rightarrow \text { room } c_{1}=\text { room } c_{2}\right.
\end{aligned}
$$

The specification pattern $h \leqslant\langle f, g\rangle$

That is, room $\leqslant\langle l e c t$, slot \rangle imposes that
a given lecturer cannot be in two different rooms at the same time.
(Think of c_{1} and c_{2} as classes shared by different courses, possibly of different degrees.)

In the standard terminology of database theory this is called a functional dependency, meaning that:

- room is dependent on lect and slot, i.e.
- lect and slot determine room.

Generalization: the "agenda design pattern"

Nobody can be in different places at the same time

$$
\text { where } \leqslant\langle\text { who, when }\rangle
$$

in the context of the generic data model:

$$
\text { Who } \stackrel{\text { who }}{\leftrightarrows} \text { Meeting } \xrightarrow{\text { where }} \text { Where }
$$

$$
\begin{gathered}
\text { when } \\
\downarrow \\
\text { When }
\end{gathered}
$$

Exercise 36: Do who $\leqslant\langle$ where, when \rangle and when $\leqslant\langle$ who, where \rangle express reasonable facts? \square

The specification pattern $h \leqslant\langle f, g\rangle$

Let $h:=i d$ in this pattern:
Two functions f and g are said to be complementary wherever id $\leqslant\langle f, g\rangle$.

For instance:
π_{1} and π_{2} are complementary since $\left\langle\pi_{1}, \pi_{2}\right\rangle=$ id by \times-reflection.

Informal interpretation:
Non-injective f and g compensate each other's lack of injectivity so that their pairing is injective.

Universal property

$$
\begin{equation*}
\langle R, S\rangle \leqslant X \equiv R \leqslant X \wedge S \leqslant X \tag{83}
\end{equation*}
$$

Cancellation of (83) means that pairing always increases injectivity:

$$
\begin{equation*}
R \leqslant\langle R, S\rangle \quad \text { and } \quad S \leqslant\langle R, S\rangle \tag{84}
\end{equation*}
$$

(84) unfolds to $\operatorname{ker}\langle R, S\rangle \subseteq$ (ker $R) \cap($ ker $S)$, confirming (80).

Injectivity shunting law:

$$
\begin{equation*}
R \cdot g \leqslant S \equiv R \leqslant S \cdot g^{\circ} \tag{85}
\end{equation*}
$$

Exercise 37: $\langle R$, id \rangle is always injective - why?

Relation pairing continued

The fusion-law of relation pairing requires a side condition:

$$
\begin{align*}
\langle R, S\rangle \cdot T & =\langle R \cdot T, S \cdot T\rangle \\
& \Leftarrow R \cdot(\operatorname{img} T) \subseteq R \vee S \cdot(\operatorname{img} T) \subseteq S \tag{86}
\end{align*}
$$

The absorption law

$$
\begin{equation*}
(R \times S) \cdot\langle P, Q\rangle=\langle R \cdot P, S \cdot Q\rangle \tag{87}
\end{equation*}
$$

holds unconditionally.

Exercises

Exercise 38: Recalling (31), prove that

$$
\begin{equation*}
\operatorname{swap}=\left\langle\pi_{2}, \pi_{1}\right\rangle \tag{88}
\end{equation*}
$$

is a bijection. (Assume property $(R \cap S)^{\circ}=R^{\circ} \cap S^{\circ}$.) \square
Exercise 39: Derive from the laws of pairing studied thus far the following facts about relational product:

$$
\begin{align*}
& i d \times i d=i d \tag{89}\\
& (R \times S) \cdot(P \times Q)=(R \cdot P) \times(S \cdot Q) \tag{90}
\end{align*}
$$

Exercise 40: Show that (86) holds. Suggestion: recall (57). From this infer that no side-condition is required for T simple. \square

Exercises

Exercise 41:

Consider the adjacency relation A defined by clauses:
(a) A is symmetric;
(b) id $\times(1+) \cup(1+) \times i d \subseteq A$

	$(y+1, x)$	
$(y, x-1)$	(y, x)	$(y, x+1)$
	$(y-1, x)$	

Show that A is neither transitive nor reflexive.
NB: consider $(1+): \mathbb{Z} \rightarrow \mathbb{Z}$ a bijection, i.e. pred $=(1+)^{\circ}$ is a function.

Relational sums

Example (Haskell):
data X = Boo Bool | Err String

PF-transforms to

where

$$
\begin{aligned}
& \quad[R, S]=\left(R \cdot i_{1}^{\circ}\right) \cup\left(S \cdot i_{2}^{\circ}\right) \quad \mathrm{cf} . \\
& \text { Dually: } R+S=\left[i_{1} \cdot R, i_{2} \cdot S\right]
\end{aligned}
$$

Relational sums

From $[R, S]=\left(R \cdot i_{1}^{\circ}\right) \cup\left(S \cdot i_{2}^{\circ}\right)$ above one easily infers, by indirect equality,

$$
[R, S] \subseteq X \equiv R \subseteq X \cdot i_{1} \wedge S \subseteq X \cdot i_{2}
$$

(check this).
It turns out that inclusion can be strengthened to equality, and therefore relational coproducts have exactly the same properties as functional ones, stemming from the universal property:

$$
\begin{equation*}
[R, S]=X \equiv R=X \cdot i_{1} \wedge S=X \cdot i_{2} \tag{92}
\end{equation*}
$$

Thus $\left[i_{1}, i_{2}\right]=i d$ - solve (92) for R and S when $X=i d$, etc etc.

Divide and conquer

The property for sums (coproducts) corresponding to (79) for products is:

$$
\begin{equation*}
[R, S] \cdot[T, U]^{\circ}=\left(R \cdot T^{\circ}\right) \cup\left(S \cdot U^{\circ}\right) \tag{93}
\end{equation*}
$$

NB: This divide-and-conquer rule is essential to parallelizing relation composition by block decomposition.

Exercise 42: Show that:

$$
\begin{align*}
\operatorname{img}[R, S] & =\operatorname{img} R \cup \operatorname{img} S \tag{94}\\
\operatorname{img} \dot{i}_{1} \cup \operatorname{img} \dot{i}_{2} & =i d \tag{95}
\end{align*}
$$

Exercises

Exercise 43: The type declaration

$$
\text { data Maybe } a=\text { Nothing | Just } a
$$

in Haskell corresponds, as is known, to the declaration of the isomorphism:

$$
\begin{aligned}
& \text { in : } 1+A \rightarrow \text { Maybe } A \\
& \text { in }=[\underline{\text { Nothing }, ~ J u s t ~}]
\end{aligned}
$$

Show that the relation

$$
R=i_{1} \cdot \text { Nothing }^{\circ} \cup i_{2} \cdot \text { Just }^{\circ}
$$

is a function.

Exercises

Exercise 44: Consider the following definition of a relation $A \not{ }^{R} A^{*}$,

$$
R \cdot \text { in }=\left[\perp, \pi_{1} \cup R \cdot \pi_{2}\right]
$$

where

$$
\begin{align*}
& \text { in }=\text { [nil }, \text { cons }] \tag{96}\\
& \text { nil }-=[] \tag{97}\\
& \operatorname{cons}(h, t)=h: t \tag{98}
\end{align*}
$$

(a) Rely on the co-product laws to derive (formally) the pointwise definition of R.
(b) Based on this, spell out the meaning of a $R \times$ in you own words. \square

+ meets \times

The exchange law

$$
\begin{equation*}
[\langle R, S\rangle,\langle T, V\rangle]=\langle[R, T],[S, V]\rangle \tag{99}
\end{equation*}
$$

holds for all relations as in diagram

and the fusion law

$$
\begin{equation*}
\langle R, S\rangle \cdot f=\langle R \cdot f, S \cdot f\rangle \tag{100}
\end{equation*}
$$

also holds, where f is a function. (Why?)
Exercise 45: Relying on both (92) and (100) prove (99).

On key-value (KV) data models

On key-value data models

Simple relations abstract what is currently known as the key-value-pair (KV) data model in modern databases
E.g. Hbase, Amazon DynamoDB etc

In each such relation $K \xrightarrow{S} V, K$ is said to be the key and V the value.

No-SQL, columnar database trend.

Example above:

On key-value data models

"Schema is defined per item"...

In this example:

$$
V=\text { Title } \times(1+\text { Author } \times(1+\text { Date } \times \ldots))
$$

This shows the expressiveness of products and coproducts in data modelling.

Class 7 - Relational division

Relational division

In the same way

$$
z \times y \leqslant x \equiv z \leqslant x \div y
$$

means that $x \div y$ is the largest number which multiplied by y approximates x,

$$
\begin{equation*}
Z \cdot Y \subseteq X \equiv Z \subseteq X / Y \tag{101}
\end{equation*}
$$

means that X / Y is the largest relation which pre-composed with Y approximates X.

What is the pointwise meaning of X / Y ?

We reason:

First, the types of

$$
Z \cdot Y \subseteq X \equiv Z \subseteq X / Y
$$

Next, the calculation:

$$
\begin{aligned}
& c(X / Y) a \\
\equiv & \{\text { introduce points } C \longleftarrow \underline{c} 1 \text { and } A \longleftarrow \underline{a} 1\} \\
& x\left(\underline{c}^{\circ} \cdot(X / Y) \cdot \underline{a}\right) x \\
\equiv & \{\text { one-point }(200)\} \\
& x^{\prime}=x \Rightarrow x^{\prime}\left(\underline{c}^{\circ} \cdot(X / Y) \cdot \underline{a}\right) x
\end{aligned}
$$

Proceed by going pointfree:

We reason

$$
\begin{aligned}
& i d \subseteq \underline{c}^{0} \cdot(X / Y) \cdot \underline{a} \\
& \equiv \quad\{\text { shunting rules }\} \\
& \underline{c} \cdot \underline{a}^{\circ} \subseteq X / Y \\
& \equiv \quad\{\text { universal property (101) \}} \\
& \underline{c} \cdot \underline{a}^{\circ} \cdot Y \subseteq X \\
& \equiv \quad\{\text { now shunt } \underline{c} \text { back to the right }\} \\
& \underline{a}^{\circ} \cdot Y \subseteq \underline{c}^{\circ} \cdot X \\
& \equiv \quad\{\text { back to points via (23) }\} \\
& \langle\forall b: a Y b: c X b\rangle
\end{aligned}
$$

Outcome

In summary:

$$
\begin{equation*}
c(X / Y) a \equiv\langle\forall b: a Y b: c X b\rangle \tag{102}
\end{equation*}
$$

Example:
a $Y b=$ passenger a chooses flight b
$c X b=$ company c operates flight b
$c(X / Y) a=$ company c is the only one trusted by passenger a, that is, a only flies c.

Pattern X / Y

Informally, c (X / Y) a captures the linguistic pattern
a only Y those b 's such that $c X b$.

For instance,
Students enrolled
in courses only
dealing with
particular subjects

Pointwise meaning in full

The full pointwise encoding of

$$
Z \cdot Y \subseteq X \equiv Z \subseteq X / Y
$$

is:

$$
\begin{aligned}
& \langle\forall c, b:\langle\exists a: c Z a: a Y b\rangle: c X b\rangle \\
\equiv & \langle\forall c, a: c Z a:\langle\forall b: a Y b: c X b\rangle\rangle
\end{aligned}
$$

If we drop variables and regard the uppercase letters as denoting Boolean terms dealing without variable c, this becomes

$$
\langle\forall b:\langle\exists a: Z: Y\rangle: X\rangle \equiv\langle\forall a: Z:\langle\forall b: Y: X\rangle\rangle
$$

recognizable as the splitting rule (208) of the Eindhoven calculus.
Put in other words: existential quantification is lower adjoint to universal quantification.

Exercises

Exercise 46: Prove the equalities

$$
\begin{align*}
X \cdot f & =X / f^{\circ} \tag{103}\\
X / \perp & =\top \tag{104}\\
X / i d & =X \tag{105}
\end{align*}
$$

and check their pointwise meaning. \square
Exercise 47: Define

$$
\begin{equation*}
X \backslash Y=\left(Y^{\circ} / X^{\circ}\right)^{\circ} \tag{106}
\end{equation*}
$$

and infer:

$$
\begin{align*}
a(R \backslash S) c & \equiv\langle\forall b: b R a: b S c\rangle \tag{107}\\
R \cdot X \subseteq Y & \equiv X \subseteq R \backslash Y \tag{108}
\end{align*}
$$

Patterns in diagrams (again!)

Back to our good old "rectangle":

... i.e. the pointwise:

Patterns in diagrams - very special case

Again assuming two preorders (\sqsubseteq) and (\leqslant) :

are said to be Galois

connected (GC) and we
write

Patterns in diagrams - very special case

Again assuming two preorders (\sqsubseteq) and (\leqslant) :

$$
f^{\circ} \cdot(\sqsubseteq)=(\leqslant) \cdot g
$$

$$
f b \sqsubseteq a \equiv b \leqslant g a \quad(109)
$$

In this very special situation,
f and g in

are said to be Galois connected (GC) and we write

$$
\begin{equation*}
f \vdash g \tag{110}
\end{equation*}
$$

Patterns in diagrams - even more special case

Preorders (\sqsubseteq) and (\leqslant) are the identity:

Isomorphisms are
special cases of
Galois

Patterns in diagrams - even more special case

Preorders (\sqsubseteq) and (\leqslant) are the identity:

$$
f^{\circ}=g
$$

$$
\begin{equation*}
f b=a \equiv b=g a \tag{111}
\end{equation*}
$$

That is to say,

Isomorphisms are special cases of Galois connections.

GC - mechanics analogy

Stability:

GC - mechanics analogy

Instability:

GC - mechanics analogy

Stability restored:

"Restauratio" rule (Middle Ages).

Example of GC

Integer division:

$$
z \times y \leqslant x \equiv z \leqslant x \div y
$$

that is:

$$
z \underbrace{x y}_{f} \leqslant x \equiv z \leqslant x \underbrace{\dot{-y}}_{g}
$$

So:

$$
(\times y) \vdash(\div y)
$$

Principle:

Difficult $(\div y)$ explained by easy $(x y)$.

GCs

Interpreting:

$$
\begin{aligned}
& f^{\circ} \cdot(\sqsubseteq)=(\leqslant) \cdot g, i e . \\
& f b \sqsubseteq a \equiv b \leqslant g a, i e . \\
& f \vdash g
\end{aligned}
$$

- $f b$ is the smallest a such that $b \leqslant g$ a holds.
- g a is the largest b such that $f b \sqsubseteq a$ holds.

Thus $z \times y \leqslant x \equiv z \leqslant x \div y$ reads like this:

$$
x \div y \text { is the largest } z \text { such that } z \times y \leqslant x .
$$

Yes! (back to the primary school desk)

The whole division algorithm

$$
\begin{array}{l|l}
7 & 2 \\
& 3
\end{array} \quad 2 \times 3+1=7 \quad \text {, "i.e." } \quad 3=7 \div 2
$$

However

$$
\begin{array}{l|llll}
7 & 2 & & 2 \times 2+3=7 & \wedge
\end{array} 2 \neq 7 \div 2
$$

That is:

$$
\begin{array}{c|c|c|l}
x & y \\
\ldots & x \div y
\end{array} \quad z \times y \leqslant x \Rightarrow z \leqslant x \div y \quad \begin{aligned}
& x \div y \text { largest } z \\
& \text { such that } \\
& z \times y \leqslant x
\end{aligned}
$$

GCs as specifications

Thus:

$$
z \times y \leqslant x \equiv z \leqslant x \div y \quad \text { is a specification of } x \div y
$$

How does it relate to its implementation, e.g.

$$
\begin{aligned}
& x \div y= \\
& \quad \text { if } x<y \text { then } 0 \\
& \quad \text { else } 1+(x-y) \div y
\end{aligned}
$$

?
It's a long story. For the moment, let us appreciate the power of the GC concept.

GCs as specifications

Consider the following requirements about the take function in Haskell:
take $n \times s$ should yield the longest possible prefix of $x s$ not exceeding n in length.

Warming up examples:

$$
\begin{aligned}
& \text { take } 2[10,20,30]=[10,20] \\
& \text { take } 20[10,20,30]=[10,20,30]
\end{aligned}
$$

How do we write a formal specification for these requirements?

Specifying functions on lists

Clearly,

- take $n x s$ is a prefix of $x s$ - specify this as e.g.
take $n x s \preceq x s$
where \preceq denotes the prefix partial order.
- the length of take n xs cannot exceed n - easy to specify: length $($ take $n x s) \leqslant n$
Altogether:

$$
\begin{equation*}
\text { length }(\text { take } n \times s) \leqslant n \wedge \text { take } n \times s \preceq x s \tag{112}
\end{equation*}
$$

But this is not enough - (silly) implementation take $n x s=[]$ meets (112)!

Superlatives...

The crux is how to formally specify the superlative in

...take n xs should yield the longest possible prefix...

This is the hard part but there is a standard method to follow:

- think of an arbitrary list ys also satisfying (112)

$$
\text { length } y s \leqslant n \wedge y s \preceq x s
$$

- Then (from above) ys should be a prefix of take $n \times s$:

$$
\begin{equation*}
\text { length } y s \leqslant n \wedge y s \preceq x s \Rightarrow y s \preceq \text { take } n x s \tag{113}
\end{equation*}
$$

Final touch

So we have two clauses, a easy one (112)
and
a hard one (113).
Interestingly, (112) can be derived from (113) itself, length $y s \leqslant n \wedge y s \preceq x s \Leftarrow y s \preceq$ take $n x s$
by letting ys $:=$ take $n x s$ and simplifying.
So a single line is enough to formally specify take:

$$
\begin{equation*}
\text { length } y s \leqslant n \wedge y s \preceq x s \equiv y s \preceq \text { take } n x s \tag{114}
\end{equation*}
$$

- a GC.

Reasoning about specifications (GCs)

One of the advantages of formal specification is that one may quest the specification (aka model) to derive useful properties of the design before the implementation phase.

GCs + indirect equality (on partial orders) yield much in this process - see the following exercise.

Exercise 48: Solely relying on specification (114) use indirect equality to prove that

$$
\begin{align*}
& \text { take }(\text { length } x s) x s=x s \tag{115}\\
& \text { take } 0 x s=[] \tag{116}\\
& \text { take } n[]=[] \tag{117}
\end{align*}
$$

hold. \square

GCs: many properties for free

$(f \quad b) \leqslant a \equiv b \sqsubseteq\left(\begin{array}{ll}g & a\end{array}\right)$		
Description	$f=g^{b}$	$g=f^{\sharp}$
Definition	$f b=\bigwedge\{a: b \sqsubseteq g a\}$	$g a=\bigsqcup\{b: f b \leqslant a\}$
Cancellation	$f(g a) \leqslant a$	$b \sqsubseteq g(f b)$
Distribution	$f\left(b \sqcup b^{\prime}\right)=(f b) \vee\left(f b^{\prime}\right)$	$g\left(a^{\prime} \wedge a\right)=\left(\begin{array}{l}\text { a }\end{array}\right) \sqcap(\mathrm{g} a)$
Monotonicity	$b \sqsubseteq b^{\prime} \Rightarrow f b \leqslant f b^{\prime}$	$a \leqslant a^{\prime} \Rightarrow g a \sqsubseteq g a^{\prime}$

Exercise 49: Derive from (109) that both f and g are monotonic. \square

Remark on GCs

Galois connections originate from the work of the French mathematician Evariste Galois (1811-1832). Their main advantages,
simple, generic and highly calculational
are welcome in proofs in computing, due to their size and complexity, recall E. Dijkstra:
elegant \equiv simple and
 remarkably effective.
In the sequel we will re-interpret the relational operators we've seen so far as Galois adjoints.

Examples

Not only

$$
\underbrace{z(x y)}_{f z} \leqslant x \equiv z \leqslant \underbrace{x(\div y)}_{g n}
$$

but also the two shunting rules,

$$
\begin{aligned}
\underbrace{(h \cdot) X}_{f X} \subseteq Y & \equiv X \subseteq \underbrace{\left(h^{\circ} \cdot\right) Y}_{g Y} \\
\underbrace{X\left(\cdot h^{\circ}\right)}_{f X} \subseteq Y & \equiv X \subseteq \underbrace{Y(\cdot h)}_{g Y}
\end{aligned}
$$

as well as converse,

$$
\underbrace{X^{\circ}}_{f X} \subseteq Y \equiv X \subseteq \underbrace{Y^{\circ}}_{g Y}
$$

and so and so forth - are adjoints of GCs: see the next slides.

Converse

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
converse	$(-)^{\circ}$	$(-)^{\circ}$	$b R^{\circ} a \equiv a R b$

Thus:

$$
\begin{aligned}
\text { Cancellation } & \left(R^{\circ}\right)^{\circ}=R \\
\text { Monotonicity } & R \subseteq S \equiv R^{\circ} \subseteq S^{\circ} \\
\text { Distributions } & (R \cap S)^{\circ}=R^{\circ} \cap S^{\circ},(R \cup S)^{\circ}=R^{\circ} \cup S^{\circ}
\end{aligned}
$$

Exercise 50: Why is it that converse-monotonicity can be strengthened to an equivalence? \square

Example of calculation from the GC

Converse involution (cancellation):

$$
\begin{equation*}
\left(R^{\circ}\right)^{\circ}=R \tag{118}
\end{equation*}
$$

Proof of (118):

$$
\begin{aligned}
& \left(R^{\circ}\right)^{\circ}=R \\
\equiv & \quad\{\text { antisymmetry ("ping-pong") }\} \\
& \left(R^{\circ}\right)^{\circ} \subseteq R \wedge R \subseteq\left(R^{\circ}\right)^{\circ} \\
\equiv & \quad\left\{{ }^{\circ} \text {-universal } X^{\circ} \subseteq Y \equiv X \subseteq Y^{\circ} \text { twice }\right\} \\
& R^{\circ} \subseteq R^{\circ} \wedge R^{\circ} \subseteq R^{\circ} \\
\equiv & \{\text { reflexivity (twice })\} \\
& \text { TRUE }
\end{aligned}
$$

Relational division

$(f X) \subseteq Y \equiv X \subseteq(g \quad Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
right-division	$(\cdot R)$	$(/ R)$	right-factor
left-division	$(R \cdot)$	$(R \backslash)$	left-factor

that is,

$$
\begin{align*}
& X \cdot R \subseteq Y \equiv X \subseteq Y / R \tag{119}\\
& R \cdot X \subseteq Y \equiv X \subseteq R \backslash Y \tag{120}
\end{align*}
$$

Immediate: $(R \cdot)$ and $(\cdot R)$ are monotonic and distribute over union:

$$
\begin{aligned}
& R \cdot(S \cup T)=(R \cdot S) \cup(R \cdot T) \\
& (S \cup T) \cdot R=(S \cdot R) \cup(T \cdot R)
\end{aligned}
$$

$(\backslash R)$ and $(/ R)$ are monotonic and distribute over \cap.

Functions

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
shunting rule	$(h \cdot)$	$\left(h^{\circ}\right)$	NB: h is a function
"converse" shunting rule	$\left(\cdot h^{\circ}\right)$	$(\cdot h)$	NB: h is a function

Consequences:
Functional equality:

$$
h \subseteq g \equiv h=k \quad \equiv h \supseteq k
$$

Functional division:
$R \cdot h=R / h^{\circ}$

Other operators

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
implication	$(R \cap)$	(R ${ }^{\text {a }}$)	$b(R \Rightarrow X) a \equiv b R a \Rightarrow b X a$
difference	$(--R)$	$(R \cup)$	$b(X-R) a \equiv\left\{\begin{array}{l}b X a \\ \neg(b R a)\end{array}\right.$

Thus the universal properties of implication and difference,

$$
\begin{align*}
R \cap X \subseteq Y & \equiv X \subseteq R \Rightarrow Y \tag{121}\\
X-R \subseteq Y & \equiv X \subseteq R \cup Y \tag{122}
\end{align*}
$$

are GCs - etc, etc
Exercise 51: Show that $R \cap(R \Rightarrow Y) \subseteq Y$ ("modus ponens") holds and that $R-R=\perp-R=\perp$. \square

Relation shrinking

Given relations $R: A \leftarrow B$ and $S: A \leftarrow A$, define $R \upharpoonright S: A \leftarrow B$, pronounced " R shrunk by S ", by

$$
\begin{equation*}
X \subseteq R \upharpoonright S \equiv X \subseteq R \wedge X \cdot R^{\circ} \subseteq S \tag{123}
\end{equation*}
$$

cf. diagram:

Exercise 52: Show, by indirect equality, that (123) is equivalent to:

Relation shrinking

Given relations $R: A \leftarrow B$ and $S: A \leftarrow A$, define $R \upharpoonright S: A \leftarrow B$, pronounced " R shrunk by S ", by

$$
\begin{equation*}
X \subseteq R \upharpoonright S \equiv X \subseteq R \wedge X \cdot R^{\circ} \subseteq S \tag{123}
\end{equation*}
$$

cf. diagram:

Property (123) states that $R \upharpoonright S$ is the largest part of R such that, if it yields an output for an input x, this must be a 'maximum, with respect to S, among all possible outputs of x by R.

Exercise 53: Show, by indirect equality, that (123) is equivalent to:

$$
\begin{equation*}
R \upharpoonright S=R \cap S / R^{\circ} \tag{124}
\end{equation*}
$$

Relation shrinking

Example Given

Examiner \times Mark \leftarrow^{R} Student $=\left(\begin{array}{c|c|c}\text { Examiner } & \text { Mark } & \text { Student } \\ \hline \text { Smith } & 10 & \text { John } \\ \text { Smith } & 11 & \text { Mary } \\ \text { Smith } & 15 & \text { Arthur } \\ \text { Wood } & 12 & \text { John } \\ \text { Wood } & 11 & \text { Mary } \\ \text { Wood } & 15 & \text { Arthur }\end{array}\right)$
suppose we wish to choose the best mark for each student.

Relation shrinking

Then $S=\pi_{1} \cdot R$ is the relation
Mark $\stackrel{\pi_{1} \cdot R}{\leftarrow}$ Student $=\left(\begin{array}{c|c}\text { Mark } & \text { Student } \\ \hline 10 & \text { John } \\ 11 & \text { Mary } \\ 12 & \text { John } \\ 15 & \text { Arthur }\end{array}\right)$
and

$$
\text { Mark } \stackrel{\text { SI(} \geqslant)}{\leftarrow} \text { Student }=\left(\begin{array}{c|c}
\text { Mark } & \text { Student } \\
\hline 11 & \text { Mary } \\
12 & \text { John } \\
15 & \text { Arthur }
\end{array}\right)
$$

Properties of shrinking

Two fusion rules:

$$
\begin{align*}
(S \cdot f) \upharpoonright R & =(S \upharpoonright R) \cdot f \tag{125}\\
(f \cdot S) \upharpoonright R & =f \cdot\left(S \upharpoonright\left(f^{\circ} \cdot R \cdot f\right)\right) \tag{126}
\end{align*}
$$

"Chaotic optimization":

$$
\begin{equation*}
R \upharpoonright \top=R \tag{127}
\end{equation*}
$$

"Impossible optimization":

$$
\begin{equation*}
R \upharpoonright \perp=\perp \tag{128}
\end{equation*}
$$

"Brute force" determinization:

$$
\begin{equation*}
R \upharpoonright i d=\text { largest simple fragment of } R \tag{129}
\end{equation*}
$$

Relation overriding

The relational overriding combinator

$$
\begin{equation*}
R \dagger S=S \cup R \cap \perp / S^{\circ} \tag{130}
\end{equation*}
$$

yields the relation which contains the whole of S and that part of R where S is undefined - read $R \dagger S$ as " R overridden by S ".

$R+s$

Exercise on relation overriding

Let $R: A \rightarrow B$ be given as in the picture, where
$A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and
$B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}:$

Represent as a Boolean matrix the following relation overriding:

$P=\top \dagger R=$| | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| b_{1} | 0 | 0 | 0 | 0 | 0 |
| b_{2} | 0 | 0 | 0 | 0 | 0 |
| b_{3} | 0 | 0 | 0 | 0 | 0 |
| b_{4} | 0 | 0 | 0 | 0 | 0 |

Exercise on relation overriding

And now this other one:

$Q=R \dagger\left(\underline{b_{4}} \cdot \underline{a_{2}}{ }^{\circ}\right)=$| | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| b_{1} | 0 | 0 | 0 | 0 | 0 |
| b_{2} | 0 | 0 | 0 | 0 | 0 |
| b_{3} | 0 | 0 | 0 | 0 | 0 |
| b_{4} | 0 | 0 | 0 | 0 | 0 |

Exercise 54: (a) Show that $\perp \dagger S=S, R \dagger \perp=R$ and $R \dagger R=R$ hold. (b) Infer the universal property:

$$
\begin{equation*}
X \subseteq R \dagger S \equiv X-S \subseteq R \wedge(X-S) \cdot S^{\circ}=\perp \tag{131}
\end{equation*}
$$

Class 8 - Programming from GCs

Back to take

In exercise 48 we inferred

$$
\begin{aligned}
& \text { take } 0 \times s=[] \\
& \text { take } n[]=[]
\end{aligned}
$$

from the specification of take (114).
The remaining case is, by pattern matching

$$
\begin{equation*}
\text { take }(n+1)(h: x s) \tag{132}
\end{equation*}
$$

Can this be inferred from (114) too?
Let us unfold (132) and see what happens.
following fact about list-prefixing:

Back to take

In exercise 48 we inferred

$$
\begin{aligned}
& \text { take } 0 \times s=[] \\
& \text { take } n[]=[]
\end{aligned}
$$

from the specification of take (114).
The remaining case is, by pattern matching

$$
\begin{equation*}
\text { take }(n+1)(h: x s) \tag{132}
\end{equation*}
$$

Can this be inferred from (114) too?
Let us unfold (132) and see what happens. NB: We will need the following fact about list-prefixing:

$$
\begin{equation*}
s \preceq(h: t) \equiv s=[] \vee\left\langle\exists s^{\prime}: s=\left(h: s^{\prime}\right): s^{\prime} \preceq t\right\rangle \tag{133}
\end{equation*}
$$

Back to take

$$
\begin{aligned}
& \text { ys } \preceq \text { take }(n+1)(h: x s) \\
& \equiv \quad\{\text { GC (114) ; prefix (133) \} } \\
& \text { length } y s \leqslant n+1 \wedge\left(y s=[] \vee\left\langle\exists y s^{\prime}: y s=\left(h: y s^{\prime}\right): y s^{\prime} \preceq x s\right\rangle\right) \\
& \equiv \quad\{\text { distribution; length }[] \leqslant n+1\} \\
& y s=[] \vee\left\langle\exists y s^{\prime}: y s=\left(h: y s^{\prime}\right): \text { length } y s \leqslant n+1 \wedge y s^{\prime} \preceq x s\right\rangle \\
& \equiv \quad\{\text { length }(h: t)=1+\text { length } t \text { \} } \\
& y s=[] \vee\left\langle\exists y s^{\prime}: y s=\left(h: y s^{\prime}\right): \text { length } y s^{\prime} \leqslant n \wedge y s^{\prime} \preceq x s\right\rangle \\
& \equiv \quad\{\text { GC (114) }\} \\
& y s=[] \vee\left\langle\exists y s^{\prime}: y s=\left(h: y s^{\prime}\right): y s^{\prime} \preceq \text { take } n x s\right\rangle \\
& \equiv \quad\{\text { fact (133) }\} \\
& y s \preceq h \text { : take } n x s \\
& :: \quad\{\text { indirect equality over list prefixing (} \preceq \text {) \} } \\
& \text { take }(n+1)(h: x s)=h \text { : take } n \times s
\end{aligned}
$$

Back to take

Altogether, we've calculated the implementation of take

$$
\begin{array}{ll}
\operatorname{take} 0- & =[] \\
\operatorname{take}-[] & =[] \\
\operatorname{take}(\mathrm{n}+1)(\mathrm{h}: \mathrm{xs}) & =\mathrm{h}: \text { take } \mathrm{n} \text { xs }
\end{array}
$$

from its specification

$$
\text { length } y s \leqslant n \wedge y s \preceq x s \equiv y s \preceq \text { take } n x s
$$

(a GC), by indirect equality.

A clear illustration of the FM golden triad

- specification - what the program should do;
- implementation - how the program does it;
- justification - why the program does it (CbC in this case)

Back to take

Altogether, we've calculated the implementation of take

$$
\begin{array}{ll}
\text { take } 0 & =[] \\
\text { take - } & =[] \\
\operatorname{take}(\mathrm{n}+1) & (\mathrm{h}: \mathrm{xs}) \\
= & \text { h:take } \mathrm{n} \text { xs }
\end{array}
$$

from its specification

$$
\text { length } y s \leqslant n \wedge y s \preceq x s \equiv y s \preceq \text { take } n x s
$$

(a GC), by indirect equality.

A clear illustration of the FM golden triad:

- specification - what the program should do;
- implementation - how the program does it;
- justification - why the program does it (CbC in this case).

Exercise

Exercise 55: Follow the specification method of the previous example to formally specify the requirements

The function takeWhile p xs should yield the longest prefix of $x s$ such that all x in such a prefix satisfy predicate p.
and

The function filter p xs should yield the longest sublist of $x s$ such that all x in such a sublist satisfy predicate p.

NB: assume the existence of the sublist ordering ys $\sqsubseteq x s$ such that e.g.
"ab" \sqsubseteq "acb" holds but "ab" \sqsubseteq "bca" does not hold. \square

Putting (more) relational combinators together

We define the lexicographic chaining of two (endo) relations $A \stackrel{R ; S}{\rightleftarrows} A$ as follows,

$$
\begin{equation*}
R ; S=R \cap\left(R^{\circ} \Rightarrow S\right) \tag{134}
\end{equation*}
$$

recalling (135):

$$
R \cap X \subseteq Y \quad \equiv \quad X \subseteq(R \Rightarrow Y)
$$

Thus:

$$
b(R ; S) a \equiv b R a \wedge(a R b \Rightarrow b S a)
$$

Exercise 56: Show by indirect equality that (134) is the same as the universal property

$$
\begin{equation*}
X \subseteq R ; S \equiv X \subseteq R \wedge X \cap R^{\circ} \subseteq S \tag{135}
\end{equation*}
$$

\square

Putting (more) relational combinators together

We define relational projection as follows:

By indirect equality we obtain:

$$
\begin{equation*}
\pi_{g, f} R \subseteq X \equiv R \subseteq g^{\circ} \cdot X \cdot f \tag{137}
\end{equation*}
$$

- that is,

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
projection	$\left(\pi_{g, f-}\right)$	$\left(g^{\circ} \cdot-\cdot f\right)$	

Putting (more) relational combinators together

Thus:

> Projection $\pi_{g, f} R$ is the smallest relation which, wherever b is R-related to a, relates $(g b)$ to $\left(\begin{array}{l}f\end{array}\right)$.

Regarding relations as sets of pairs, we have

$$
\begin{equation*}
\pi_{g, f} R \stackrel{\text { def }}{=}\{(g b, f a) \mid(b, a) \in R\} \tag{138}
\end{equation*}
$$

NB: This generalizes the homonymous SQL projection operator, in the context of which functions f and g are regarded as attributes.

Relations as functions - the power transpose

Implicit in how e.g. Alloy works is the fact that relations can be represented by functions. Let $A \xrightarrow{R} B$ be a relation in

$$
\begin{aligned}
& \wedge R: A \rightarrow \mathcal{P} B \\
& \wedge R a=\{b \mid b R a\}
\end{aligned}
$$

such that:

$$
\wedge R=f \equiv\langle\forall b, a:: b R a \equiv b \in f a\rangle
$$

That is (universal property):

In words: any relation can be represented by set-valued function.

Relations as functions - the "Maybe" transpose

Let $A \xrightarrow{S} B$ be a simple relation. Define the function

$$
\Gamma S: A \rightarrow B+1
$$

such that:

$$
\left\ulcorner S=f \equiv\left\langle\forall b, a:: b S a \equiv\left(i_{1} b\right)=f a\right\rangle\right.
$$

That is:

In words: simple relations can be represented by "pointer"-valued functions.

"Maybe" transpose in action (Haskell)

(Or how data becomes functional.)
For finite relations, and assuming these represented extensionally as lists of pairs, the function

$$
m T=\text { flip lookup }:: E q \text { } a \Rightarrow[(a, b)] \rightarrow(a \rightarrow \text { Maybe } b)
$$

implements the "Maybe"-transpose

in Haskell.

Data " functionalization"

Inspired by (140), we may implement

$$
\text { Just }^{\circ} \cdot m T
$$

in Haskell,

$$
\begin{aligned}
& \text { pap }:: E q a \Rightarrow[(a, t)] \rightarrow a \rightarrow t \\
& \text { pap } m=\text { unJust } \cdot(m T m) \text { where unJust }(\text { Just } a)=a
\end{aligned}
$$

which converts a list of key-value pairs into a partial function.
NB: pap abbreviates "partial application".

In this way, the columnar approach to data processing can be made functional.

Class 9 - Predicates become relations

How predicates become relations

Recall from (35) the notation

$$
\frac{f}{g}=g^{\circ} \cdot f
$$

and, given predicate $\mathbb{B}<^{p} A$, the relation $A<^{\frac{\text { true }}{p}} X$, where true is the everywhere-True constant function.

Now define:

$$
\begin{equation*}
\Phi_{p}=i d \cap \frac{t r u e}{p} \tag{141}
\end{equation*}
$$

Clearly, Φ_{p} is the coreflexive relation which represents predicate p as a binary relation - see the following exercise.

Exercise 57: Show that $y \Phi_{p} x \equiv y=x \wedge p x \square$
$\Phi_{\text {even }}$

Predicates become relations

Moreover,

$$
\begin{equation*}
\Phi_{p} \cdot \top=\frac{\text { true }}{p} \tag{142}
\end{equation*}
$$

thanks to distributive property (57) and

$$
\underline{k} \cdot R \subseteq \underline{k}
$$

Then:

$$
\begin{align*}
\Phi_{p} \cdot R & =R \cap \Phi_{p} \cdot \top \tag{143}\\
R \cdot \Phi_{q} & =R \cap \top \cdot \Phi_{q} \tag{144}
\end{align*}
$$

These are called post and pre restrictions of R.

Relational restrictions

Pre restriction $R \cdot \Phi_{p}$:

Post restriction $\Phi_{q} \cdot R$:

Distinguished coreflexives: domain and range

Do you remember...

Kernel of R	Image of R
$A \stackrel{\text { ker } R}{\gtrless} A$	$B \stackrel{\operatorname{img} R}{\leftarrow} B$
$\operatorname{ker} R \stackrel{\text { def }}{=} R^{\circ} \cdot R$	$\operatorname{img} R \stackrel{\text { def }}{=} R \cdot R^{\circ}$

How about intersecting both with id?

$$
\begin{gather*}
\delta R=\operatorname{ker} R \cap i d \tag{145}\\
\rho R=\operatorname{img} R \cap i d \tag{146}
\end{gather*}
$$

Distinguished coreflexives: domain and range

Clearly:

$$
a^{\prime} \delta R a \equiv a^{\prime}=a \wedge\left\langle\exists b: b R a^{\prime}: b R a\right\rangle
$$

that is

$$
\delta R=\Phi_{p} \text { where } p a=\langle\exists b:: b R a\rangle
$$

Thus δR captures all a which R reacts to.

Dually,

$$
\rho R=\Phi_{q} \text { where } q b=\langle\exists a \quad: \quad b \quad R \text { a }\rangle
$$

Thus ρR captures all b which R hits as target.

Distinguished coreflexives: domain and range

As was to be expected:

$$
(f X) \subseteq Y \equiv X \subseteq(g Y)
$$

Description	f	g	Obs.
domain	δ	$(T \cdot)$	left \subseteq restricted to coreflexives
range	ρ	$(\cdot T)$	left \subseteq restricted to coreflexives

Spelling out these GC:

$$
\begin{align*}
& \delta X \subseteq Y \equiv X \subseteq \top \cdot Y \tag{147}\\
& \rho R \subseteq Y \equiv R \subseteq Y \cdot \top \tag{148}
\end{align*}
$$

PRopositio de homine et capra et lvpo

Recalling the data model (4)

```
Being \(\xrightarrow{\text { Eats }}\) Being
    where \(\downarrow\)
    Bank \(\xrightarrow{\text { cross }}\) Bank
```

we specify the move of Beings to the other bank is an example of relational restriction and overriding:

$$
\begin{equation*}
\operatorname{carry}(\text { where }, \text { who })=\text { where } \dagger\left(\text { cross } \cdot \text { where } \cdot \Phi_{\text {who }}\right) \tag{149}
\end{equation*}
$$

In Alloy syntax:

```
fun carry[where: Being -> one Bank,
    who: set Being]: Being -> one Bank
    { where ++ (who <: where).cross }
```


Exercises

Exercise 58: Prove the distributive property:

$$
\begin{equation*}
g^{\circ} \cdot(R \cap S) \cdot f=g^{\circ} \cdot R \cdot f \cap g^{\circ} \cdot S \cdot f \tag{150}
\end{equation*}
$$

Then show that

$$
\begin{equation*}
g^{\circ} \cdot \Phi_{p} \cdot f=\frac{f}{g} \cap \frac{\text { true }}{p \cdot g} \tag{151}
\end{equation*}
$$

holds (both sides of the equality mean $g b=f a \wedge p(g b)$).
Exercise 59: Infer

$$
\begin{equation*}
\Phi_{q} \cdot \Phi_{p}=\Phi_{q} \cap \Phi_{p} \tag{152}
\end{equation*}
$$

from properties (144) and (143). \square

Exercise 60: Derive (138) from (136). \square

Exercises

Exercise 61: (a) From (135) infer:

$$
\begin{align*}
\perp \Rightarrow R & =\top \tag{153}\\
R \Rightarrow \top & =\top \tag{154}
\end{align*}
$$

(b) via indirect equality over (134) show that

$$
\begin{equation*}
\top ; S=S \tag{155}
\end{equation*}
$$

holds for any S and that, for R symmetric, we have:

$$
\begin{equation*}
R ; R=R \tag{156}
\end{equation*}
$$

Exercise 62: Show that $R-S \subseteq R, R-\perp=R$ and $R-R=\perp$ hold. \square

Exercises

Exercise 63: Let students in a course have two numeric marks,

$$
\mathbb{N} \stackrel{\text { mark } 1}{\hookrightarrow} \text { Student } \xrightarrow{\text { mark } 2} \mathbb{N}
$$

and define the preorders:

$$
\begin{aligned}
& \leqslant_{\text {mark1 }}=\text { mark } 1^{\circ} \cdot \leqslant \cdot \operatorname{mark} 1 \\
& \leqslant_{\text {mark2 }}=\operatorname{mark} 2^{\circ} \cdot \leqslant \cdot \operatorname{mark2}
\end{aligned}
$$

Spell out in pointwise notation the meaning of lexicographic ordering

$$
\leqslant_{m a r k 1} ; \leqslant_{m a r k 2}
$$

Exercises

Exercise 64: Show that

$$
R \dagger f=f
$$

holds, arising from $(131,122)$ — where f is a function, of course.
Exercise 65: Function move (149) could have been defined by

$$
\text { move }=w_{\text {where }}^{\text {who }} \text { cross }
$$

using the following (generic) selective update operator:

$$
\begin{equation*}
R_{p}^{f}=R \dagger\left(f \cdot R \cdot \Phi_{p}\right) \tag{157}
\end{equation*}
$$

Prove the equalities: $R_{p}^{i d}=R, R_{\text {false }}^{f}=R$ and $R_{\text {true }}^{f}=f \cdot R$.

Exercises

Exercise 66: A relation R is said to satisfy functional dependency (FD) $g \rightarrow f$, written $g \xrightarrow{R} f$ wherever projection $\pi_{f, g} R(136)$ is simple.

1. Recalling (81), prove the equivalence:

$$
\begin{equation*}
g \xrightarrow{R} \not \equiv f \equiv g \cdot R^{\circ} \tag{158}
\end{equation*}
$$

2. Show that (158) trivially holds wherever g is injective and R is simple, for all (suitably typed) f.
3. Prove the composition rule of FDs:

$$
\begin{equation*}
h \kappa_{K}^{S \cdot R} g \Leftarrow h «^{S} f \wedge f «^{R} g \tag{159}
\end{equation*}
$$

Class 10 - Contracts

Back to pre/post relational restrictions

Looking at the types in a pre restriction

restriction

we immediately realize they fit together into a "magic" square..

Back to pre/post relational restrictions

Looking at the types in a pre restriction

... and those in a post restriction

we immediately realize they fit together into a "magic" square.

Back to pre/post relational restrictions

Looking at the types in a pre restriction

we immediately realize they fit together into a "magic" square...
... and those in a post restriction

Our good old "square" (again!!)

$$
\begin{aligned}
& R \cdot \Phi_{p} \subseteq \Phi_{q} \cdot R
\end{aligned}
$$

What does this mean?
Let us see this for the (simpler) case in which R is a function f :

Contracts

By shunting, (160) is the same as $\Phi_{p} \subseteq f^{\circ} \cdot \Phi_{q} \cdot f$, therefore meaning:

$$
\begin{equation*}
\langle\forall a: p a: q(f a)\rangle \tag{161}
\end{equation*}
$$

by exercise 57 .
In words:

For all inputs a such that condition p a holds, the output f a satisfies condition q.

In software design, this is known as a (functional) contract, which we shall write

$$
\begin{equation*}
p \xrightarrow{f} q \tag{162}
\end{equation*}
$$

- a notation that generalizes the type of f. Important: thanks to (143), (160) can also be written: $f \cdot \Phi_{p} \subseteq \Phi_{q} \cdot T$.

Weakest pre-conditions

Note that more than one (pre) condition p may ensure (post) condition q on the outputs of f.

Indeed, contract
false $\xrightarrow{f} q$ always
holds, but pre-condition
false is useless ("too strong").

The weaker p, the better. Now, is there a weakest such p ?

See the calculation aside.

$$
\left\{\begin{array}{cc}
& f \cdot \Phi_{p} \subseteq \Phi_{q} \cdot f \\
\equiv & \{\text { see above (143) }\} \\
& f \cdot \Phi_{p} \subseteq \Phi_{q} \cdot \top \\
\equiv & \{\text { shunting }(32) ;(142)\} \\
& \Phi_{p} \subseteq f^{\circ} \cdot \frac{\text { true }}{q} \\
\equiv & \{(37)\} \\
& \Phi_{p} \subseteq \frac{\text { true }}{q \cdot f} \\
\equiv & \left\{\Phi_{p} \subseteq i d ;(52)\right\} \\
& \Phi_{p} \subseteq i d \cap \frac{\text { true }}{q \cdot f} \\
\equiv & \{(141)\} \\
& \Phi_{p} \subseteq \Phi_{q \cdot f}
\end{array}\right.
$$

We conclude that $q \cdot f$ is such a weakest pre-condition.

Weakest pre-conditions

Notation $\operatorname{WP}(f, q)=q \cdot f$ is often used for weakest pre-conditions.

Exercise 67: Calculate the weakest pre-condition $\mathrm{WP}(f, q)$ for the following function / post-condition pairs:

- $f x=x^{2}+1, q y=y \leqslant 10($ in $\mathbb{R})$
- $f=\mathbb{N} \xrightarrow{\text { succ }} \mathbb{N}, q=$ even
- $f x=x^{2}+1$, q $y=y \leqslant 0($ in $\mathbb{R})$

Exercise 68: Show that $q \stackrel{g \cdot f}{\leftarrow} p$ holds provided $r{ }_{\longleftarrow}^{f} p$ and $q \leftarrow^{g} r$ hold. \square

Invariants versus contracts

In case contract

$$
q \xrightarrow{f} q
$$

holds (162), we say that q is an invariant of f - meaning that the "truth value" of q remains unchanged by execution of f.

More generally, invariant q is preserved by function f provided contract $p \xrightarrow{f} q$ holds and $p \Rightarrow q$, that is, $\Phi_{p} \subseteq \Phi_{q}$.

Some pre-conditions are weaker than others:
We shall say that w is the weakest pre-condition for f to preserve invariant q wherever $\operatorname{WP}(f, q)=w \wedge q$, where $\Phi_{(p \wedge q)}=\Phi_{p} \cdot \Phi_{q}$.

Invariants versus contracts

Recalling the Alcuin puzzle, let us define the starvation invariant as a predicate on the state of the puzzle, passing the where function as a parameter w :

$$
\text { starving } w=w \cdot \text { CanEat } \subseteq w \cdot \underline{\text { Farmer }}
$$

Recalling (149),

$$
\operatorname{carry}(\text { where }, \text { who })=\text { where } \dagger\left(\text { cross } \cdot \text { where } \cdot \Phi_{\text {who }}\right)
$$

we also define:

$$
\begin{equation*}
\text { trip } b w=\operatorname{carry}(w, b) \tag{163}
\end{equation*}
$$

Invariants versus contracts

Then the contract

$$
\text { starving } \xrightarrow{\text { trip b }} \text { starving }
$$

would mean that the function trip b - that should carry b to the other bank of the river - always preserves the invariant: $\mathrm{WP}($ trip b, starving $)=$ starving.

Things are not that easy, however: there is a need for a pre-condition ensuring that b is on the Farmer's bank and is the right being to carry!

Let us see a simpler example first.

Library loan example

$u R b$ means "book b currently on loan to library user u ".
Desired properties:

- same book not on loan to more than one user;
- no book with no authors;
- no two users with the same card Id.

NB: lowercase arrow labels denote functions, as usual.

Library loan example

Encoding of desired properties:

- no book on loan to more than one user:

$$
\text { Book } \xrightarrow{R} \text { User is simple }
$$

- no book without an author:

$$
\text { Book } \xrightarrow{\text { Auth }} \text { Author is entire }
$$

- no two users with the same card Id:

$$
\text { User } \xrightarrow{\text { card }} I d \text { is injective }
$$

NB: as all other arrows are functions, they are simple+entire.

Library loan example

Encoding of desired properties as relational invariants:

- no book on loan to more than one user:

$$
\begin{equation*}
\operatorname{img} R \subseteq i d \tag{164}
\end{equation*}
$$

- no book without an author:

$$
\begin{equation*}
i d \subseteq \text { ker Auth } \tag{165}
\end{equation*}
$$

- no two users with the same card Id:

$$
\begin{equation*}
\text { ker card } \subseteq i d \tag{166}
\end{equation*}
$$

Library loan example

Now think of two operations on User $\stackrel{R}{\leftarrow}$ Book, one that returns books to the library and another that records new borrowings:

$$
\begin{align*}
& \text { return } S R=R-S \tag{167}\\
& \text { borrow } S R=S \cup R \tag{168}
\end{align*}
$$

Clearly, these operations only change the books-on-loan relation R, which is conditioned by invariant

$$
\begin{equation*}
\operatorname{inv} R=\operatorname{img} R \subseteq i d \tag{169}
\end{equation*}
$$

The question is, then: are the following "types"

$$
\begin{align*}
& i n v<\text { return } S \tag{170}\\
& i n v \underset{~ b o r r o w ~}{ } S \tag{171}\\
& i n v \\
& i n v
\end{align*}
$$

ok? We check $(170,171)$ below.

Library loan example

Checking (170):

$$
\begin{aligned}
& \operatorname{inv}(\text { return } S R) \\
\equiv & \{\text { inline definitions }\} \\
& \operatorname{img}(R-S) \subseteq \text { id } \\
\Leftarrow & \{\text { since img is monotonic }\} \\
& \operatorname{img} R \subseteq \text { id } \\
\equiv & \{\text { definition }\} \\
& \operatorname{inv} R
\end{aligned}
$$

\square
So, for all R, inv $R \Rightarrow \operatorname{inv}($ return $S R$) holds - invariant inv is preserved.

Library loan example

At this point note that (170) was checked only as a warming-up exercise - we don't need to worry about it! Why?

> As $R-S$ is smaller than R (exercise 62) and "smaller than injective is injective" (exercise 28), it is immediate that inv (169) is preserved.

To see this better, unfold and draw definition (169):

As R is on the lower-path of the square, it can always get smaller.

Library loan example

This "rule of thumb" does not work for borrow S because, in general, $R \subseteq$ borrow $S R$.

So R gets bigger, not smaller, and we have to check the contract:

$$
\left.\begin{array}{rl}
& \operatorname{inv}(\text { borrow } S R) \\
\equiv & \{\text { inline definitions }\} \\
& \operatorname{img}(S \cup R) \subseteq i d \\
\equiv & \{\text { exercise } 27\} \\
& \operatorname{img} R \subseteq \text { id } \wedge \operatorname{img} S \subseteq i d \wedge S \cdot R^{\circ} \subseteq i d \\
\equiv & \{\text { definition of inv }\}
\end{array}\right\}
$$

Library loan example (Alloy)

In practice, our proposed workflow does not go immediately to the calculation of the weakest precondition of a contract.

We model-check the contract first, in order to save the process from childish errors:

What is the point in trying to prove something that a model checker can easily tell is a nonsense?

This follows a systematic process, illustrated next.

Relation Algebra + Alloy round-trip

Library loan example (Alloy)

First we write the Alloy model of what we have thus far:

```
sig Book {
    title : one Title,
    isbn : one ISBN,
    Auth: some Author,
    R}\mathrm{ : lone User
}
sig User {
    name : one Name,
    add : some Address,
    card: one Id
}
sig Title, ISBN, Author,
    Name, Address, Id { }
```

```
fact {
        card .~ card in iden
            -- card is injective
}
fun borrow
    [S,R: Book }->\mathrm{ lone User] :
        Book }->\mathrm{ lone User {
    R+S
}
fun return
    [S,R: Book }->\mathrm{ lone User] :
        Book }->\mathrm{ lone User {
    R-S
}
```


Library loan example (Alloy)

As we have seen, return is no problem, so we focus on borrow.
Realizing that most attributes of Book and User don't matter wrt. checking borrow, we comment them all, obtaining a much smaller model:

```
sig Book {R : lone User }
sig User { }
fun borrow
    [S,R:Book }->\mathrm{ lone User]:
        Book }->\mathrm{ lone User {
    R+S
}
```

Next, we single out the invariant, making it explicit as a predicate (aside).

```
sig Book {R:User}
sig User { }
pred inv {
    R in Book }->\mathrm{ lone User
}
fun borrow
    [S,R:Book }->\mathrm{ User]:
        Book }->\mathrm{ User {
    R+S
}
```


Library loan example (Alloy)

In the step that follows, we make the model dynamic, in the sense that we need at least two instances of relation R - one before borrow is applied and the other after.

We introduce Time as a way
of recording such two moments, pulling R out of Book

$$
\begin{aligned}
& \text { sig Time }\{r: \text { Book } \rightarrow \text { User }\} \\
& \text { sig Book }\} \\
& \text { sig User }\}
\end{aligned}
$$

and re-writing inv accordingly (aside).

```
pred inv [t: Time] {
    t \cdot r ~ i n ~ B o o k ~ \rightarrow ~ l o n e ~ U s e r ~
```

\}

Note how
$r:$ Time \rightarrow (Book \rightarrow User) is
a function - it yields, for each $t \in$ Time, the relation Book $\xrightarrow{r t}$ User .

Library loan example (Alloy)

This makes it possible to express contract inv $\xrightarrow{\text { borrow } S} i n v$ in terms of $t \in$ Time,

$$
\left\langle\forall t, t^{\prime}: \operatorname{inv} t \wedge r t^{\prime}=\text { borrow } S(r t): i n v t^{\prime}\right\rangle
$$

i.e. in Alloy:

```
assert contract {
    all t, t': Time, S:Book }->\mathrm{ User 
        inv [t] and t' }\cdot\mp@code{r=borrow [t\cdotr,S]=>inv [t']
}
```

Once we check this, for instance running check contract for 3 but exactly 2 Time we shall obtain counter-examples. (These were expected...)

Library loan example (Alloy)

The counter-examples will quickly tell us what the problems are, guiding us to add the following pre-condition to the contract:

```
pred pre [t: Time, S:Book }->\mathrm{ User] {
    S in Book }->\mathrm{ lone User
    ~S}(t\cdotr)\mathrm{ in iden
}
```

The fact that this does not yield counter-examples anymore does not tell us that

- pre is enough in general
- pre is weakest.

This we have to prove by calculation - as we have seen before.

Library loan example (Alloy)

Note that pre-conditioned borrow $S \cdot \Phi_{\text {pre }}$ is not longer a function, because it is not entire anymore.

We can encode such a relation in Alloy in an easy-to-read way, as a predicate structured in two parts - pre-condition and post-condition:

```
pred borrow [t, t': Time, S : Book }->\mathrm{ User] {
    -- pre-condition
    S in Book }->\mathrm{ lone User
    ~S}(t\cdotr)\mathrm{ in iden
    -- post-condition
    t'}\cdotr=t\cdotr+
}
```


Alloy + Relation Algebra round-trip

Summary

- The Alloy + Relation Algebra round-trip enables us to take advantage of the best of the two verification strategies.
- Diagrams of invariants help in detecting which contracts don't need to be checked.
- Functional specifications are good as starting point but soon evolve towards becoming relations, comparable to the methods of an OO programming language.
- Time was added to the model just to obtain more than one "state". In general, Time will be linearly ordered so that the traces of the model can be reasoned about. ${ }^{5}$
${ }^{5}$ In Alloy, just declare: open util/ordering[Time].

Library loan example revisited

More detailed data model of our library with invariants captured by diagram

where

- M - records books on loan, identified by ISBN;
- N - records library users (identified by user id's in UID); (both simple) and
- R - records loan dates.

Library loan example revisited

The two squares in the diagram impose bounds on R :

- Non-existing books cannot be on loan (left square);
- Only known users can take books home (right square).
(NB: in the database terminology these are known as integrity constraints.)

Exercise 69: Add variables to both squares in (172) so that the same conditions are expressed pointwise. Then show that the conjunction of the two squares means the same as assertion

$$
\begin{equation*}
R^{\circ} \subseteq\left\langle M^{\circ} \cdot T, N^{\circ} \cdot T\right\rangle \tag{173}
\end{equation*}
$$

and draw this in a diagram. \square

Library loan example revisited

Exercise 70: Consider implementing M, R and N as files in a relational database. For this, think of operations on the database such as, for example, that which records new loans (K):

$$
\begin{equation*}
\operatorname{borrow}(K,(M, R, N))=(M, R \cup K, N) \tag{174}
\end{equation*}
$$

It can be checked that the pre-condition

$$
\operatorname{pre}-\operatorname{borrow}(K,(M, R, N))=R \cdot K^{\circ} \subseteq i d
$$

is necessary for maintaining (172) (why?) but it is not enough. Calculate - for a rectangle in (172) of your choice - the corresponding clause to be added to pre-borrow. \square

Library loan example revisited

Exercise 71: The operations that buy new books

$$
\begin{equation*}
\operatorname{buy}(X,(M, R, N))=(M \cup X, R, N) \tag{175}
\end{equation*}
$$

and register new users

$$
\begin{equation*}
\operatorname{register}(Y,(M, R, N))=(M, R, N \cup Y) \tag{176}
\end{equation*}
$$

don't need any pre-conditions. Why? (Hint: compute their WP.) \square

NB: see annex on proofs by \subseteq-monotonicity for a strategy generalizing the exercise above.

Relational contracts

Finally, let the following definition

$$
\begin{equation*}
p \xrightarrow{R} q \equiv R \cdot \Phi_{p} \subseteq \Phi_{q} \cdot R \tag{177}
\end{equation*}
$$

generalize functional contracts (160) to arbitrary relations, meaning:

$$
\begin{equation*}
\langle\forall b, a: b R a: p a \Rightarrow q b\rangle \tag{178}
\end{equation*}
$$

- see the exercise below.

Exercise 72: Sow that an alternative way of stating (177) is

$$
\begin{equation*}
p \xrightarrow{R} q \equiv R \cdot \Phi_{p} \subseteq \Phi_{q} \cdot \top \tag{179}
\end{equation*}
$$

Exercise 19 (continued)

Exercise 73: Recalling exercise 19, let the following relation specify that two dates are at least one week apart in time:

$$
d O k d^{\prime} \equiv\left|d-d^{\prime}\right|>1 \text { week }
$$

Looking at the type diagram below right, say in your own words the meaning of the invariant specified by the relational type (??) statement below, on the left:

$$
\text { ker }(\text { home } \cup \text { away })-i d \xrightarrow{\text { date }} O k
$$

Case study: railway topologies

Case study: railway topologies

$$
S w \stackrel{S}{\leftarrow} N \stackrel{R}{\leftarrow} N \xrightarrow{P} S I
$$

where
Sw - switches ('agulhas')
SI - signals ('sinais')

Case study: railway topologies

$$
S w \stackrel{S}{\longleftarrow} N \stackrel{R}{\longleftarrow} N \xrightarrow{P} S I
$$

Switches:

$$
\text { switchOk }(S, R, P)=\delta S \subseteq R^{\circ} \cdot(\neq) \cdot R
$$

Case study: railway topologies

$$
S w \stackrel{S}{\leftarrow} N \stackrel{R}{\leftarrow} N \xrightarrow{P} S I
$$

Add a switch:

$$
\operatorname{addSwitch}(s, n)(S, R, P)=\left(S \cup \underline{s} \cdot \underline{n}^{\circ}, R, P\right)
$$

Case study: railway topologies

Case study: railway topologies

$$
S w \stackrel{S}{\leftarrow} N \stackrel{R}{\leftarrow} N \xrightarrow{P} S I
$$

Switches:

$$
\text { switchOk }(S, R, P)=\delta S \subseteq R^{\circ} \cdot(\neq) \cdot R
$$

Class 11 - Theorems for free

Parametric polymorphism by example

Function

$$
\begin{aligned}
& \text { countBits: } \mathbb{N}_{0} \leftarrow \text { Bool* }^{\star} \\
& \text { countBits [] =0 } \\
& \text { countBits(b:bs) }=1+\text { countBits bs }
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { countNats : } \mathbb{N}_{0} \leftarrow \mathbb{N}^{\star} \\
& \text { countNats }[]=0 \\
& \operatorname{count} N a t s(b: b s)=1+\text { countNats bs }
\end{aligned}
$$

are both subsumed by generic (parametric):

$$
\begin{aligned}
& \text { count : }(\forall a) \mathbb{N}_{0} \leftarrow a^{\star} \\
& \operatorname{count}[]=0 \\
& \operatorname{count}(a: a s)=1+\text { count as }
\end{aligned}
$$

Parametric polymorphism: why?

- Less code (specific solution = generic solution + customization)
- Intellectual reward
- Last but not least, quotation from Theorems for free!, by Philip Wadler [6]:

From the type of a polymorphic function we can derive a theorem that it satisfies. (...) How useful are the theorems so generated? Only time and experience will tell (...)

- No doubt: free theorems are very useful!

Polymorphic type signatures

Polymorphic function signature:

$$
f: t
$$

where t is a functional type, according to the following "grammar" of types:

$$
\begin{aligned}
& t::=t^{\prime} \leftarrow t^{\prime \prime} \\
& t::=\mathcal{F}\left(t_{1}, \ldots, t_{n}\right) \quad \text { type constructor } \mathcal{F} \\
& t::=v \quad \text { type variables } v, \text { cf. polymorphism }
\end{aligned}
$$

What does it mean for f to be parametrically polymorphic?

Free theorem of type t

Let

- V be the set of type variables involved in type t
- $\left\{R_{v}\right\}_{v \in V}$ be a V-indexed family of relations (f_{v} in case all such R_{v} are functions).
- R_{t} be a relation defined inductively as follows:

$$
\begin{align*}
R_{t:=v} & =R_{v} \tag{180}\\
R_{t:=\mathcal{F}\left(t_{1}, \ldots, t_{n}\right)} & =\mathcal{F}\left(R_{t_{1}}, \ldots, R_{t_{n}}\right) \tag{181}\\
R_{t:=t^{\prime} \leftarrow t^{\prime \prime}} & =R_{t^{\prime}} \leftarrow R_{t^{\prime \prime}} \tag{182}
\end{align*}
$$

Questions: What does \mathcal{F} in the RHS of (181) mean? What kind of relation is $R_{t^{\prime}} \leftarrow R_{t^{\prime \prime}}$? See next slides.

Background: relators

Parametric datatype \mathcal{G} is said to be a relator [2] wherever, given a relation from A to $B, \mathcal{G} R$ extends R to \mathcal{G}-structures: it is a relation

from $\mathcal{G} A$ to $\mathcal{G} B$ which obeys the following properties:

$$
\begin{align*}
\mathcal{G} i d & =\text { id } \tag{184}\\
\mathcal{G}(R \cdot S) & =(\mathcal{G} R) \cdot(\mathcal{G} S) \tag{185}\\
\mathcal{G}\left(R^{\circ}\right) & =(\mathcal{G} R)^{\circ} \tag{186}
\end{align*}
$$

and is monotonic:

$$
\begin{equation*}
R \subseteq S \quad \Rightarrow \mathcal{G} R \subseteq \mathcal{G} S \tag{187}
\end{equation*}
$$

Relators: "Maybe" example

(Read $1+A$ as "maybe $A ")$

Unfolding $\mathcal{G} R=i d+R$:

$$
\left.\begin{array}{rl}
& \begin{array}{r}
y(i d+R) x \\
\equiv
\end{array} \quad\left\{\text { unfolding the sum, cf. id }+R=\left[i_{1} \cdot i d, i_{2} \cdot R\right]\right\}
\end{array}\right\} \begin{aligned}
y\left(i_{1} \cdot i_{1}^{\circ} \cup i_{2} \cdot R \cdot i_{2}^{\circ}\right) x
\end{aligned} \quad\{\text { relational union (48); image }\}
$$

Relators: R^{*} example

Take $\mathcal{F} X=X^{\star}$.
Then, for some $B \Vdash^{R} A$, relator $B^{\star} \Vdash^{R^{\star}} A^{\star}$ is the relation

$$
\begin{equation*}
R^{*}=\left[\text { nil }, \text { cons } \cdot\left(R \times R^{*}\right)\right] \cdot \text { out } \tag{188}
\end{equation*}
$$

Why? Look at this diagram:

Relators: R^{*} example

Take $\mathcal{F} X=X^{\star}$.
Then, for some $B \longleftarrow R \nleftarrow$, relator $B^{\star} \stackrel{R^{\star}}{\longleftarrow} A^{\star}$ is the relation

$$
\begin{equation*}
R^{*}=\left[\text { nil }, \text { cons } \cdot\left(R \times R^{*}\right)\right] \cdot \text { out } \tag{188}
\end{equation*}
$$

Why? Look at this diagram:

NB: in $=[$ nil , cons $]$ where nil ${ }_{-}=[]$and cons $(h, t)=h: t$.

About R^{*}

Then:

$$
\begin{aligned}
& R^{*} \cdot \text { in }=\left[\text { nil }, \text { cons } \cdot\left(R \times R^{*}\right)\right] \\
& \equiv \quad\{\text { in }=[\text { nil }, \text { cons }] \text { etc }\} \\
& \left\{\begin{array}{l}
R^{*} \cdot \text { nil }=\text { nil } \\
R^{*} \cdot \text { cons }=\text { cons } \cdot\left(R \times R^{*}\right)
\end{array}\right.
\end{aligned}
$$

that is:

$$
\left\{\begin{array}{l}
y R^{*}[] \equiv y=[] \\
y R^{*}(h: t) \equiv\left\langle\exists b, x: y=(b: x): b R a \wedge x R^{*} t\right\rangle
\end{array}\right.
$$

In case $R:=f, R^{*}=\operatorname{map} f$.

Exercises

Exercise 74: Inspect the meaning of properties (184) and (186) for the list relator R^{*} defined above.

Exercise 75: Show that the identity relator \mathcal{I}, which is such that $\mathcal{I} R=R$ and the constant relator \mathcal{K} (for a given data type K) which is such that $\mathcal{K} R=i d_{K}$ are indeed relators. \square

Exercise 76: Show that (Kronecker) product

is a (binary) relator. \square

Background: "Reynolds arrow" operator

The following relation on functions
is another instance of our "magic rectangle".

That is to say,

$$
\begin{aligned}
& A<S \\
& C \leftarrow R \\
& C^{A} \stackrel{R}{\leftarrow} \stackrel{R}{\leftarrow} D^{B}
\end{aligned}
$$

For instance, $\quad f(i d \leftarrow i d) g \equiv f=g$ that is, $\quad i d \leftarrow i d=i d$

Free theorem (FT) of type t

The free theorem (FT) of type t is the following (remarkable) result due to J. Reynolds [5], advertised by P. Wadler [6] and re-written by Backhouse [1] in the pointfree style:

Given any function θ : t, and V as
above, then $\theta R_{t} \theta$ holds, for any
relational instantiation of type variables in V.

J.C. Reynolds (1935-2013)

Note that this theorem

- is a result about t
- holds independently of the actual definition of θ.
- holds about any polymorphic function of type t

First example (id)

The target function:

$$
\theta=i d: a \leftarrow a
$$

Calculation of $R_{t=a \leftarrow a}$:

$$
\equiv \begin{aligned}
& R_{a \leftarrow a} \\
& \left\{\text { rule } R_{t=t^{\prime} \leftarrow t^{\prime \prime}}=R_{t^{\prime}} \leftarrow R_{t^{\prime \prime}} \quad\right\} \\
& R_{a} \leftarrow R_{a}
\end{aligned}
$$

Calculation of FT (R_{a} abbreviated to R):

$$
\equiv \begin{gathered}
i d(R \leftarrow R) i d \\
\{(189)\} \\
i d \cdot R \subseteq R \cdot i d
\end{gathered}
$$

First example (id)

In case R is a function f, the FT theorem boils down to id's natural property:

$$
i d \cdot f=f \cdot i d
$$

cf.

which can be read alternatively as stating that id is the unit of composition.

Second example (reverse)

The target function: $\theta=$ reverse : $a^{\star} \leftarrow a^{\star}$.
Calculation of $R_{t=a^{\star} \leftarrow a^{\star}}$:

$$
\begin{aligned}
& \equiv \begin{array}{l}
R_{\mathrm{a}^{\star} \leftarrow \mathrm{a}^{\star}} \\
\quad\left\{\text { rule } R_{t=t^{\prime} \leftarrow t^{\prime \prime}}=R_{t^{\prime}} \leftarrow R_{t^{\prime \prime}}\right\}
\end{array} \\
& \begin{array}{l}
R_{\mathrm{a}^{\star}} \leftarrow R_{\mathrm{a}^{\star}} \\
\equiv \quad\left\{\text { rule } R_{t=\mathcal{F}\left(t_{1}, \ldots, t_{n}\right)}=\mathcal{F}\left(R_{t_{1}}, \ldots, R_{t_{n}}\right)\right\}
\end{array} \\
& \quad R_{a^{\star}} \leftarrow R_{\mathrm{a}}{ }^{\star}
\end{aligned}
$$

where $s R^{\star} s^{\prime}$ is given by (188). The calculation of FT follows.

Second example (reverse)

The FT itself will predict (R_{a} abbreviated to R):

$$
\begin{aligned}
& \quad \begin{aligned}
& \text { reverse }\left(R^{\star} \leftarrow R^{\star}\right) \text { reverse } \\
& \equiv\{\text { definition } f(R \leftarrow S) g \equiv f \cdot S \subseteq R \cdot g \quad\} \\
& \text { reverse } \cdot R^{\star} \subseteq R^{\star} \cdot \text { reverse }
\end{aligned}
\end{aligned}
$$

In case R is a function r, the FT theorem boils down to reverse's natural property:

```
reverse}\cdot\mp@subsup{r}{}{\star}=\mp@subsup{r}{}{\star}\cdot\mathrm{ reverse
```

that is,

```
reverse [r a| a\leftarrowI] = [rb| b\leftarrowreverse I]
```


Second example (reverse)

Further calculation (back to R):

```
        reverse \cdot R}\mp@subsup{R}{}{\star}\subseteq\mp@subsup{R}{}{\star}\cdot\mathrm{ reverse
\equiv { shunting rule (32) }
        R^}\subseteq\mp@subsup{\mathrm{ reverse }}{}{\circ}\cdot\mp@subsup{R}{}{\star}\cdot\mathrm{ reverse
\equiv { going pointwise (8,23) }
```


An instance of this pointwise version of reverse-FT will state that, for example, reverse will respect element-wise orderings $(R:=<)$:

Third example: FT of sort

Our next example calculates the FT of

$$
\text { sort : } a^{\star} \leftarrow a^{\star} \leftarrow(\text { Bool } \leftarrow(a \times a))
$$

where the first parameter stands for the chosen ordering relation, expressed by a binary predicate:

$$
\left.\begin{array}{ll}
& \operatorname{sort}\left(R_{\left(a^{\star} \leftarrow a^{\star}\right) \leftarrow(\text { Bool } \leftarrow(a \times a))}\right) \text { sort } \\
\equiv & \left\{(181,180,182) ; \text { abbreviate } R_{a}:=R\right\} \\
& \operatorname{sort}\left(\left(R^{\star} \leftarrow R^{\star}\right) \leftarrow\left(R_{\text {Bool }} \leftarrow(R \times R)\right)\right) \text { sort }
\end{array}\right] \quad \begin{gathered}
\left\{R_{t:=\text { Bool }}=i d(\text { constant relator })-\text { cf. exercise } 75\right\} \\
\equiv \\
\\
\\
\operatorname{sort}\left(\left(R^{\star} \leftarrow R^{\star}\right) \leftarrow(\text { id } \leftarrow(R \times R))\right) \text { sort }
\end{gathered}
$$

Third example: FT of sort

$$
\left.\begin{array}{ll}
& \operatorname{sort}\left(\left(R^{\star} \leftarrow R^{\star}\right) \leftarrow(\text { id } \leftarrow(R \times R))\right) \text { sort } \\
\equiv & \{(189)\} \\
& \text { sort } \cdot(\text { id } \leftarrow(R \times R)) \subseteq\left(R^{\star} \leftarrow R^{\star}\right) \cdot \text { sort } \\
\equiv & \{\text { shunting (32) \} }
\end{array}\right\} \begin{aligned}
& (\text { id } \leftarrow(R \times R)) \subseteq \text { sort }^{\circ} \cdot\left(R^{\star} \leftarrow R^{\star}\right) \cdot \text { sort } \\
& \equiv
\end{aligned} \quad\{\text { introduce variables } f \text { and } g(8,23)\}
$$

Third example: FT of sort

Case $R:=r$:

$$
\begin{aligned}
& f \cdot(r \times r)=g \Rightarrow(\text { sort } f) \cdot r^{\star}=r^{\star} \cdot(\text { sort } g) \\
\equiv & \{\text { introduce variables }\} \\
& \left\langle\begin{array}{c}
\forall a, b:: \\
f(r a, r b)=g(a, b)
\end{array}\right\rangle \Rightarrow\left\langle\begin{array}{c}
\forall I:: \\
(\text { sort } f)\left(r^{\star} l\right)=r^{\star}(\text { sort } g l)
\end{array}\right.
\end{aligned}
$$

Denoting predicates f, g by infix orderings \leqslant, \preceq :

$$
\left\langle\begin{array}{c}
\forall a, b:: \\
r a \leqslant r b \equiv a \preceq b
\end{array}\right\rangle \Rightarrow\left\langle\begin{array}{c}
\forall I:: \\
\operatorname{sort}(\leqslant)\left(r^{\star} I\right)=r^{\star}(\operatorname{sort}(\preceq) I)
\end{array}\right\rangle
$$

That is, for r monotonic and injective,

$$
\text { sort }(\leqslant)[r a \mid a \leftarrow l]
$$

is always the same list as

$$
[r a \mid a \leftarrow \operatorname{sort}(\preceq) I]
$$

Exercises

Exercise 77: Let C be a nonempty data domain and let and $c \in C$. Let \underline{c} be the "everywhere c " function, recall (25). Show that the free theorem of \underline{c} reduces to

$$
\begin{equation*}
\langle\forall R:: R \subseteq T\rangle \tag{190}
\end{equation*}
$$

Exercise 78: Calculate the free theorem associated with the projections $A<\stackrel{\pi_{1}}{\longleftarrow} A \times B \xrightarrow{\pi_{2}} B$ and instantiate it to (a) functions; (b) coreflexives. Introduce variables and derive the corresponding pointwise expressions. \square

Exercises

Exercise 79: Consider higher order function const: a -> b -> a such that, given any x of type a, produces the constant function const x. Show that the equalities

$$
\begin{align*}
\operatorname{const}(f x) & =f \cdot(\text { const } x) \tag{191}\\
(\text { const } x) \cdot f & =\text { const } x \tag{192}\\
(\text { const } x)^{\circ} \cdot(\text { const } x) & =\top \tag{193}
\end{align*}
$$

arise as corollaries of the free theorem of const. \square

Exercises

Exercise 80: The following is a well-known Haskell function

$$
\text { filter }::(a \rightarrow \mathbb{B}) \rightarrow[a] \rightarrow[a]
$$

Calculate the free theorem associated with its type

$$
\text { filter : } a^{\star} \leftarrow a^{\star} \leftarrow(\text { Bool } \leftarrow a)
$$

and instantiate it to the case where all relations are functions.

Exercise 81: In many sorting problems, data are sorted according to a given ranking function which computes each datum's numeric rank (eg. students marks, credits, etc). In this context one may parameterize sorting with an extra parameter f ranking data into a fixed numeric datatype, eg. the integers: serial : $(a \rightarrow \mathbb{N}) \rightarrow a^{\star} \rightarrow a^{\star}$.
Calculate the FT of serial. \square

Exercises

Exercise 82: Consider the following function from Haskell's Prelude:

$$
\begin{aligned}
& \text { findlndices :: }(a \rightarrow \mathbb{B}) \rightarrow[a] \rightarrow[\mathbb{Z}] \\
& \text { findIndices } p \times s=[i \mid(x, i) \leftarrow \text { zip } \times s[0 \ldots], p \times]
\end{aligned}
$$

which yields the indices of elements in a sequence xs which satisfy p . For instance, findlndices $(<0)[1,-2,3,0,-5]=[1,4]$. Calculate the FT of this function. \square

Exercise 83: Choose arbitrary functions from Haskell's Prelude and calculate their $\mathrm{FT} . \square$

Exercises

Exercise 84: Wherever two equally typed functions f, g such that $f a \leqslant g a$, for all a, we say that f is pointwise at most g and write $f \leqslant g$. In symbols:

$$
f \leqslant g=f \subseteq(\leqslant) \cdot g \quad \text { cf. diagram } \begin{gather*}
A \tag{194}\\
\\
\\
\\
\\
B \leftarrow \leqslant
\end{gather*}
$$

Show that implication

$$
\begin{equation*}
f \leqslant g \Rightarrow(\operatorname{map} f) \leqslant^{\star}(\operatorname{map} g) \tag{195}
\end{equation*}
$$

follows from the $F T$ of the function $\operatorname{map}:(a \rightarrow b) \rightarrow a^{\star} \rightarrow b^{\star} . \square$

Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender's home page:

$$
h t t p: / / w w w-p s . i a i . u n i-b o n n . d e / f t
$$

Relators in our calculational style are implemented in this automatic generator by structural lifting.

Exercise 85: Infer the FT of the following function, written in Haskell syntax,

$$
\begin{aligned}
& \text { while }::(a \rightarrow \mathbb{B}) \rightarrow(a \rightarrow a) \rightarrow(a \rightarrow b) \rightarrow a \rightarrow b \\
& \text { while } p f g x=\text { if } \neg(p x) \text { then } g \times \text { else while } p f g(f x)
\end{aligned}
$$

which implements a generic while-loop. Derive its corollary for functions and compare your result with that produced by the tool above. \square

Background - Eindhoven quantifier calculus

Trading:

$$
\begin{align*}
& \langle\forall k: R \wedge S: T\rangle=\langle\forall k: R: S \Rightarrow T\rangle \tag{196}\\
& \langle\exists k: R \wedge S: T\rangle=\langle\exists k: R: S \wedge T\rangle \tag{197}
\end{align*}
$$

de Morgan:

$$
\begin{align*}
& \neg\langle\forall k: R: T\rangle=\langle\exists k: R: \neg T\rangle \tag{198}\\
& \neg\langle\exists k: R: T\rangle=\langle\forall k: R: \neg T\rangle \tag{199}
\end{align*}
$$

One-point:

$$
\begin{align*}
& \langle\forall k: k=e: T\rangle=T[k:=e] \tag{200}\\
& \langle\exists k: k=e: T\rangle=T[k:=e] \tag{201}
\end{align*}
$$

Background - Eindhoven quantifier calculus

 Nesting:$$
\begin{align*}
& \langle\forall a, b: R \wedge S: T\rangle=\langle\forall a: R:\langle\forall b: S: T\rangle\rangle \tag{202}\\
& \langle\exists a, b: R \wedge S: T\rangle=\langle\exists a: R:\langle\exists b: S: T\rangle\rangle \tag{203}
\end{align*}
$$

Rearranging- \forall :

$$
\begin{align*}
& \langle\forall k: R \vee S: T\rangle=\langle\forall k: R: T\rangle \wedge\langle\forall k: S: T\rangle \tag{204}\\
& \langle\forall k: R: T \wedge S\rangle=\langle\forall k: R: T\rangle \wedge\langle\forall k: R: S\rangle \tag{205}
\end{align*}
$$

Rearranging- - :

$$
\begin{align*}
& \langle\exists k: R: T \vee S\rangle=\langle\exists k: R: T\rangle \vee\langle\exists k: R: S\rangle \tag{206}\\
& \langle\exists k: R \vee S: T\rangle=\langle\exists k: R: T\rangle \vee\langle\exists k: S: T\rangle \tag{207}
\end{align*}
$$

Splitting:

$$
\begin{aligned}
& \langle\forall j: R:\langle\forall k: S: T\rangle\rangle=\langle\forall k:\langle\exists j: R: S\rangle: T\rangle(208) \\
& \langle\exists j: R:\langle\exists k: S: T\rangle\rangle=\langle\exists k:\langle\exists j: R: S\rangle: T\rangle(209)
\end{aligned}
$$

References

R K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations and Galois connections.
SCP, 15(1-2):153-196, 2004.
R R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.
Polynomial relators.
In AMAST'91, pages 303-362. Springer-Verlag, 1992.
囯 D. Jackson.
Software Abstractions: Logic, Language, and Analysis.
The MIT Press, Cambridge Mass., 2012.
Revised edition, ISBN 0-262-01715-2.
埥 C.B. Jones.
Software Development - A Rigorous Approach.
Series in Computer Science. Prentice-Hall International, Upper
Saddle River, NJ, USA, 1980.
C.A.R. Hoare (series editor).
J.C. Reynolds.

Types, abstraction and parametric polymorphism. Information Processing 83, pages 513-523, 1983.

量 P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming Languages and Computer Architecture, pages 347-359, London, Sep. 1989. ACM.

[^0]: ${ }^{2}$ Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html.

[^1]: ${ }^{3}$ Kernels of functions are always equivalence relations, see exercise 21.

[^2]: ${ }^{4}$ Credits: https://dba.stackexchange.com/questions.

