Structural design with Alloy

Nuno Macedo (slides by Alcino Cunha)

lucid, systematic, and penetrating treatment of basic and dynamic data structures, sorting, recursive algorithms, language structures, and compiling

NIKLAUS WIRTH

Algorithms +
Data
Structures =
Programs

PRENTICE-HALL SERIES IN AUTOMATIC COMPUTATION

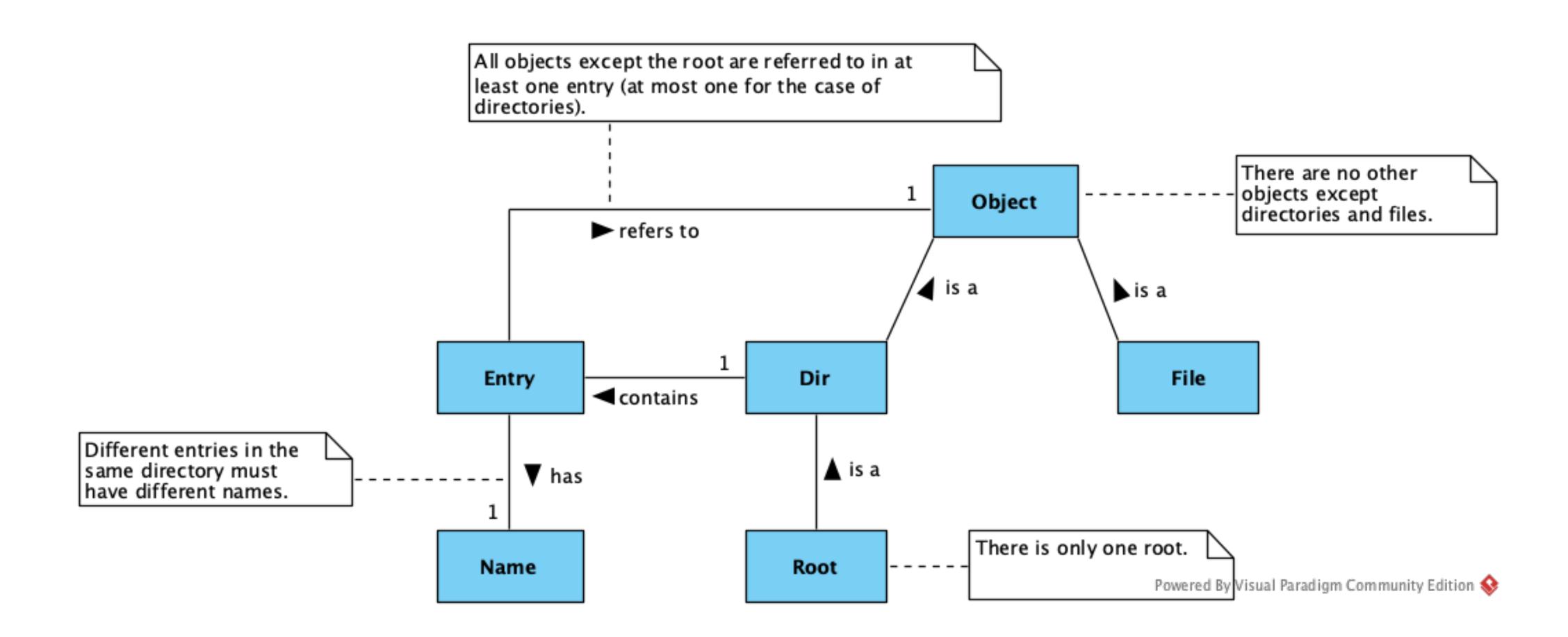
Software structures

- Data structures
- Database schemas
- Architectures
- Network topologies
- Ontologies
- Domain models

Structural design

- Understand entities and their relationships
- Elicit requirements
- Explore alternatives

Domain modeling à la UML

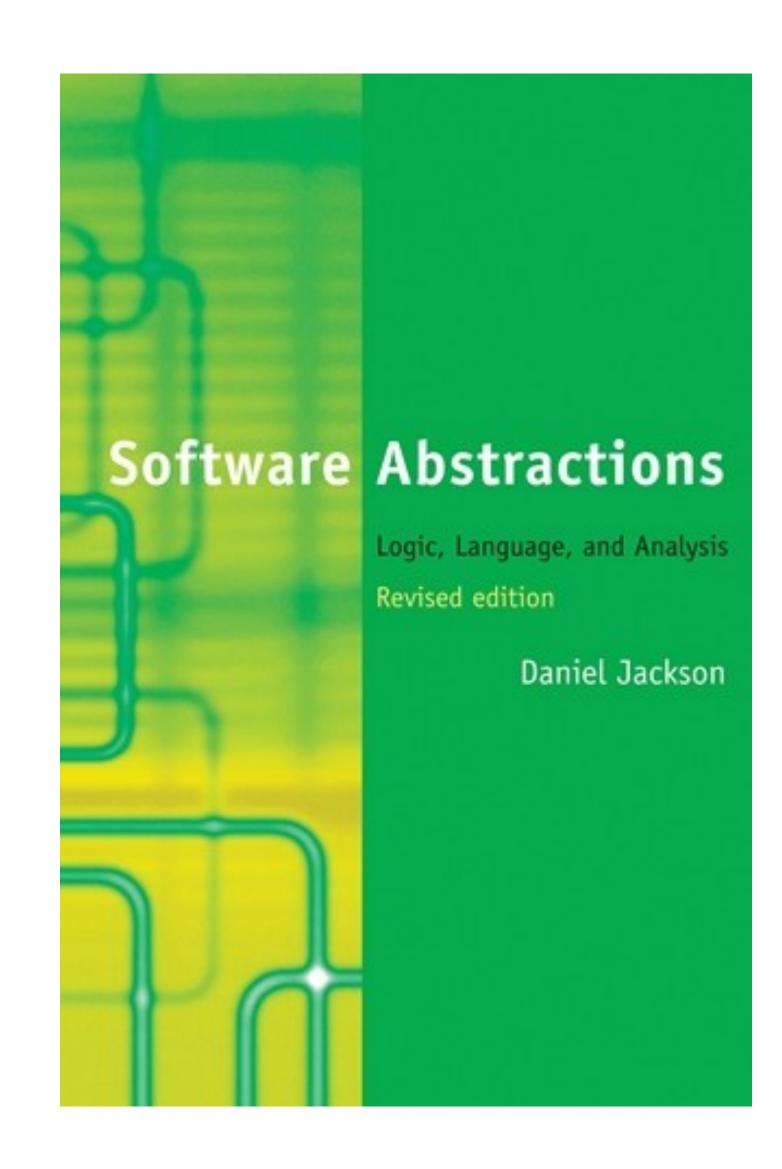


Requirement elicitation

- Are the requirements consistent?
- Any forgotten or redundant requirements?
- Do the requirements entail all the expected properties?

"The core of software development [...] is the *design* of abstractions. An abstraction is [...] an idea reduced to its essential form."

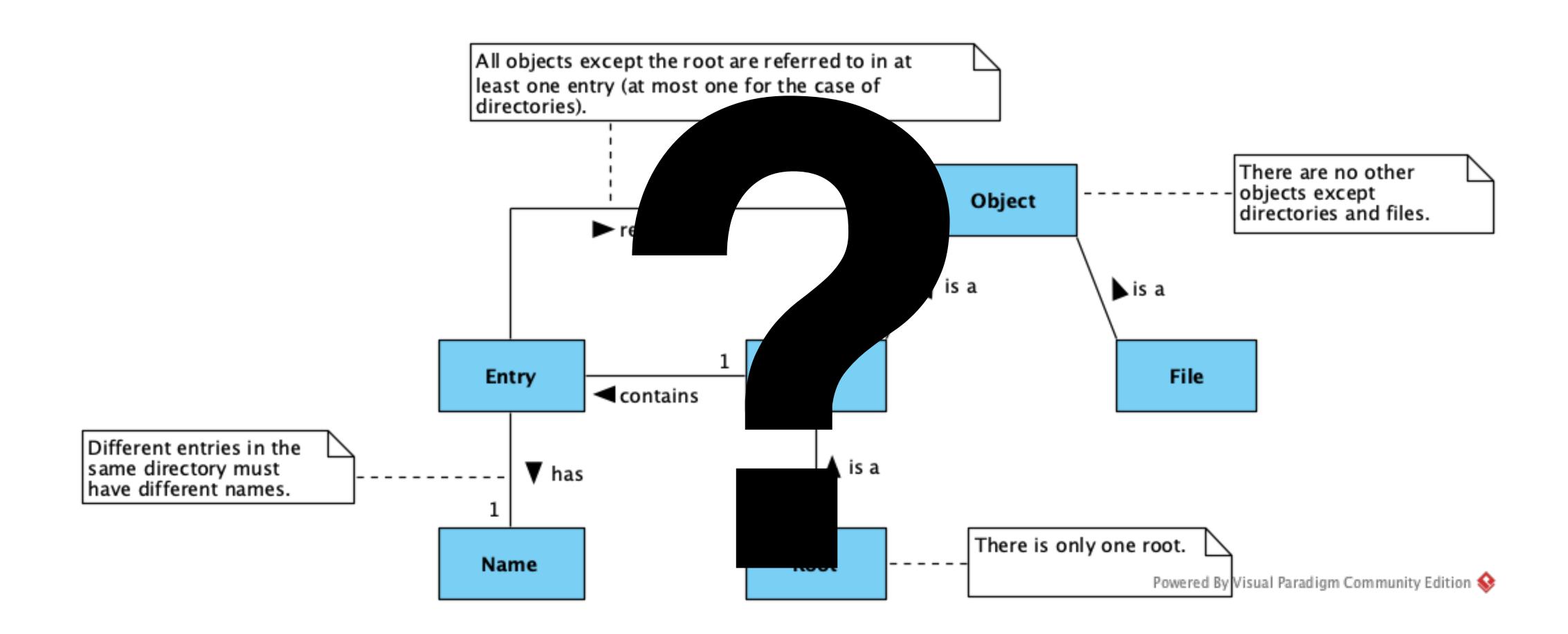
-Daniel Jackson



Software design with Alloy

- Alloy is a formal modeling language
- Based on relational logic, an extension of first-order logic
- Models can be automatically analyzed
- Tailored for abstraction everything is a relation!

Domain modeling with Alloy



First-order logic

Signatures

- Unary predicates are known as signatures and are declared with sig
- Signatures are inhabited by atoms from a finite domain of discourse
- Signatures can be top-level, extensions, or subsets
- Top-level and extension signatures are disjoint
- Signatures can be abstract, only containing atoms in the extensions
- Signatures can have a multiplicity (lone, some, one)

Top-level signatures

```
sig Object {}
sig Entry {}
sig Name {}
```

```
Object \subseteq D

Entry \subseteq D

Name \subseteq D

\forall x . \neg (\mathsf{Object}(x) \land \mathsf{Entry}(x))

\forall x . \neg (\mathsf{Object}(x) \land \mathsf{Name}(x))

\forall x . \neg (\mathsf{Name}(x) \land \mathsf{Entry}(x))
```

Extension signatures

```
sig Dir extends Object {}
sig File extends Object {}
```

```
Dir \subseteq D

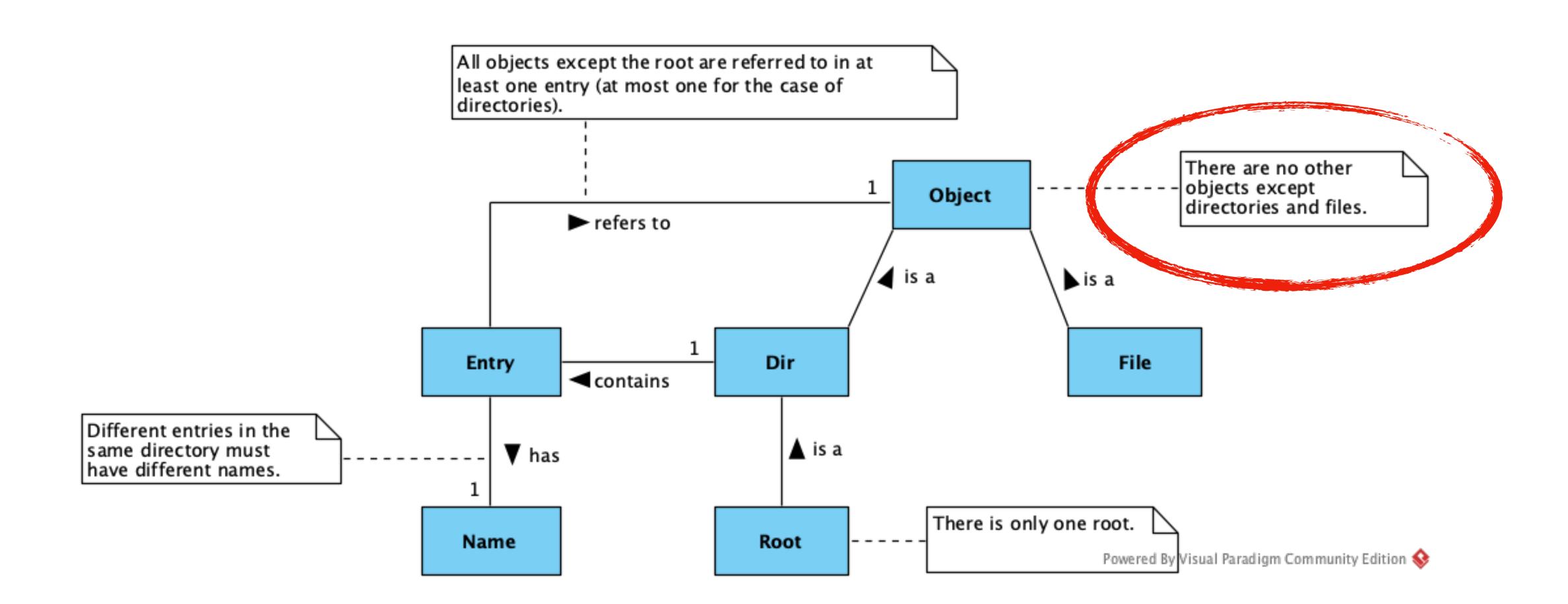
File \subseteq D

\forall x . \text{File}(x) \to \text{Object}(x)

\forall x . \text{Dir}(x) \to \text{Object}(x)

\forall x . \neg(\text{File}(x) \land \text{Dir}(x))
```

Object is abstract



Abstract signatures

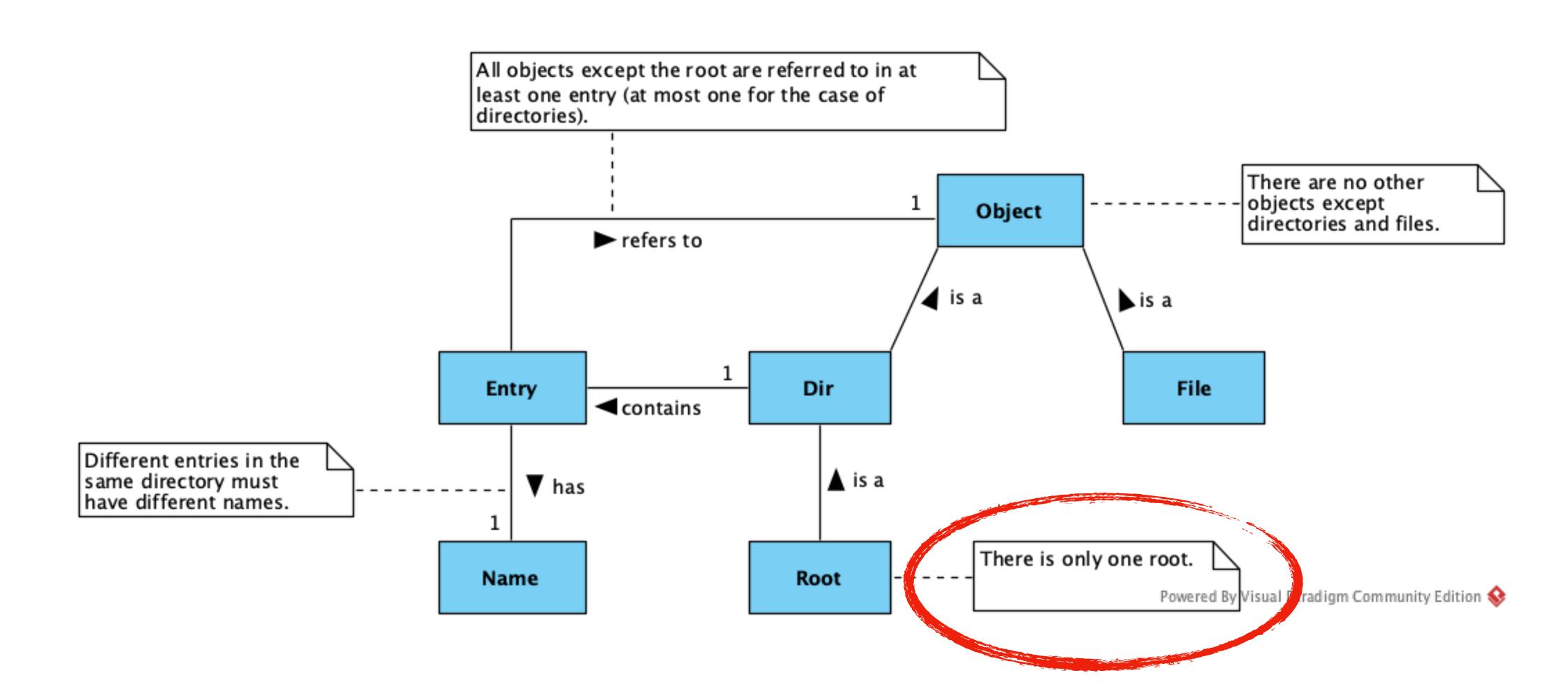
```
abstract sig Object \{\}
sig Dir extends Object \{\}
sig File extends Object \{\}
```

Subset signatures

```
sig Root in Dir {}
```

```
Root \subseteq D
\forall x . \text{Root}(x) \rightarrow \text{Dir}(x)
```

There is only one root



Signature multiplicities

```
one sig Root in Dir {}
```

```
\exists x . \mathsf{Root}(x)\forall x, y : \mathsf{Root} . x = y
```

Fields

- Predicates of arity 2 or more are known as fields
- Fields are inhabited by tuples of atoms
- Must be declared inside the domain signature
- Multiplicities (set, lone, some, one) can be imposed on the targets
- If no multiplicity is imposed the default is one

Fields

```
sig Dir { contains : set Entry  \forall x,y . \, \text{contains}(x,y) \to \text{Dir}(x) \land \text{Entry}(y)  }
```

Fields

```
refersTo \subseteq D \times D
                                                     \forall x, y \text{ . refersTo}(x, y) \rightarrow \text{Entry}(x) \land \text{Object}(y)
                                                     \forall x : \text{Entry} . \exists y . \text{refersTo}(x, y)
sig Entry {
                                                     \forall x, y, z . refersTo(x, y) \land \text{refersTo}(x, z) \rightarrow y = z
  refersTo: one Object,
                                                    has \subseteq D \times D
  has : one Name
                                                     \forall x, y . has(x, y) \rightarrow Entry(x) \land Name(y)
                                                     \forall x : \text{Entry.} \exists y . \text{has}(x, y)
                                                     \forall x, y, z. has(x, y) \land \text{has}(x, z) \rightarrow y = z
```

Facts

Facts specify assumptions

```
fact \{ \phi \}
```

Facts can be named

```
fact Name { φ }
```

• A single fact can have several constraints, one per line

FOL vs Alloy

!
$$\phi$$
 ϕ && ψ
 ϕ || ψ
 ϕ => ψ
 ϕ => ψ else θ
 ϕ <=> ψ

FOL vs Alloy

```
\neg \phi

\phi \land \psi

\phi \lor \psi

\phi \rightarrow \psi

(\phi \land \psi) \lor (\neg \phi \land \theta)

\phi \leftrightarrow \psi
```

```
not \phi
\phi and \psi
\phi or \psi
\phi implies \psi
\phi implies \psi else \theta
\phi iff \psi
```

FOL vs Alloy

$$x = y$$

$$A(x)$$

$$R(x, y)$$

$$\forall x . A(x) \to \phi$$
$$\exists x . A(x) \land \phi$$

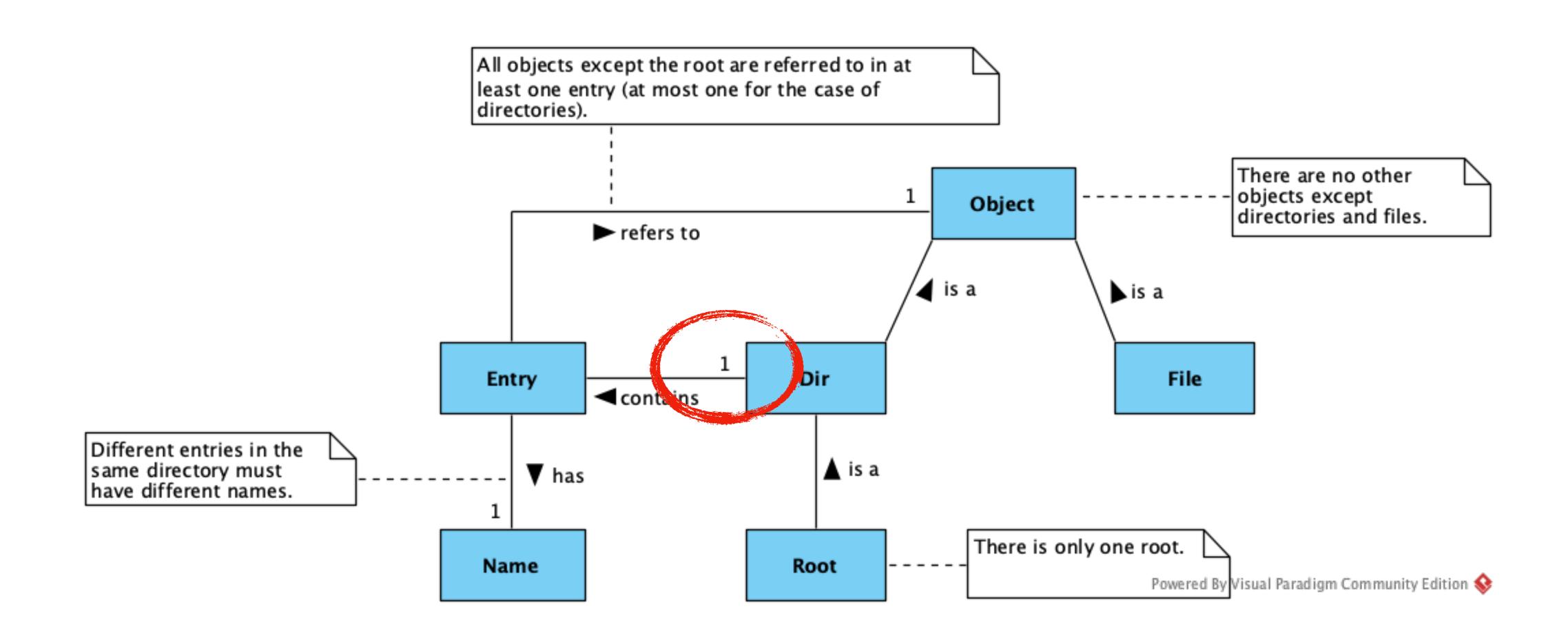
$$x = y$$

$$x \text{ in } A$$

$$x ->y \text{ in } R$$

all
$$x : A \mid \phi$$
some $x : A \mid \phi$

Each entry is contained in one directory



Each entry is contained in one directory

```
fact {
    // Each entry is contained in one directory
    all x : Entry | some y : Dir | y->x in contains
    all x : Entry, y,z : Dir {
        y->x in contains and z->x in contains implies y = z
    }
}
```

Commands

- Alloy has two types of analysis commands:
 - run { φ } asks for an example that satisfies all facts and φ
 - **check** { ϕ } asks for a *counter-example* that satisfies all facts but refutes assertion ϕ
- Likewise facts, commands can be named and can have several constraints, one per line
- In the visualizer it is possible to ask for more examples or counterexamples by pressing *New*

Instances

- Both examples and counter-examples are first-order structures
- In Alloy first-order structures are known as instances
- An instance is a valuation to all the signatures and fields
- In an instance "everything is a relation"
 - Signatures are unary relations (sets of unary tuples)
 - Constants are singleton unary relations (sets with one unary tuple)
- By default instances are depicted as graphs

Scopes

- To ensure decidability commands have a scope
- The scope imposes a limit on the size of the (finite) domain the Analyzer will exhaustively explore
- The default scope imposes a limit of 3 atoms per top-level signature
- for can be used to specify a different scope for top-level signatures
- but can be used to specify different scopes for specific signatures
- exactly can be used to specify exact scopes

The small scope hypothesis

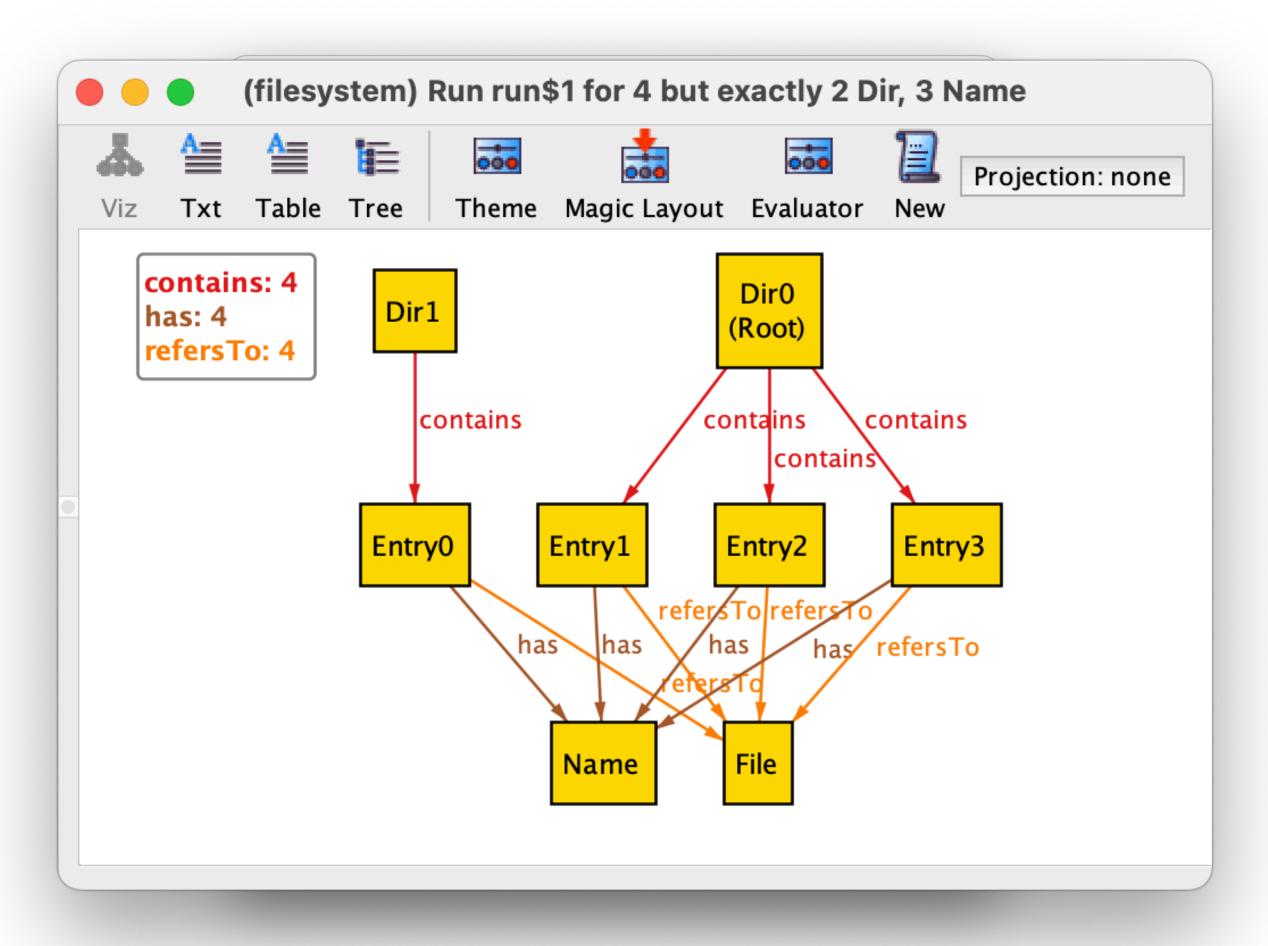
- If run { φ } returns an instance then φ is consistent, else φ may be inconsistent
 - Could be consistent with a bigger scope!
- If check $\{ \phi \}$ returns an instance then ϕ is invalid, else ϕ may be valid
 - Could be invalid with a bigger scope!!!
- Anecdotical evidence suggests that most invalid assertions (or consistent predicates) can be refuted (or witnessed) with a small scope

Atoms

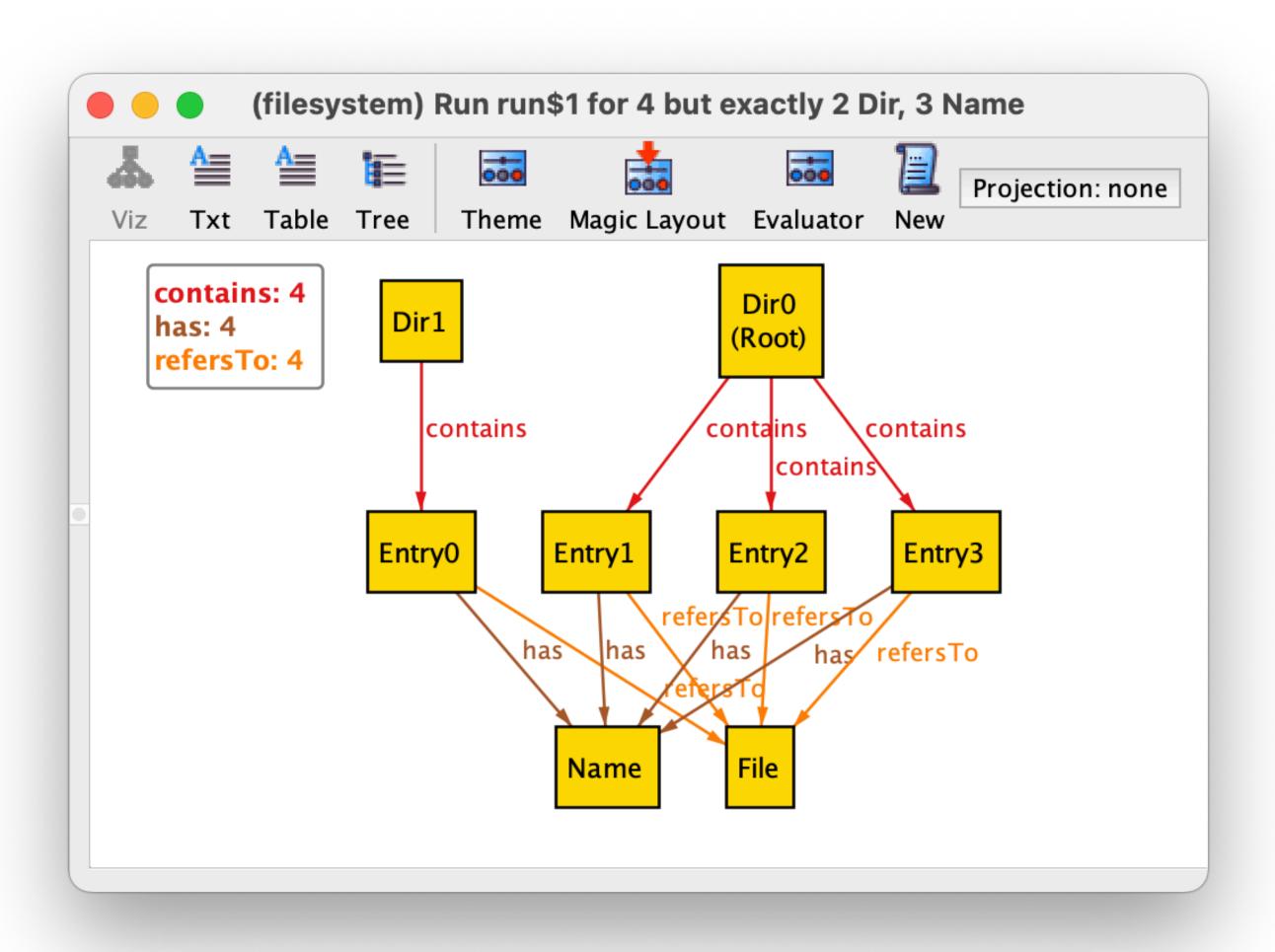
- The universe of discourse contains atoms
- Atoms are uninterpreted (no semantics)
- Named automatically according to the respective signatures
- Two instances are *isomorphic* (or *symmetric*) if they are equal modulo renaming
- The analysis implements a *symmetry breaking* mechanism to avoid returning isomorphic instances

A simple command

run {} for 4 but exactly 2 Dir, 3 Name



Instances as graphs



Instances as relations

```
Object
         = {(Dir0),(Dir1),(File)}
         = {(Dir0),(Dir1)}
Dir
File
         = {(File)}
Root
         = {(Dir0)}
         = {(Entry0), (Entry1), (Entry2), (Entry3)}
Entry
Name
         = { (Name) }
contains = {(Dir1,Entry0),(Dir0,Entry1),(Dir0,Entry2),(Dir0,Entry3)}
refersTo = {(Entry0,File),(Entry1,File),(Entry2,File),(Entry3,File)}
         = {(Entry0, Name), (Entry1, Name), (Entry2, Name), (Entry3, Name)}
has
```

Instances as tables

Object

Dir0

Dir1

File

Dir

Dir0

Dir1

Root

Dir0

File

File

Name

Name

Entry

Entry0

Entry1

Entry2

Entry3

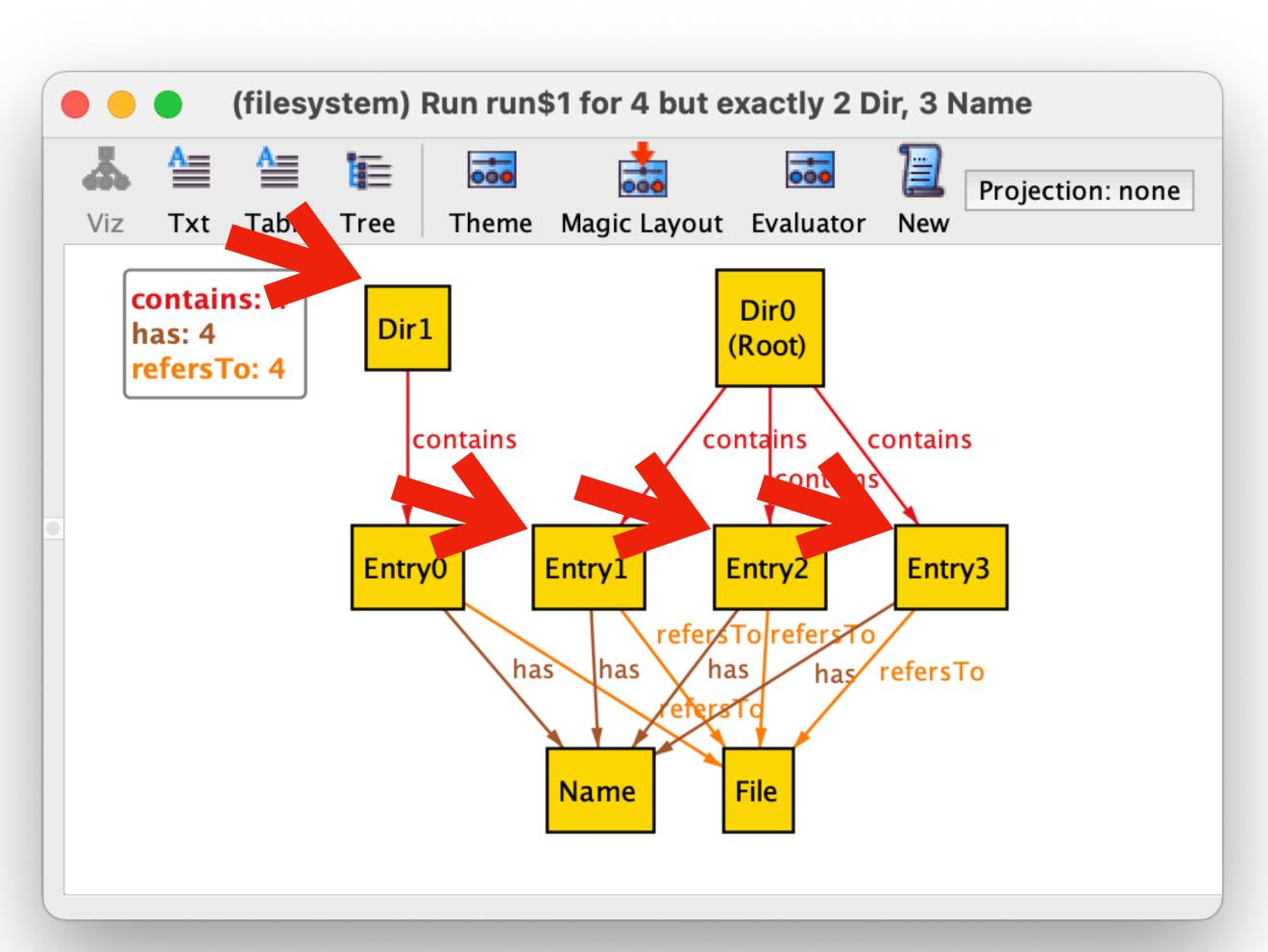
contains	
Dir1	Entry0
Dir0	Entry1
Dir0	Entry2
Dir0	Entry3

refersTo	
Entry0	File
Entry1	File
Entry2	File
Entry3	File

has	
Entry0	Name
Entry1	Name
Entry2	Name
Entry3	Name

Additional requirements

- All objects except the root are referred to in at least one entry (at most one for the case of directories)
- Different entries in a directory must have different names

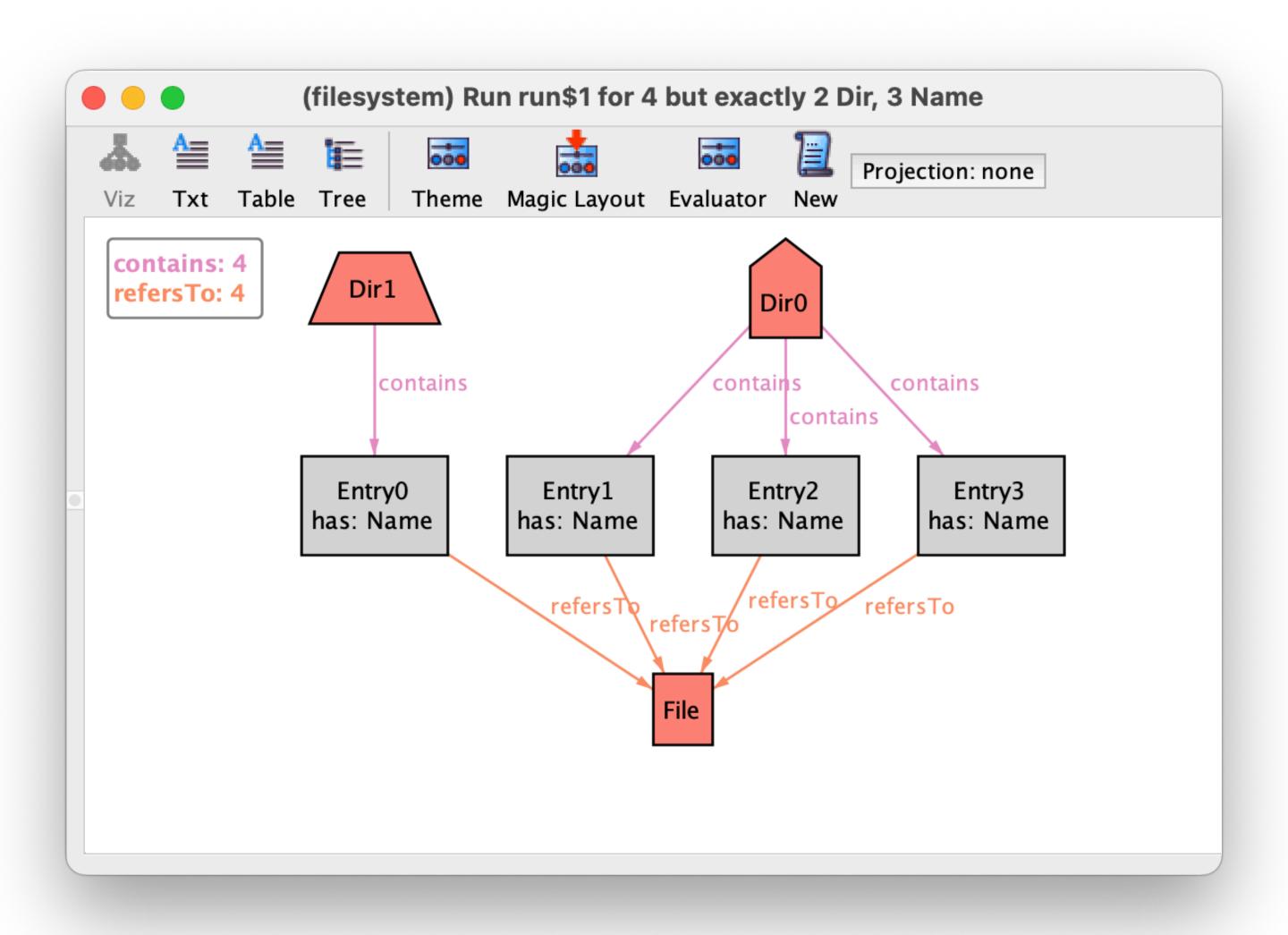


Themes

- The visualizer theme can be customized
- Customization can ease the understanding and help validate the model
- It is possible to customize colors, shapes, visibility, ...

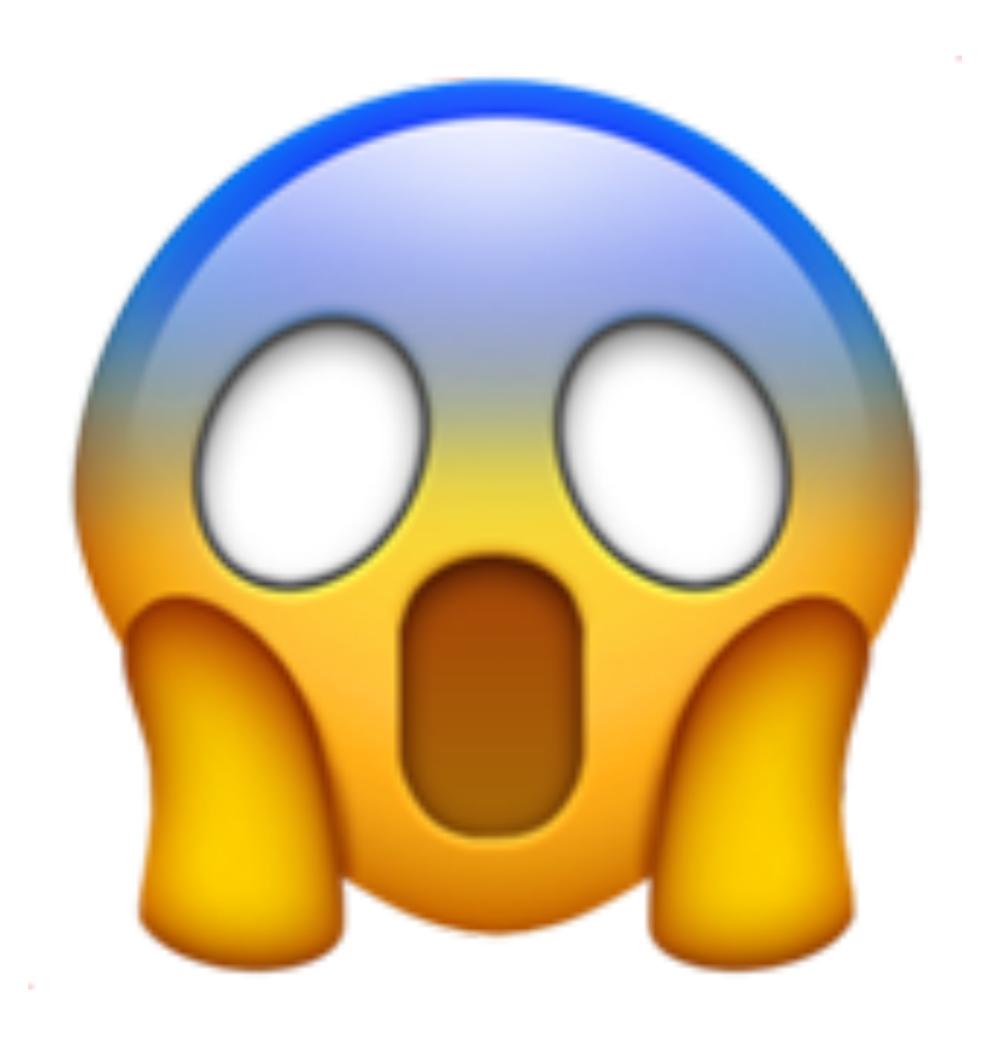
Theme customization

Theme customization



Additional requirements

```
fact {
  // All directories are referred to in at most one entry
  all x : Dir, y,z : Entry | y->x  in refersTo and z->x  in refersTo implies y=z
  // The root is not referred in any entry
  all x : Entry, y : Root | x->y not in refersTo
  // All objects except the root are referred to in at least one entry
  all x : Object | x not in Root implies some y : Entry | y->x in refersTo
  // Different entries in a directory must have different names
  all x : Dir, y,z : Entry, w : Name {
   x-y in contains and x-z in contains and y-y in has and z-y in has implies y=z
```



Relational logic

Relational logic

- Relational logic extends FOL
- Adds operators to combine predicates (relations) into terms
- Terms denote derived relations
- Adds transitive closure, which cannot be expressed in FOL

Syntax

$$x, y, z, \dots \in \mathcal{X}$$
 $P, Q, R, \dots \in \mathcal{P}$
 $t, u, \dots \in \mathbf{Term}_{\mathscr{P}}$
 $\phi, \psi, \dots \in \mathbf{Form}_{\mathscr{P}}$

```
\phi, \psi \doteq t \subseteq u
           | (\neg \phi)|
           (\phi \land \psi)
           (\phi \lor \psi)
           | (\phi \rightarrow \psi) |
           (\phi \leftrightarrow \psi)
           | (\forall x. \phi)
           |(\exists x.\phi)|
```

```
t, u \doteq x, y, z, \dots
     P, Q, R, \dots
      Ø
      U
       id
      t \cup u
      t \cap u
      \int t u
      t \times u
      t \bullet u
```

Formula semantics

```
\mathcal{M}, \mathcal{A} \models \mathsf{T}
     \mathcal{M}, \mathcal{A} \nvDash \bot
  \mathcal{M}, \mathcal{A} \models t \subseteq u iff \mathcal{V}(t) is a subset or equal to \mathcal{V}(u)
    \mathcal{M}, \mathcal{A} \models \neg \phi iff
                                                                                       \mathcal{M}, \mathcal{A} \nvDash \phi
 \mathcal{M}, \mathcal{A} \models \phi \land \psi iff
                                                                   \mathcal{M}, \mathcal{A} \models \phi \text{ and } \mathcal{M}, \mathcal{A} \models \psi
                                                                    \mathcal{M}, \mathcal{A} \models \phi \text{ or } \mathcal{M}, \mathcal{A} \models \psi
 \mathcal{M}, \mathcal{A} \models \phi \lor \psi iff
                                                                     \mathcal{M}, \mathcal{A} \nvDash \phi \text{ or } \mathcal{M}, \mathcal{A} \vDash \psi
\mathcal{M}, \mathcal{A} \models \phi \rightarrow \psi iff
\mathcal{M}, \mathcal{A} \models \phi \leftrightarrow \psi iff \mathcal{M}, \mathcal{A} \models \phi iff \mathcal{M}, \mathcal{A} \models \psi
 \mathcal{M}, \mathcal{A} \models \forall x . \phi iff \mathcal{M}, \mathcal{A}[x \mapsto a] \models \phi for all a \in D
 \mathcal{M}, \mathcal{A} \models \exists x. \phi \quad \text{iff} \quad \mathcal{M}, \mathcal{A}[x \mapsto a] \models \phi \text{ for some } a \in D
```

Term semantics

$$\mathcal{V}(x) \doteq \{(\mathcal{A}(x))\}$$

$$\mathcal{V}(R) \doteq I(R)$$

$$\mathcal{V}(\emptyset) \doteq \{\}$$

$$\mathcal{V}(\mathbf{U}) \doteq \{(x) \mid x \in D\}$$

$$\mathcal{V}(\mathbf{id}) \doteq \{(x, x) \mid x \in D\}$$

$$\mathcal{V}(t \cup u) \doteq \{(x_1, ..., x_{|t|}) \mid (x_1, ..., x_{|t|}) \in \mathcal{V}(t) \lor (x_1, ..., x_{|t|}) \in \mathcal{V}(u)\}$$

$$\mathcal{V}(t \cap u) \doteq \{(x_1, ..., x_{|t|}) \mid (x_1, ..., x_{|t|}) \in \mathcal{V}(t) \land (x_1, ..., x_{|t|}) \in \mathcal{V}(u)\}$$

$$\mathcal{V}(t \setminus u) \doteq \{(x_1, ..., x_{|t|}) \mid (x_1, ..., x_{|t|}) \in \mathcal{V}(t) \land (x_1, ..., x_{|t|}) \notin \mathcal{V}(u)\}$$

$$\mathcal{V}(t \times u) \doteq \{(x_1, ..., x_{|t|}, y_1, ..., y_{|u|}) \mid (x_1, ..., x_{|t|}) \in \mathcal{V}(t) \land (y_1, ..., y_{|u|}) \in \mathcal{V}(u)\}$$

$$\mathcal{V}(t \bullet u) \doteq \{(x_1, ..., x_{|t|-1}, y_2, ..., y_{|u|}) \mid (x_1, ..., x_{|t|}) \in \mathcal{V}(t) \land (y_1, ..., y_{|u|}) \in \mathcal{V}(u) \land x_{|t|} = y_1\}$$

$$\mathcal{V}(t^\circ) \doteq \{(x_1, ..., x_{|t|}) \mid (x_{|t|}, ..., x_1) \in \mathcal{V}(t)\}$$

$$\mathcal{V}(t^+) \doteq \mathcal{V}(t \cup t \bullet t \cup t \bullet t \bullet t \cup ...)$$

 $\forall x . \forall y . bff(x, y) \rightarrow friend(x, y)$

bff ⊆ friend

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

friend ⊆ friend°

 $\forall x$. $\neg friend(x, x)$

friend \cap id $\subseteq \emptyset$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

Ann X Student ⊆ friend

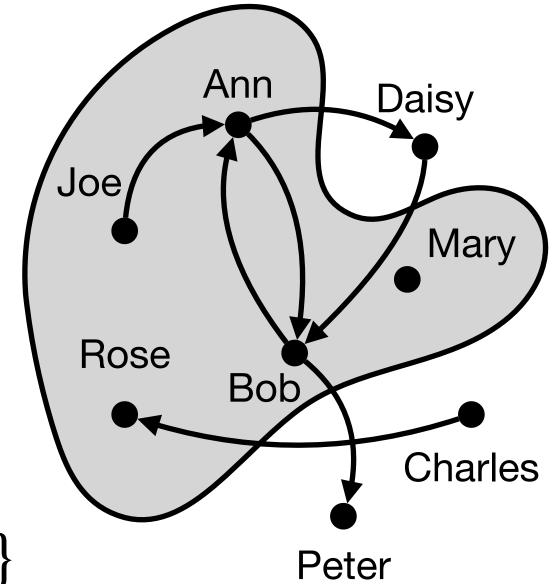
 $\forall x . \forall y . x \neq y \rightarrow friend(x, y)$

 $(U \times U) \setminus id \subseteq friend$

 $\forall x . \forall y . x \neq y \rightarrow friend(x, y)$

 $\forall x . \forall y . x \not\subseteq y \rightarrow x \times y \subseteq \text{friend}$

 $\begin{aligned} \text{Student} &= \{ (A), (M), (B), (R), (J) \} \\ \text{friend} &= \{ (J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R)) \} \end{aligned}$



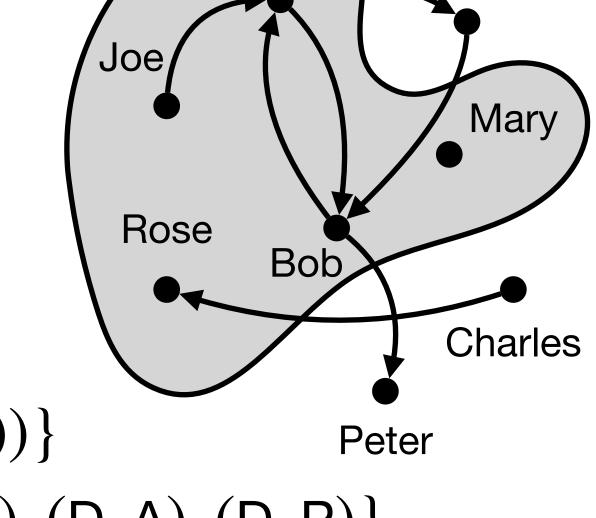
```
Student = \{(A), (M), (B), (R), (J)\} friend = \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\} Peter friend • friend = \{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}
```

Ann

Joe

Daisy

Mary



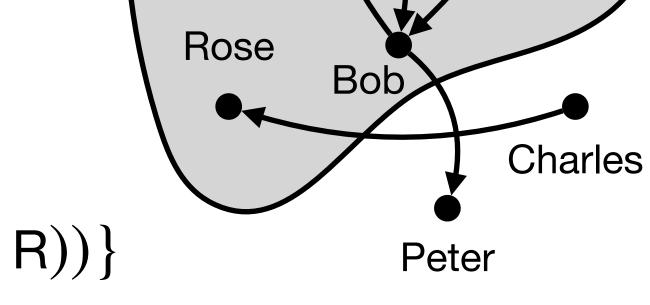
Ann

Daisy

```
Student = \{(A), (M), (B), (R), (J)\}

friend = \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\}

Peters of the string of the student string of the string of
```



Ann

Joe,

Daisy

Mary

```
Student = \{(A), (M), (B), (R), (J)\}
friend = \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\}
friend • friend = \{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}
```

Ann • friend = $\{(B), (D)\}$

Ann • friend • friend = $\{(A), (B), (P)\}$

Ann

Joe,

Rose

Daisy

Mary

```
Student = \{(A), (M), (B), (R), (J)\}

friend = \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\}

Peter

friend • friend = \{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}

Ann • friend = \{(B), (D)\}
```

Ann • friend • friend = $\{(A), (B), (P)\}$

friend • Ann = $\{(J), (B)\}$

Ann

Joe,

Rose

Daisy

Mary

Charles

```
Student = \{(A), (M), (B), (R), (J)\}
friend = \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\}
friend \bullet friend = \{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}
Ann \bullet friend = \{(B), (D)\}
Ann \bullet friend \bullet friend = \{(A), (B), (P)\}
friend \bullet Ann = \{(J), (B)\}
```

friend • Student = $\{(J), (A), (D), (B), (C)\}$

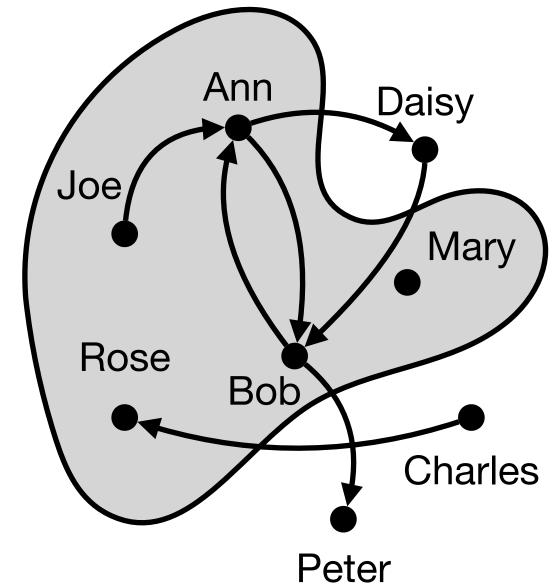
 $\forall x . \exists y . Student(y) \land friend(x, y)$

U ⊆ friend • Student

 $\forall x . \forall y . \forall z . friend(x, y) \land friend(y, z) \rightarrow friend(x, z)$

friend • friend ⊆ friend

Transitive closure



```
Student = \{(A), (M), (B), (R), (J)\}

friend = \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B), (C, R)\}

friend<sup>+</sup> = \{(J, A), (J, D), (J, B), (J, P), (A, D), (A, B), (A, P), (A, A), (B, A), (B, P), (B, D), (B, B), (D, B), (D, A), (D, D), (D, P), (C, R))\}
```

FOL # RL

Ann is directly or indirectly a friend of everyone

RL in Alloy

```
none
                       univ
 id
                        iden
                      t in u
t \subseteq u
t \cup u
                       t + u
                       t & u
t \cap u
 t \setminus u
                       t - u
                      t \rightarrow u
t \times u
                       t . u
t \bullet u
```

Syntactic sugar

```
t = u
         t != u
      t not in u
         no A
        some A
        lone A
         one A
        A <: R
        R :> A
           *R
all disj x, y : A \mid \phi
some disj x, y : A \mid \phi
```

```
t in u and u in t
           not (t = u)
           not (t in u)
             A = none
            A != none
       all x, y : A | x = y
       some A and lone A
         R & (A \rightarrow univ)
         R \& (univ -> A)
             ^R + iden
all x, y : A \mid x != y \text{ implies } \phi
 some x, y : A \mid x != y \text{ and } \phi
```

```
fact {
  // Each entry is contained in one directory
 all x : Entry | some y : Dir | y->x in contains
 all x : Entry, y,z : Dir {
   y->x in contains and z->x in contains implies y=z
fact {
  // Each entry is contained in one directory
 all x: Entry | one contains.x
```

```
fact {
  // All directories are referred to in at most one entry
 all x : Dir, y,z : Entry {
   y->x in refersTo and z->x in refersTo implies y=z
fact {
  // All directories are referred to in at most one entry
  all x : Dir | lone refersTo.x
```

```
fact {
  // The root is not referred in any entry
 all x : Entry, y : Root | x->y not in refersTo
fact {
  // The root is not referred in any entry
 no refersTo.Root
```

```
fact {
    // All objects except the root are referred to in at least one entry
    all x : Object | x not in Root implies some y : Entry | y->x in refersTo
}

fact {
    // All objects except the root are referred to in at least one entry
    Object-Root in Entry.refersTo
}
```

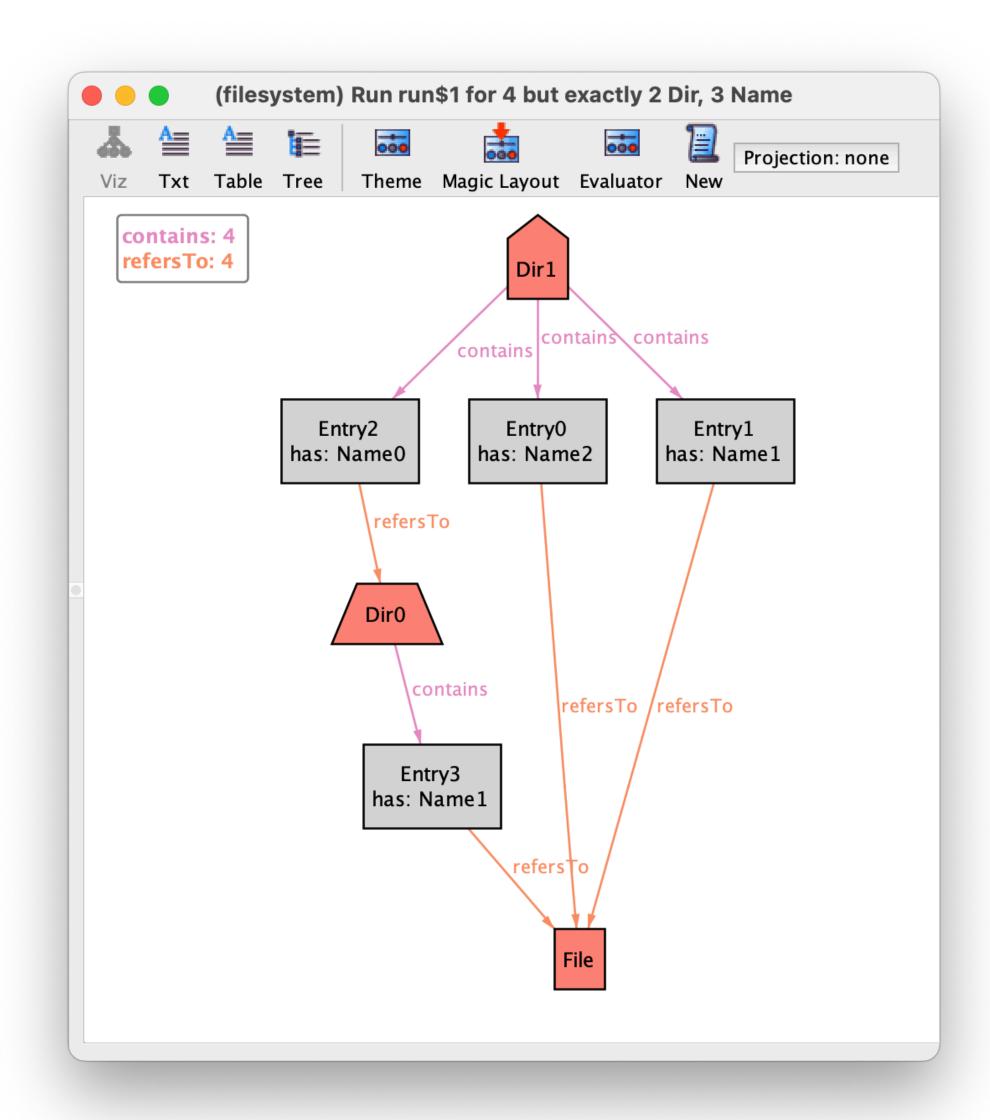
```
fact {
 // Different entries in a directory must have different names
 all x : Dir, y,z : Entry, w : Name {
   x-y in contains and x-z in contains and y-y in has and z-y in has implies y=z
fact {
  // Different entries in a directory must have different names
  all d: Dir, n: Name | lone (d.contains & has.n)
```

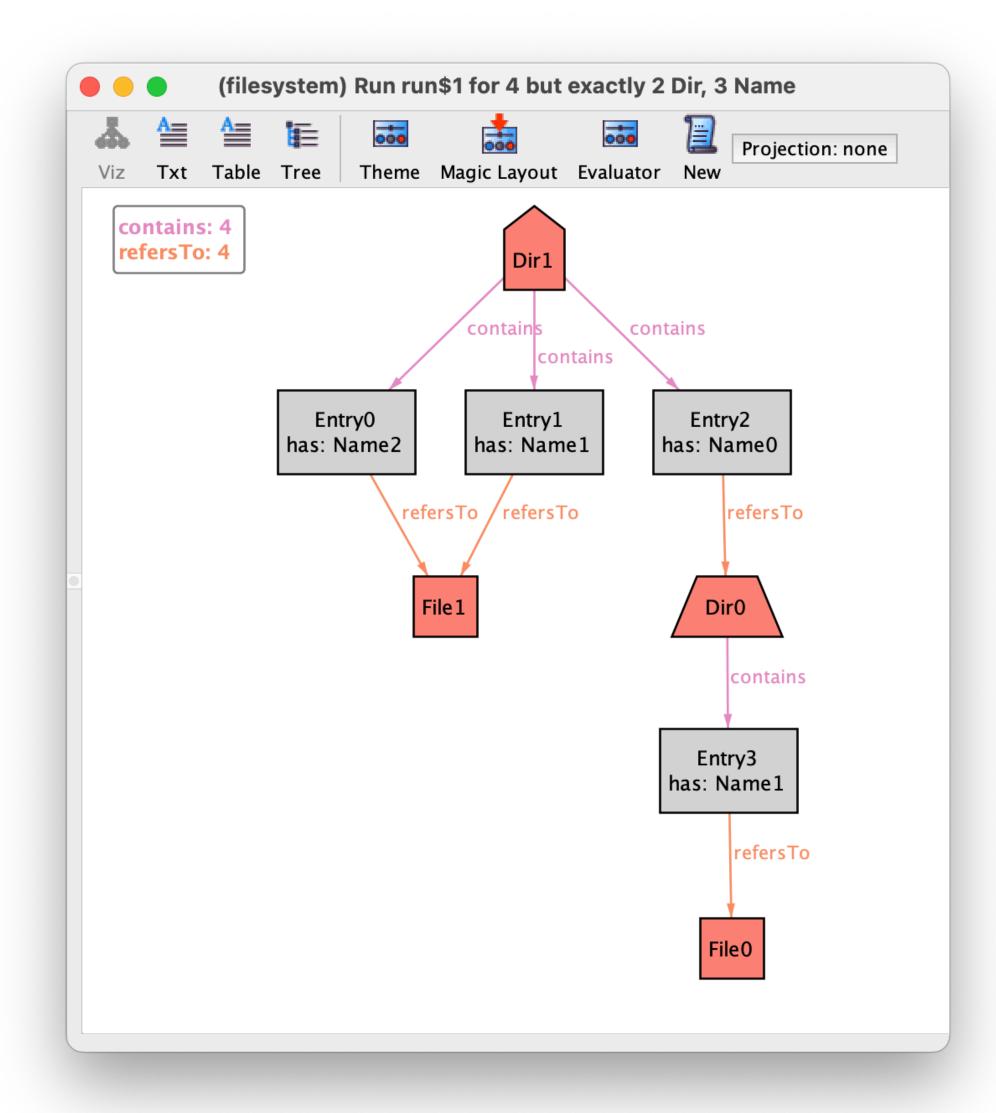

Everyone has different styles

```
sig Person { style : one Style }
sig Style {}
// First order style
all x,y : Person, z : Style | x->z  in style and y->z in style implies x=y
// Relational or navigational style
all z : Style | lone style.z
// Point-free style
style.~style in iden
```

Verification

Some instances





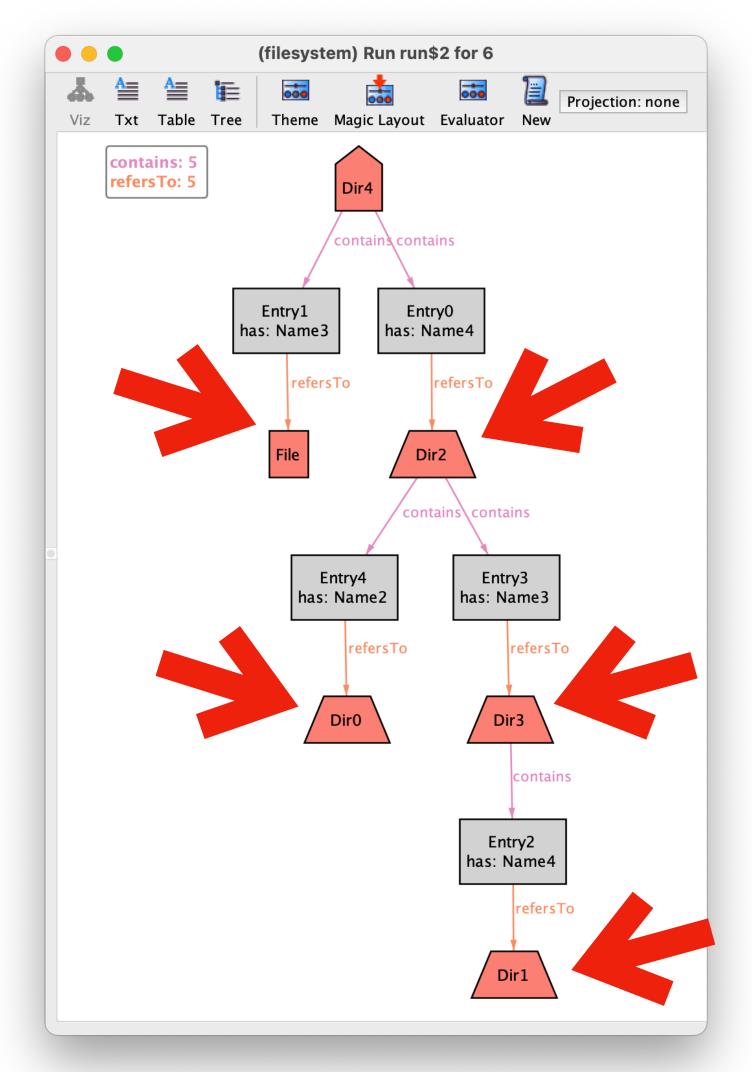
A desirable assertion

```
assert NoPartitions {
    // All objects are reachable from the root
    ???
}
```

check NoPartitions

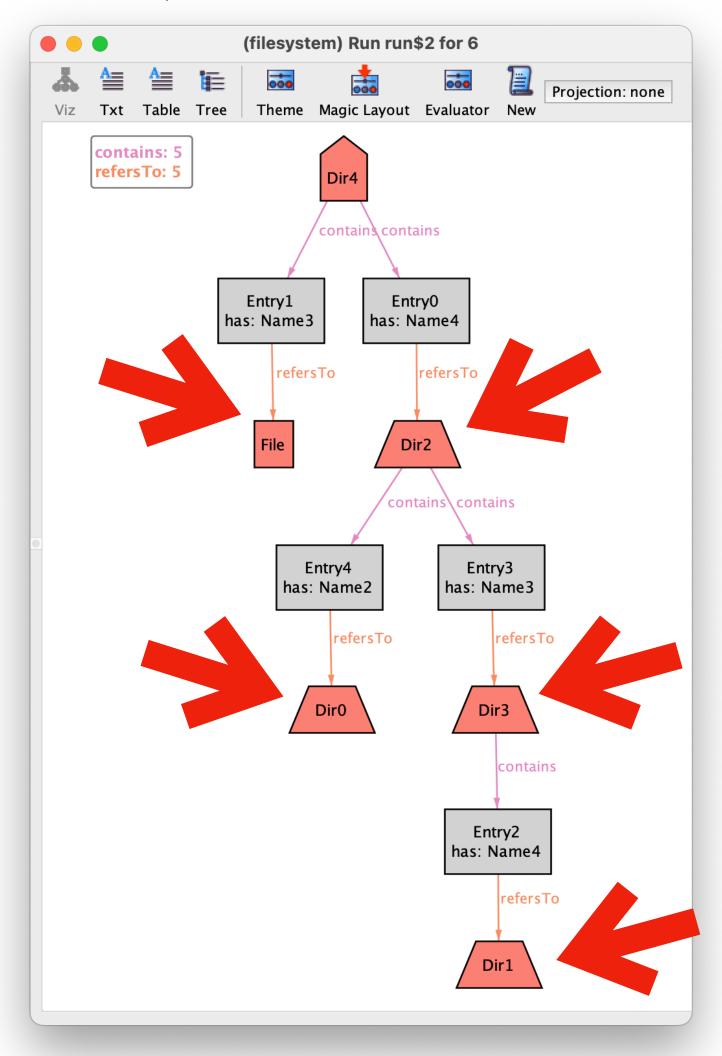
Reachable objects

Root.con Rabits coeferates to redetains coeferatos redetains.refers To



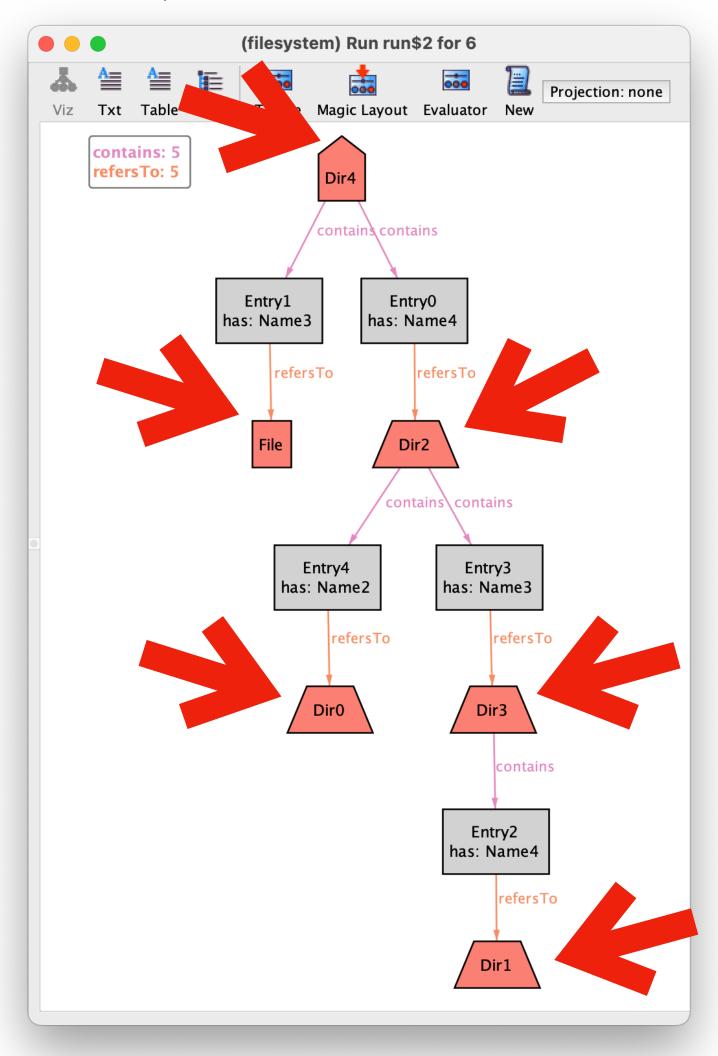
Reachable objects

Root.^(contains.refersTo)



Reachable objects

Root.*(contains.refersTo)

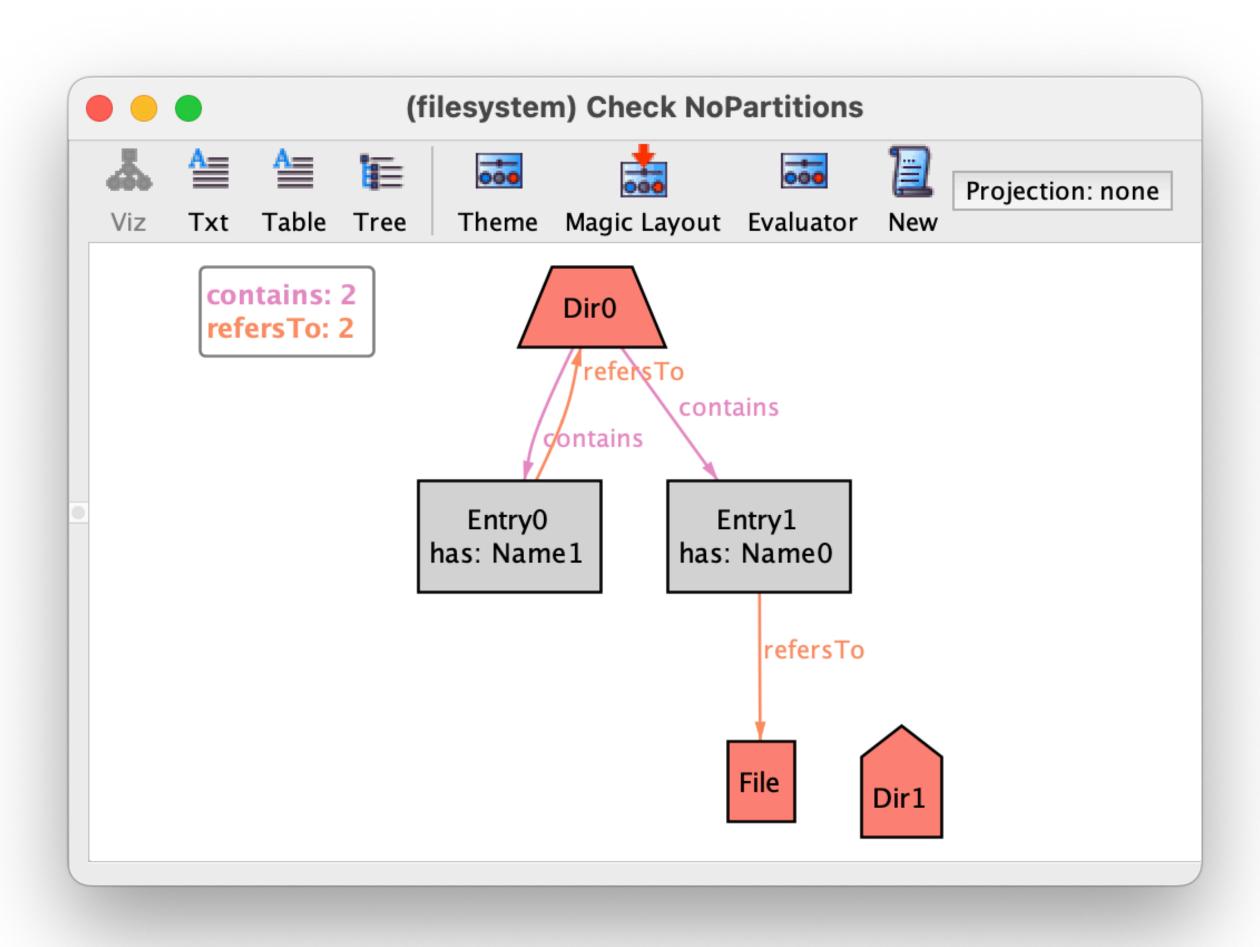


A desirable assertion

```
assert NoPartitions {
    // All objects are reachable from the root
    Object in Root.*(contains.refersTo)
}
```

check NoPartitions

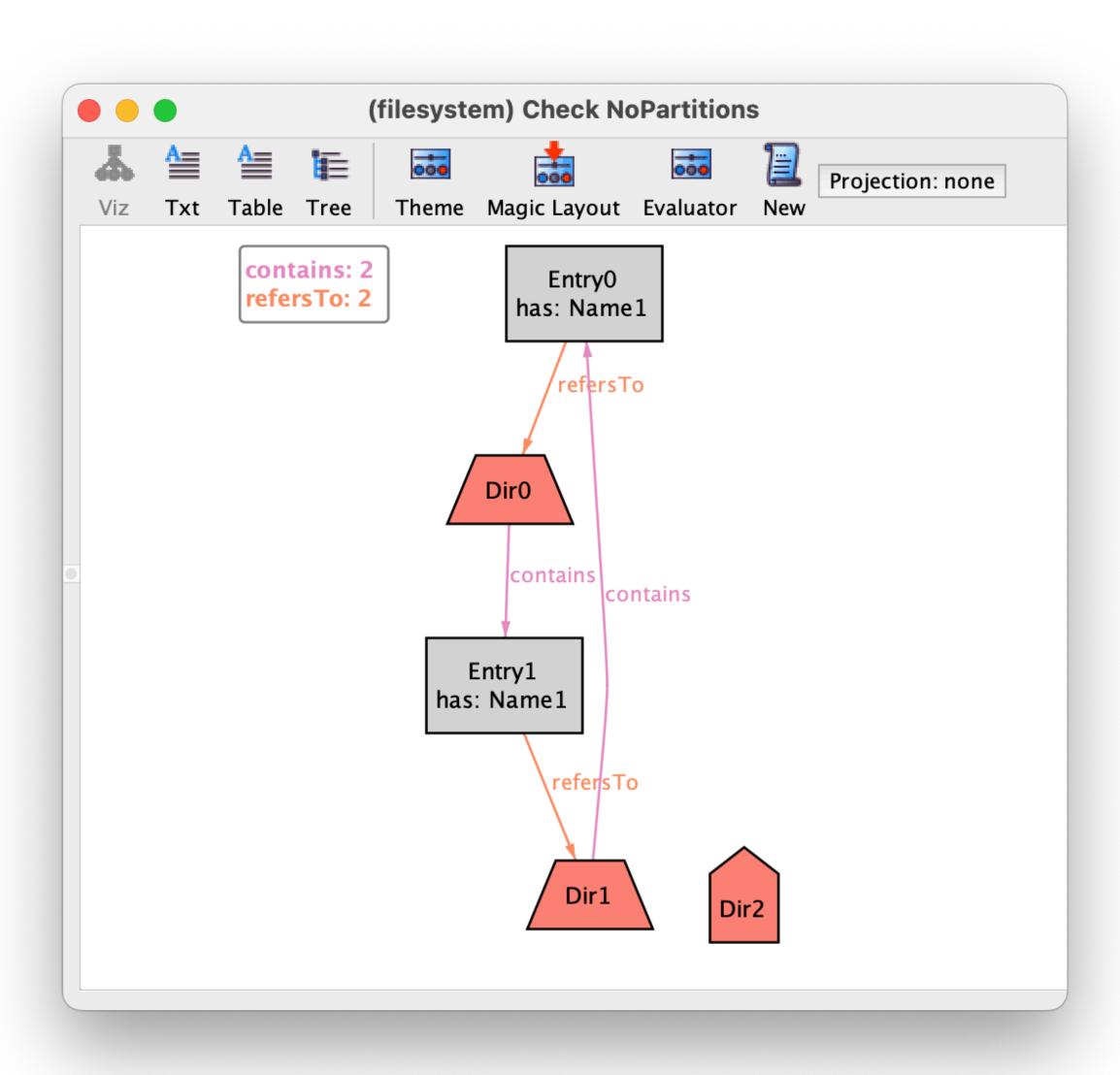
A counter-example



Missing requirement

```
fact {
    // A directory cannot be contained in itself
    all d : Dir | d not in d.contains.refersTo
}
```

Another counter-example



Missing requirement

```
fact {
    // A directory cannot be contained in itself
    all d : Dir | d not in d.^(contains.refersTo)
}
```

Executing "Check NoPartitions"

Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch 586 vars. 37 primary vars. 860 clauses. 3ms.

No counterexample found. Assertion may be valid. 2ms.

Increasing confidence

• Increase the scope of check commands

check NoPartitions for 6

- Use run commands to validate the model
 - Verify that good scenarios are SAT
 - Verify that bad scenarios are UNSAT
 - Use expects keyword to document expectation

Specifying scenarios

```
run Scenario1 {
    // An empty file system
    Object = Root
} expect 1
run Scenario2 {
    // A file system with only two files with different names
    some disj f1,f2 : File, disj e1,e2 : Entry, disj n1,n2 : Name {
        contains = Root->e1 + Root->e2
        refersTo = e1->f1 + e2->f2
                 = e1->n1 + e2->n2
        has
} expect 1
run Scenario3 {
    // A file system with only two files with the same name
    some disj f1,f2 : File, disj e1,e2 : Entry, n : Name {
        contains = Root->e1 + Root->e2
        refersTo = e1->f1 + e2->f2
                 = e1->n + e2->n
        has
} expect 0
```

