
Structural design with Alloy
Nuno Macedo

(slides by Alcino Cunha)

Software structures
• Data structures

• Database schemas

• Architectures

• Network topologies

• Ontologies

• Domain models

Structural design

• Understand entities and their relationships

• Elicit requirements

• Explore alternatives

Domain modeling à la UML

Requirement elicitation

• Are the requirements consistent?

• Any forgotten or redundant requirements?

• Do the requirements entail all the expected properties?

–Daniel Jackson

“The core of software development [...] is the design of abstractions. An
abstraction is [...] an idea reduced to its essential form.”

Software design with Alloy

• Alloy is a formal modeling language

• Based on relational logic, an extension of first-order logic

• Models can be automatically analyzed

• Tailored for abstraction - everything is a relation!

Domain modeling with Alloy

?

First-order logic

Signatures
• Unary predicates are known as signatures and are declared with sig

• Signatures are inhabited by atoms from a finite domain of discourse

• Signatures can be top-level, extensions, or subsets

• Top-level and extension signatures are disjoint

• Signatures can be abstract, only containing atoms in the extensions

• Signatures can have a multiplicity (lone, some, one)

Top-level signatures

sig Object {}
sig Entry {}
sig Name {}

Object ⊆ D
Entry ⊆ D
Name ⊆ D
∀x . ¬(Object(x) ∧ Entry(x))
∀x . ¬(Object(x) ∧ Name(x))
∀x . ¬(Name(x) ∧ Entry(x))

Extension signatures

sig Dir extends Object {}
sig File extends Object {}

Dir ⊆ D
File ⊆ D
∀x . File(x) → Object(x)
∀x . Dir(x) → Object(x)
∀x . ¬(File(x) ∧ Dir(x))

Object is abstract

Abstract signatures

abstract sig Object {}
sig Dir extends Object {}
sig File extends Object {}

∀x : Object . Dir(x) ∨ File(x)

Subset signatures

sig Root in Dir {}
Root ⊆ D
∀x . Root(x) → Dir(x)

There is only one root

Signature multiplicities

one sig Root in Dir {}
∃x . Root(x)
∀x, y : Root . x = y

Fields

• Predicates of arity 2 or more are known as fields

• Fields are inhabited by tuples of atoms

• Must be declared inside the domain signature

• Multiplicities (set, lone, some, one) can be imposed on the targets

• If no multiplicity is imposed the default is one

Fields

sig Dir {
contains : set Entry

}

contains ⊆ D × D
∀x, y . contains(x, y) → Dir(x) ∧ Entry(y)

Fields

sig Entry {
refersTo : one Object,
has : one Name

}

refersTo ⊆ D × D
∀x, y . refersTo(x, y) → Entry(x) ∧ Object(y)
∀x : Entry . ∃y . refersTo(x, y)
∀x, y, z . refersTo(x, y) ∧ refersTo(x, z) → y = z
has ⊆ D × D
∀x, y . has(x, y) → Entry(x) ∧ Name(y)
∀x : Entry . ∃y . has(x, y)
∀x, y, z . has(x, y) ∧ has(x, z) → y = z

Facts
• Facts specify assumptions

fact { φ }

• Facts can be named

fact Name { φ }

• A single fact can have several constraints, one per line

fact {
 φ
 𝛙
}

FOL vs Alloy

!
 &&
 ||
 =>
 => else
 <=>

ϕ
ϕ ψ
ϕ ψ
ϕ ψ
ϕ ψ θ
ϕ ψ

¬ϕ
ϕ ∧ ψ
ϕ ∨ ψ
ϕ → ψ
(ϕ ∧ ψ) ∨ (¬ϕ ∧ θ)
ϕ ↔ ψ

FOL vs Alloy

not
 and
 or
 implies
 implies else
 iff

ϕ
ϕ ψ
ϕ ψ
ϕ ψ
ϕ ψ θ
ϕ ψ

¬ϕ
ϕ ∧ ψ
ϕ ∨ ψ
ϕ → ψ
(ϕ ∧ ψ) ∨ (¬ϕ ∧ θ)
ϕ ↔ ψ

FOL vs Alloy

 =
 in
-> in

all : |
some : |

x y
x A
x y R

x A ϕ
x A ϕ

x = y
A(x)
R(x, y)

∀x . A(x) → ϕ
∃x . A(x) ∧ ϕ

Each entry is contained in one directory

Each entry is contained in one directory

fact {
// Each entry is contained in one directory
all x : Entry | some y : Dir | y->x in contains
all x : Entry, y,z : Dir {
y->x in contains and z->x in contains implies y = z

}
}

Commands
• Alloy has two types of analysis commands:

- run { φ } asks for an example that satisfies all facts and φ

- check { φ } asks for a counter-example that satisfies all facts but
refutes assertion φ

• Likewise facts, commands can be named and can have several
constraints, one per line

• In the visualizer it is possible to ask for more examples or counter-
examples by pressing New

Instances
• Both examples and counter-examples are first-order structures

• In Alloy first-order structures are known as instances

• An instance is a valuation to all the signatures and fields

• In an instance “everything is a relation”

- Signatures are unary relations (sets of unary tuples)

- Constants are singleton unary relations (sets with one unary tuple)

• By default instances are depicted as graphs

Scopes
• To ensure decidability commands have a scope

• The scope imposes a limit on the size of the (finite) domain the Analyzer
will exhaustively explore

• The default scope imposes a limit of 3 atoms per top-level signature

• for can be used to specify a different scope for top-level signatures

• but can be used to specify different scopes for specific signatures

• exactly can be used to specify exact scopes

The small scope hypothesis
• If run { φ } returns an instance then φ is consistent, else φ may be

inconsistent

- Could be consistent with a bigger scope!

• If check { φ } returns an instance then φ is invalid, else φ may be valid

- Could be invalid with a bigger scope!!!

• Anecdotical evidence suggests that most invalid assertions (or consistent
predicates) can be refuted (or witnessed) with a small scope

Atoms
• The universe of discourse contains atoms

• Atoms are uninterpreted (no semantics)

• Named automatically according to the respective signatures

• Two instances are isomorphic (or symmetric) if they are equal modulo
renaming

• The analysis implements a symmetry breaking mechanism to avoid
returning isomorphic instances

A simple command
run {} for 4 but exactly 2 Dir, 3 Name

Instances as graphs

Instances as relations

Object = {(Dir0),(Dir1),(File)}

Dir = {(Dir0),(Dir1)}

File = {(File)}

Root = {(Dir0)}

Entry = {(Entry0),(Entry1),(Entry2),(Entry3)}

Name = {(Name)}

contains = {(Dir1,Entry0),(Dir0,Entry1),(Dir0,Entry2),(Dir0,Entry3)}

refersTo = {(Entry0,File),(Entry1,File),(Entry2,File),(Entry3,File)}

has = {(Entry0,Name),(Entry1,Name),(Entry2,Name),(Entry3,Name)}

Instances as tables
Object
Dir0
Dir1
File

Dir

Dir0

Dir1

Root
Dir0

File

File

Name

Name

contains
Dir1 Entry0
Dir0 Entry1
Dir0 Entry2
Dir0 Entry3

refersTo
Entry0 File
Entry1 File
Entry2 File
Entry3 File

has
Entry0 Name
Entry1 Name
Entry2 Name
Entry3 Name

Entry
Entry0
Entry1
Entry2
Entry3

Additional requirements

• All objects except the root are referred to in
at least one entry (at most one for the case
of directories)

• Different entries in a directory must have
different names

Themes

• The visualizer theme can be customized

• Customization can ease the understanding and help validate the model

• It is possible to customize colors, shapes, visibility, …

Theme customization

DEMO

Theme customization

Additional requirements
fact {

 // All directories are referred to in at most one entry

 all x : Dir, y,z : Entry | y->x in refersTo and z->x in refersTo implies y = z

 // The root is not referred in any entry

 all x : Entry, y : Root | x->y not in refersTo

 // All objects except the root are referred to in at least one entry

 all x : Object | x not in Root implies some y : Entry | y->x in refersTo

 // Different entries in a directory must have different names

 all x : Dir, y,z : Entry, w : Name {

 x->y in contains and x->z in contains and y->w in has and z->w in has implies y = z

 }

}

😱

Relational logic

Relational logic

• Relational logic extends FOL

• Adds operators to combine predicates (relations) into terms

• Terms denote derived relations

• Adds transitive closure, which cannot be expressed in FOL

Syntax
ϕ, ψ ≐ t ⊆ u

∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)
∣ (∀x . ϕ)
∣ (∃x . ϕ)

x, y, z, … ∈ 𝒳
P, Q, R, … ∈ 𝒫

t, u, … ∈ Term𝒫

ϕ, ψ, … ∈ Form𝒫

t, u ≐ x, y, z, …
∣ P, Q, R, …
∣ ∅
∣ U
∣ id
∣ t ∪ u
∣ t ∩ u
∣ t∖u
∣ t × u
∣ t ∙ u
∣ t∘

∣ t+

Formula semantics
ℳ, 𝒜 ⊨ ⊤
ℳ, 𝒜 ⊭ ⊥

ℳ, 𝒜 ⊨ t ⊆ u iff 𝒱(t) is a subset or equal to 𝒱(u)
ℳ, 𝒜 ⊨ ¬ϕ iff ℳ, 𝒜 ⊭ ϕ

ℳ, 𝒜 ⊨ ϕ ∧ ψ iff ℳ, 𝒜 ⊨ ϕ and ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ∨ ψ iff ℳ, 𝒜 ⊨ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ → ψ iff ℳ, 𝒜 ⊭ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ↔ ψ iff ℳ, 𝒜 ⊨ ϕ iff ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ∀x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for all a ∈ D
ℳ, 𝒜 ⊨ ∃x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for some a ∈ D

Term semantics
𝒱(x) ≐ {(𝒜(x))}
𝒱(R) ≐ I(R)
𝒱(∅) ≐ {}
𝒱(U) ≐ {(x) ∣ x ∈ D}
𝒱(id) ≐ {(x, x) ∣ x ∈ D}

𝒱(t ∪ u) ≐ {(x1, …, x|t|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∨ (x1, …, x|t|) ∈ 𝒱(u)}
𝒱(t ∩ u) ≐ {(x1, …, x|t|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (x1, …, x|t|) ∈ 𝒱(u)}

𝒱(t∖u) ≐ {(x1, …, x|t|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (x1, …, x|t|) ∉ 𝒱(u)}
𝒱(t × u) ≐ {(x1, …, x|t|, y1, …, y|u|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (y1, …, y|u|) ∈ 𝒱(u)}
𝒱(t ∙ u) ≐ {(x1, …, x|t|−1, y2, …, y|u|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (y1, …, y|u|) ∈ 𝒱(u) ∧ x|t| = y1}

𝒱(t∘) ≐ {(x1, …, x|t|) ∣ (x|t|, …, x1) ∈ 𝒱(t)}
𝒱(t+) ≐ 𝒱(t ∪ t ∙ t ∪ t ∙ t ∙ t ∪ …)

FOL vs RL
∀x . ∀y . bff(x, y) → friend(x, y) bff ⊆ friend

∀x . ∀y . friend(x, y) → friend(y, x) friend ⊆ friend∘

∀x . ¬friend(x, x) friend ∩ id ⊆ ∅

∀x . ∀y . Ann(x) ∧ Student(y) → friend(x, y) Ann × Student ⊆ friend

∀x . ∀y . x ≠ y → friend(x, y) (U × U)∖id ⊆ friend

∀x . ∀y . x ≠ y → friend(x, y) ∀x . ∀y . x ⊈ y → x × y ⊆ friend

Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}

Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}

Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}

Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}

Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}

Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}

FOL vs RL

U ⊆ friend ∙ Student∀x . ∃y . Student(y) ∧ friend(x, y)

∀x . ∀y . ∀z . friend(x, y) ∧ friend(y, z) → friend(x, z) friend ∙ friend ⊆ friend

Transitive closure
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B), (C, R)}

friend+ = {(J, A), (J, D), (J, B), (J, P), (A, D), (A, B), (A, P), (A, A),
(B, A), (B, P), (B, D), (B, B), (D, B), (D, A), (D, D), (D, P), (C, R))}

FOL RL≠

U ⊆ Ann ∙ friend+

Ann is directly or indirectly a friend of everyone

RL in Alloy
none
univ
iden
 in
 +
 &
 -
 ->
 .
~
^

t u
t u
t u
t u

t u
t u

t
t

∅
U
id

t ⊆ u
t ∪ u
t ∩ u
t∖u

t × u
t ∙ u
t∘

t+

Syntactic sugar
 =
 !=

 not in
no

some
lone
one
 <:
 :>
*

all disj , : |
some disj , : |

t u
t u

t u
A

A
A

A
A R
R A

R
x y A ϕ
x y A ϕ

 in and in
not (=)
not (in)

 = none
 != none

all , : | =
some and lone

 & (-> univ)
 & (univ ->)
^ + iden

all , : | != implies
some , : | != and

t u u t
t u

t u
A

A
x y A x y

A A
R A
R A

R
x y A x y ϕ

x y A x y ϕ

FOL vs RL
fact {
 // Each entry is contained in one directory
 all x : Entry | some y : Dir | y->x in contains
 all x : Entry, y,z : Dir {
 y->x in contains and z->x in contains implies y = z
 }
}

fact {
 // Each entry is contained in one directory
 all x : Entry | one contains.x
}

FOL vs RL
fact {
 // All directories are referred to in at most one entry
 all x : Dir, y,z : Entry {
 y->x in refersTo and z->x in refersTo implies y = z
 }
}

fact {
 // All directories are referred to in at most one entry
 all x : Dir | lone refersTo.x
}

FOL vs RL
fact {
 // The root is not referred in any entry
 all x : Entry, y : Root | x->y not in refersTo
}

fact {
 // The root is not referred in any entry
 no refersTo.Root
}

FOL vs RL

fact {
 // All objects except the root are referred to in at least one entry
 all x : Object | x not in Root implies some y : Entry | y->x in refersTo
}

fact {
 // All objects except the root are referred to in at least one entry
 Object-Root in Entry.refersTo
}

FOL vs RL
fact {

 // Different entries in a directory must have different names

 all x : Dir, y,z : Entry, w : Name {

 x->y in contains and x->z in contains and y->w in has and z->w in has implies y = z

 }

}

fact {
 // Different entries in a directory must have different names
 all d : Dir, n : Name | lone (d.contains & has.n)
}

😀

Everyone has different styles
sig Person { style : one Style }
sig Style {}

// First order style
all x,y : Person, z : Style | x->z in style and y->z in style implies x=y

// Relational or navigational style
all z : Style | lone style.z

// Point-free style
style.~style in iden

Verification

Some instances

A desirable assertion

assert NoPartitions {
// All objects are reachable from the root
???

}

check NoPartitions

Reachable objects
Root.contains.refersToRoot.contains.refersTo.contains.refersToRoot.contains.refersTo.contains.refersTo.contains.refersTo

Reachable objects
Root.^(contains.refersTo)

Reachable objects
Root.*(contains.refersTo)

A desirable assertion

assert NoPartitions {
// All objects are reachable from the root
Object in Root.*(contains.refersTo)

}

check NoPartitions

A counter-example

Missing requirement

fact {
 // A directory cannot be contained in itself
 all d : Dir | d not in d.contains.refersTo
}

Another counter-example

Missing requirement

fact {
 // A directory cannot be contained in itself
 all d : Dir | d not in d.^(contains.refersTo)
}

🧐

Increasing confidence
• Increase the scope of check commands

 check NoPartitions for 6

• Use run commands to validate the model

- Verify that good scenarios are SAT

- Verify that bad scenarios are UNSAT

- Use expects keyword to document expectation

Specifying scenarios
run Scenario1 {

// An empty file system
Object = Root

} expect 1

run Scenario2 {
// A file system with only two files with different names
some disj f1,f2 : File, disj e1,e2 : Entry, disj n1,n2 : Name {

contains = Root->e1 + Root->e2
refersTo = e1->f1 + e2->f2
has = e1->n1 + e2->n2

}
} expect 1

run Scenario3 {
// A file system with only two files with the same name
some disj f1,f2 : File, disj e1,e2 : Entry, n : Name {

contains = Root->e1 + Root->e2
refersTo = e1->f1 + e2->f2
has = e1->n + e2->n

}
} expect 0

🥳

