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Software structures
• Data structures


• Database schemas


• Architectures


• Network topologies


• Ontologies


• Domain models



Structural design

• Understand entities and their relationships


• Elicit requirements


• Explore alternatives



Domain modeling à la UML



Requirement elicitation

• Are the requirements consistent?


• Any forgotten or redundant requirements?


• Do the requirements entail all the expected properties?



–Daniel Jackson

“The core of software development [...] is the design of abstractions. An 
abstraction is [...] an idea reduced to its essential form.”





Software design with Alloy

• Alloy is a formal modeling language


• Based on relational logic, an extension of first-order logic


• Models can be automatically analyzed


• Tailored for abstraction - everything is a relation!



Domain modeling with Alloy

?



First-order logic



Signatures
• Unary predicates are known as signatures and are declared with sig


• Signatures are inhabited by atoms from a finite domain of discourse


• Signatures can be top-level, extensions, or subsets


• Top-level and extension signatures are disjoint


• Signatures can be abstract, only containing atoms in the extensions


• Signatures can have a multiplicity (lone, some, one)



Top-level signatures

sig Object {}
sig Entry {}
sig Name {}

Object ⊆ D
Entry ⊆ D
Name ⊆ D
∀x . ¬(Object(x) ∧ Entry(x))
∀x . ¬(Object(x) ∧ Name(x))
∀x . ¬(Name(x) ∧ Entry(x))



Extension signatures

sig Dir extends Object {}
sig File extends Object {}

Dir ⊆ D
File ⊆ D
∀x . File(x) → Object(x)
∀x . Dir(x) → Object(x)
∀x . ¬(File(x) ∧ Dir(x))



Object is abstract



Abstract signatures

abstract sig Object {}
sig Dir extends Object {}
sig File extends Object {}

∀x : Object . Dir(x) ∨ File(x)



Subset signatures

sig Root in Dir {}
Root ⊆ D
∀x . Root(x) → Dir(x)



There is only one root



Signature multiplicities

one sig Root in Dir {}
∃x . Root(x)
∀x, y : Root . x = y



Fields

• Predicates of arity 2 or more are known as fields


• Fields are inhabited by tuples of atoms


• Must be declared inside the domain signature


• Multiplicities (set, lone, some, one) can be imposed on the targets


• If no multiplicity is imposed the default is one



Fields

sig Dir {
contains : set Entry

}

contains ⊆ D × D
∀x, y . contains(x, y) → Dir(x) ∧ Entry(y)



Fields

sig Entry {
refersTo : one Object,
has : one Name

}

refersTo ⊆ D × D
∀x, y . refersTo(x, y) → Entry(x) ∧ Object(y)
∀x : Entry . ∃y . refersTo(x, y)
∀x, y, z . refersTo(x, y) ∧ refersTo(x, z) → y = z
has ⊆ D × D
∀x, y . has(x, y) → Entry(x) ∧ Name(y)
∀x : Entry . ∃y . has(x, y)
∀x, y, z . has(x, y) ∧ has(x, z) → y = z



Facts
• Facts specify assumptions


fact { φ }

• Facts can be named


fact Name { φ }


• A single fact can have several constraints, one per line


fact { 
  φ
  𝛙 
}



FOL vs Alloy
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FOL vs Alloy
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FOL vs Alloy
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Each entry is contained in one directory



Each entry is contained in one directory

fact {
// Each entry is contained in one directory
all x : Entry | some y : Dir | y->x in contains
all x : Entry, y,z : Dir {
y->x in contains and z->x in contains implies y = z

}
}



Commands
• Alloy has two types of analysis commands:


- run { φ } asks for an example that satisfies all facts and φ

- check { φ } asks for a counter-example that satisfies all facts but 
refutes assertion φ

• Likewise facts, commands can be named and can have several 
constraints, one per line


• In the visualizer it is possible to ask for more examples or counter-
examples by pressing New



Instances
• Both examples and counter-examples are first-order structures


• In Alloy first-order structures are known as instances


• An instance is a valuation to all the signatures and fields


• In an instance “everything is a relation”


- Signatures are unary relations (sets of unary tuples)


- Constants are singleton unary relations (sets with one unary tuple)


• By default instances are depicted as graphs



Scopes
• To ensure decidability commands have a scope


• The scope imposes a limit on the size of the (finite) domain the Analyzer 
will exhaustively explore


• The default scope imposes a limit of 3 atoms per top-level signature


• for can be used to specify a different scope for top-level signatures


• but can be used to specify different scopes for specific signatures


• exactly can be used to specify exact scopes



The small scope hypothesis
• If run { φ } returns an instance then φ is consistent, else φ may be 

inconsistent 

- Could be consistent with a bigger scope! 

• If check { φ } returns an instance then φ is invalid, else φ may be valid 

- Could be invalid with a bigger scope!!!


• Anecdotical evidence suggests that most invalid assertions (or consistent 
predicates) can be refuted (or witnessed) with a small scope



Atoms
• The universe of discourse contains atoms 

• Atoms are uninterpreted (no semantics)


• Named automatically according to the respective signatures


• Two instances are isomorphic (or symmetric) if they are equal modulo 
renaming


• The analysis implements a symmetry breaking mechanism to avoid 
returning isomorphic instances



A simple command
run {} for 4 but exactly 2 Dir, 3 Name



Instances as graphs



Instances as relations

Object   = {(Dir0),(Dir1),(File)}

Dir      = {(Dir0),(Dir1)}

File     = {(File)}

Root     = {(Dir0)}

Entry    = {(Entry0),(Entry1),(Entry2),(Entry3)}

Name     = {(Name)}

contains = {(Dir1,Entry0),(Dir0,Entry1),(Dir0,Entry2),(Dir0,Entry3)}

refersTo = {(Entry0,File),(Entry1,File),(Entry2,File),(Entry3,File)}

has      = {(Entry0,Name),(Entry1,Name),(Entry2,Name),(Entry3,Name)}



Instances as tables
Object
Dir0
Dir1
File

Dir

Dir0

Dir1

Root
Dir0

File

File

Name

Name

contains
Dir1 Entry0
Dir0 Entry1
Dir0 Entry2
Dir0 Entry3

refersTo
Entry0 File
Entry1 File
Entry2 File
Entry3 File

has
Entry0 Name
Entry1 Name
Entry2 Name
Entry3 Name

Entry
Entry0
Entry1
Entry2
Entry3



Additional requirements

• All objects except the root are referred to in 
at least one entry (at most one for the case 
of directories)


• Different entries in a directory must have 
different names



Themes

• The visualizer theme can be customized


• Customization can ease the understanding and help validate the model


• It is possible to customize colors, shapes, visibility, …



Theme customization

DEMO



Theme customization



Additional requirements
fact {

  // All directories are referred to in at most one entry

  all x : Dir, y,z : Entry | y->x in refersTo and z->x in refersTo implies y = z

  // The root is not referred in any entry

  all x : Entry, y : Root | x->y not in refersTo

  // All objects except the root are referred to in at least one entry

  all x : Object | x not in Root implies some y : Entry | y->x in refersTo

  // Different entries in a directory must have different names

  all x : Dir, y,z : Entry, w : Name {

    x->y in contains and x->z in contains and y->w in has and z->w in has implies y = z

  }

}



😱



Relational logic



Relational logic

• Relational logic extends FOL


• Adds operators to combine predicates (relations) into terms


• Terms denote derived relations


• Adds transitive closure, which cannot be expressed in FOL 



Syntax
ϕ, ψ ≐ t ⊆ u

∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)
∣ (∀x . ϕ)
∣ (∃x . ϕ)

x, y, z, … ∈ 𝒳
P, Q, R, … ∈ 𝒫

t, u, … ∈ Term𝒫

ϕ, ψ, … ∈ Form𝒫

t, u ≐ x, y, z, …
∣ P, Q, R, …
∣ ∅
∣ U
∣ id
∣ t ∪ u
∣ t ∩ u
∣ t∖u
∣ t × u
∣ t ∙ u
∣ t∘

∣ t+



Formula semantics
ℳ, 𝒜 ⊨ ⊤
ℳ, 𝒜 ⊭ ⊥

ℳ, 𝒜 ⊨ t ⊆ u iff 𝒱(t) is a subset or equal to 𝒱(u)
ℳ, 𝒜 ⊨ ¬ϕ iff ℳ, 𝒜 ⊭ ϕ

ℳ, 𝒜 ⊨ ϕ ∧ ψ iff ℳ, 𝒜 ⊨ ϕ and ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ∨ ψ iff ℳ, 𝒜 ⊨ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ → ψ iff ℳ, 𝒜 ⊭ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ↔ ψ iff ℳ, 𝒜 ⊨ ϕ iff ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ∀x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for all a ∈ D
ℳ, 𝒜 ⊨ ∃x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for some a ∈ D



Term semantics
𝒱(x) ≐ {(𝒜(x))}
𝒱(R) ≐ I(R)
𝒱(∅) ≐ {}
𝒱(U) ≐ {(x) ∣ x ∈ D}
𝒱(id) ≐ {(x, x) ∣ x ∈ D}

𝒱(t ∪ u) ≐ {(x1, …, x|t|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∨ (x1, …, x|t|) ∈ 𝒱(u)}
𝒱(t ∩ u) ≐ {(x1, …, x|t|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (x1, …, x|t|) ∈ 𝒱(u)}

𝒱(t∖u) ≐ {(x1, …, x|t|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (x1, …, x|t|) ∉ 𝒱(u)}
𝒱(t × u) ≐ {(x1, …, x|t|, y1, …, y|u|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (y1, …, y|u|) ∈ 𝒱(u)}
𝒱(t ∙ u) ≐ {(x1, …, x|t|−1, y2, …, y|u|) ∣ (x1, …, x|t|) ∈ 𝒱(t) ∧ (y1, …, y|u|) ∈ 𝒱(u) ∧ x|t| = y1}

𝒱(t∘) ≐ {(x1, …, x|t|) ∣ (x|t|, …, x1) ∈ 𝒱(t)}
𝒱(t+) ≐ 𝒱(t ∪ t ∙ t ∪ t ∙ t ∙ t ∪ …)



FOL vs RL
∀x . ∀y . bff(x, y) → friend(x, y) bff ⊆ friend

∀x . ∀y . friend(x, y) → friend(y, x) friend ⊆ friend∘

∀x . ¬friend(x, x) friend ∩ id ⊆ ∅

∀x . ∀y . Ann(x) ∧ Student(y) → friend(x, y) Ann × Student ⊆ friend

∀x . ∀y . x ≠ y → friend(x, y) (U × U)∖id ⊆ friend

∀x . ∀y . x ≠ y → friend(x, y) ∀x . ∀y . x ⊈ y → x × y ⊆ friend



Composition
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))}

friend ∙ friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann ∙ friend = {(B), (D)}

Ann ∙ friend ∙ friend = {(A), (B), (P)}
friend ∙ Ann = {(J), (B)}

friend ∙ Student = {(J), (A), (D), (B), (C)}
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FOL vs RL

U ⊆ friend ∙ Student∀x . ∃y . Student(y) ∧ friend(x, y)

∀x . ∀y . ∀z . friend(x, y) ∧ friend(y, z) → friend(x, z) friend ∙ friend ⊆ friend



Transitive closure
Ann

Mary

Peter

Joe

Rose
Bob

Charles

Daisy

Student = {(A), (M), (B), (R), (J)}
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B), (C, R)}

friend+ = {(J, A), (J, D), (J, B), (J, P), (A, D), (A, B), (A, P), (A, A),
(B, A), (B, P), (B, D), (B, B), (D, B), (D, A), (D, D), (D, P), (C, R))}



FOL  RL≠

U ⊆ Ann ∙ friend+

Ann is directly or indirectly a friend of everyone



RL in Alloy
none
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Syntactic sugar
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FOL vs RL
fact {
  // Each entry is contained in one directory
  all x : Entry | some y : Dir | y->x in contains
  all x : Entry, y,z : Dir {
    y->x in contains and z->x in contains implies y = z
  }
}

fact {
  // Each entry is contained in one directory
  all x : Entry | one contains.x
}



FOL vs RL
fact {
  // All directories are referred to in at most one entry
  all x : Dir, y,z : Entry {
    y->x in refersTo and z->x in refersTo implies y = z
  }
}

fact {
  // All directories are referred to in at most one entry
  all x : Dir | lone refersTo.x
}



FOL vs RL
fact {
  // The root is not referred in any entry
  all x : Entry, y : Root | x->y not in refersTo
}

fact {
  // The root is not referred in any entry
  no refersTo.Root
}



FOL vs RL

fact {
  // All objects except the root are referred to in at least one entry
  all x : Object | x not in Root implies some y : Entry | y->x in refersTo
}

fact {
  // All objects except the root are referred to in at least one entry
  Object-Root in Entry.refersTo
}



FOL vs RL
fact {

  // Different entries in a directory must have different names

  all x : Dir, y,z : Entry, w : Name {

    x->y in contains and x->z in contains and y->w in has and z->w in has implies y = z

  }

}

fact {
  // Different entries in a directory must have different names
  all d : Dir, n : Name | lone (d.contains & has.n)
}



😀



Everyone has different styles
sig Person { style : one Style }
sig Style {}

// First order style
all x,y : Person, z : Style | x->z in style and y->z in style implies x=y

// Relational or navigational style
all z : Style | lone style.z

// Point-free style
style.~style in iden



Verification



Some instances



A desirable assertion

assert NoPartitions {
// All objects are reachable from the root
???

}

check NoPartitions



Reachable objects
Root.contains.refersToRoot.contains.refersTo.contains.refersToRoot.contains.refersTo.contains.refersTo.contains.refersTo



Reachable objects
Root.^(contains.refersTo)



Reachable objects
Root.*(contains.refersTo)



A desirable assertion

assert NoPartitions {
// All objects are reachable from the root
Object in Root.*(contains.refersTo)

}

check NoPartitions



A counter-example



Missing requirement

fact {
  // A directory cannot be contained in itself
  all d : Dir | d not in d.contains.refersTo
}



Another counter-example



Missing requirement

fact {
  // A directory cannot be contained in itself
  all d : Dir | d not in d.^(contains.refersTo)
}





🧐



Increasing confidence
• Increase the scope of check commands


                 check NoPartitions for 6

• Use run commands to validate the model


- Verify that good scenarios are SAT


- Verify that bad scenarios are UNSAT


- Use expects keyword to document expectation



Specifying scenarios
run Scenario1 { 

// An empty file system
Object = Root 

} expect 1

run Scenario2 { 
// A file system with only two files with different names
some disj f1,f2 : File, disj e1,e2 : Entry, disj n1,n2 : Name {

contains = Root->e1 + Root->e2
refersTo = e1->f1 + e2->f2
has      = e1->n1 + e2->n2

}
} expect 1

run Scenario3 { 
// A file system with only two files with the same name
some disj f1,f2 : File, disj e1,e2 : Entry, n : Name {

contains = Root->e1 + Root->e2
refersTo = e1->f1 + e2->f2
has      = e1->n  + e2->n

}
} expect 0



🥳


