
SAT Solving
Nuno Macedo

(based on slides by Alcino Cunha)

Complexity

• Given a propositional formula , the decision problem “Is satisfiable?”
is known as the Boolean satisfiability problem or SAT

- SAT is decidable

- SAT is NP-complete

ϕ ϕ

NP-completeness
• Nondeterministic polynomial time (NP) is a complexity class for decision

problems

- Problem instances have “proofs” verifiable in polynomial time

- SAT is in NP (proofs are assignments)

• A NP problem is NP-complete if every problem in NP is reducible to it in
polynomial time

- SAT was the first problem to be show to be NP-complete

- but we do not known if or P ⊆ NP P = NP P ≠ NP

Graph colouring
• The decision problem “Can an undirected graph be coloured with k

colours”? is also NP-complete

• Can the following graph be coloured with 3 colours?

1

2

3

4

Graph colouring
• Can the following graph be coloured with 3 colours?

• Allocate colours to vertices such that

- Every vertex has one colour

• At least one colour per vertex

• At most one colour per vertex

- Adjacent vertices have different colours

1

2

3

4

Variables
Colour

Red Green Blue

Vertex

1

2

3

4

x1,r x1,g x1,b

x2,r x2,g

x3,r

x2,b

x3,g x3,b

x4,r x4,g x4,b

Every vertex has one colour

(x1,r ∨ x1,g ∨ x1,b)
∧

(x2,r ∨ x2,g ∨ x2,b)
∧

(x3,r ∨ x3,g ∨ x3,b)
∧

(x4,r ∨ x4,g ∨ x4,b)

¬(x1,r ∧ x1,g) ∧ ¬(x1,r ∧ x1,b) ∧ ¬(x1,g ∧ x1,b)
∧

¬(x2,r ∧ x2,g) ∧ ¬(x2,r ∧ x2,b) ∧ ¬(x2,g ∧ x2,b)
∧

¬(x3,r ∧ x3,g) ∧ ¬(x3,r ∧ x3,b) ∧ ¬(x3,g ∧ x3,b)
∧

¬(x4,r ∧ x4,g) ∧ ¬(x4,r ∧ x4,b) ∧ ¬(x4,g ∧ x4,b)

At least… At most…

Adjacent vertices have different colours

1

2

3

4

¬(x1,r ∧ x2,r) ∧ ¬(x1,g ∧ x2,g)¬(x1,b ∧ x2,b)
∧

¬(x1,r ∧ x3,r) ∧ ¬(x1,g ∧ x3,g)¬(x1,b ∧ x3,b)
∧

¬(x1,r ∧ x4,r) ∧ ¬(x1,g ∧ x4,g)¬(x1,b ∧ x4,b)
∧

¬(x2,r ∧ x4,r) ∧ ¬(x2,g ∧ x4,g)¬(x2,b ∧ x4,b)
∧

¬(x3,r ∧ x4,r) ∧ ¬(x3,g ∧ x4,g)¬(x3,b ∧ x4,b)

Brute force

1

2

3

4

1 2 3 4 φ
R R R R ✗

Brute force

1

2

3

4

1 2 3 4 φ
R R R R ✗

R R R G ✗

Brute force

1

2

3

4

1 2 3 4 φ
R R R R ✗

R R R G ✗

R R R B ✗

R R G R ✗

R R G G ✗

R R G B ✗

Brute force

1

2

3

4

1 2 3 4 φ
R R R R ✗

R R R G ✗

R R R B ✗

R R G R ✗

R R G G ✗

R R G B ✗

R R B R ✗

...
R G G B ✓

Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

R G B ✓

Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

R G B ✓

R G B ? ✗

Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

R G B ✓

R G B ? ✗

R G G ✓

Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

R G B ✓

R G B ? ✗

R G G ✓

R G G B ✓

DPLL algorithm

• Introduced by Davis, Putman, Logemann, and Loveland

• Backtracking algorithm that incrementally searches for a satisfiable
assignment

• Works on propositional logic formulas in conjunctive normal form (CNF)

CNF
• A formula in CNF is a conjunction of clauses

• A clause is disjunction of literals

• A literal is a propositional variable or its negation

• Any formula can converted to CNF by applying well-known rewrite rules

• Formulas in CNF can be represented in a compact way

(A ∨ B) ∧ (B ∨ ¬C ∨ D) ∧ (¬A ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬D) ∧ A

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Conversion to CNF

ϕ ↔ ψ ⇒ (ϕ → ψ) ∧ (ψ → ϕ)
ϕ → ψ ⇒ ¬ϕ ∨ ψ
¬¬ϕ ⇒ ϕ

¬(ϕ ∨ ψ) ⇒ ¬ϕ ∧ ¬ψ
¬(ϕ ∧ ψ) ⇒ ¬ϕ ∨ ¬ψ

ϕ ∨ (ψ ∧ θ) ⇒ (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
(ψ ∧ θ) ∨ ϕ ⇒ (ψ ∨ ϕ) ∧ (θ ∨ ϕ)

DPLL algorithm
• Start from an empty assignment

• Repeat the following steps

- Deduce the value of literals and perform unit propagation

- If nothing to deduce, then guess the value of literal

- If a clause becomes empty we reached a contradiction (aka conflict)

• Backtrack to last “open” guess and try opposite value

- If the formula becomes empty we reached a satisfiable assignment

• If the search terminates without finding a satisfiable assignment the formula is unsatisfiable

Unit propagation
• A unit clause contains only one literal

• We deduce that literal must be true for the formula to be satisfied

• And unit propagation can be performed

- Discard all clauses containing the literal

- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Unit propagation
• A unit clause contains only one literal

• We deduce that literal must be true for the formula to be satisfied

• And unit propagation can be performed

- Discard all clauses containing the literal

- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Unit propagation
• A unit clause contains only one literal

• We deduce that literal must be true for the formula to be satisfied

• And unit propagation can be performed

- Discard all clauses containing the literal

- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

Example SAT
A B C D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Example SAT
A B C D

1 deduce A

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Example SAT
A B C D

1 deduce A

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

{{}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

1 0 0 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

{{}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

1 0 0 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

{{}}

{}

Example UNSAT
A B C

{{A, B}, {A, B}, {B, C}, {B, C}}

Example UNSAT
A B C

1 guess A

{{A, B}, {A, B}, {B, C}, {B, C}}
{{B}, {B, C}, {B, C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

{{A, B}, {A, B}, {B, C}, {B, C}}
{{B}, {B, C}, {B, C}}

{{C}, {C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{B}, {B, C}, {B, C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

0 1 deduce B

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

0 1 deduce B

0 1 1 deduce C

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{}}

CDCL algorithm

• Conflict-Driven Clause Learning improves DPLL significantly

• CDCL keeps an implication graph with the decisions that led to a conflict

• From this graph it can “learn” a new clause that rules out that conflict

• Backtrack directly jumps (non-chronologically) to a decision where the
conflict can still be avoided

• CDCL is at the basis of state-of-the-art SAT solvers

DIMACS

• Standard textual format for CNF

• Used by most SAT solvers

• Starts by declaring the number of variables and the number of clauses

• Each clause is described by a sequence of literals ended by 0

• Each literal is either a positive number identifying a variable or its negation

DIMACS

c example
p cnf 4 5
1 2 0
2 -3 4 0
-1 -2 0
-1 -3 -4 0
1 0

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Beyond SAT solving
• SAT solving deals only with propositional logic

• Satisfiability Modulo Theories (SMT) generalizes SAT

• Supports first-order logic with symbol interpretations restricted by theories

• Undecidable in general, but decidable under some theories and fragments

• Linear integer arithmetic

• Reals

• Arrays

• …

🥱

Let’s do it with Z3!

DEMO

