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Complexity

• Given a propositional formula , the decision problem “Is  satisfiable?” 
is known as the Boolean satisfiability problem or SAT 

- SAT is decidable


- SAT is NP-complete

ϕ ϕ



NP-completeness
• Nondeterministic polynomial time (NP) is a complexity class for decision 

problems


- Problem instances have “proofs” verifiable in polynomial time


- SAT is in NP (proofs are assignments)


• A NP problem is NP-complete if every problem in NP is reducible to it in 
polynomial time


- SAT was the first problem to be show to be NP-complete


-  but we do not known if  or P ⊆ NP P = NP P ≠ NP



Graph colouring
• The decision problem “Can an undirected graph be coloured with k 

colours”? is also NP-complete


• Can the following graph be coloured with 3 colours?
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Graph colouring
• Can the following graph be coloured with 3 colours?


• Allocate colours to vertices such that


- Every vertex has one colour


• At least one colour per vertex


• At most one colour per vertex


- Adjacent vertices have different colours
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Variables
Colour

Red Green Blue

Vertex

1

2

3

4

x1,r x1,g x1,b

x2,r x2,g

x3,r

x2,b

x3,g x3,b

x4,r x4,g x4,b



Every vertex has one colour

(x1,r ∨ x1,g ∨ x1,b)
∧

(x2,r ∨ x2,g ∨ x2,b)
∧

(x3,r ∨ x3,g ∨ x3,b)
∧

(x4,r ∨ x4,g ∨ x4,b)

¬(x1,r ∧ x1,g) ∧ ¬(x1,r ∧ x1,b) ∧ ¬(x1,g ∧ x1,b)
∧

¬(x2,r ∧ x2,g) ∧ ¬(x2,r ∧ x2,b) ∧ ¬(x2,g ∧ x2,b)
∧

¬(x3,r ∧ x3,g) ∧ ¬(x3,r ∧ x3,b) ∧ ¬(x3,g ∧ x3,b)
∧

¬(x4,r ∧ x4,g) ∧ ¬(x4,r ∧ x4,b) ∧ ¬(x4,g ∧ x4,b)

At least… At most…



Adjacent vertices have different colours

1

2

3

4

¬(x1,r ∧ x2,r) ∧ ¬(x1,g ∧ x2,g)¬(x1,b ∧ x2,b)
∧

¬(x1,r ∧ x3,r) ∧ ¬(x1,g ∧ x3,g)¬(x1,b ∧ x3,b)
∧

¬(x1,r ∧ x4,r) ∧ ¬(x1,g ∧ x4,g)¬(x1,b ∧ x4,b)
∧

¬(x2,r ∧ x4,r) ∧ ¬(x2,g ∧ x4,g)¬(x2,b ∧ x4,b)
∧

¬(x3,r ∧ x4,r) ∧ ¬(x3,g ∧ x4,g)¬(x3,b ∧ x4,b)



Brute force
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Brute force
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Brute force

1
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1 2 3 4 φ
R R R R ✗

R R R G ✗

R R R B ✗

R R G R ✗

R R G G ✗

R R G B ✗



Brute force

1

2

3

4

1 2 3 4 φ
R R R R ✗

R R R G ✗

R R R B ✗

R R G R ✗

R R G G ✗

R R G B ✗

R R B R ✗

...
R G G B ✓



Backtracking
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Backtracking
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R ✓

R G ✓



Backtracking
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R ✓

R G ✓

R G B ✓



Backtracking
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1 2 3 4 φ

R ✓

R G ✓

R G B ✓

R G B ? ✗



Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

R G B ✓

R G B ? ✗

R G G ✓



Backtracking

1

2

3

4

1 2 3 4 φ

R ✓

R G ✓

R G B ✓

R G B ? ✗

R G G ✓

R G G B ✓



DPLL algorithm

• Introduced by Davis, Putman, Logemann, and Loveland


• Backtracking algorithm that incrementally searches for a satisfiable 
assignment


• Works on propositional logic formulas in conjunctive normal form (CNF)



CNF
• A formula in CNF is a conjunction of clauses


• A clause is disjunction of literals


• A literal is a propositional variable or its negation


• Any formula can converted to CNF by applying well-known rewrite rules


• Formulas in CNF can be represented in a compact way

(A ∨ B) ∧ (B ∨ ¬C ∨ D) ∧ (¬A ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬D) ∧ A

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}



Conversion to CNF

ϕ ↔ ψ ⇒ (ϕ → ψ) ∧ (ψ → ϕ)
ϕ → ψ ⇒ ¬ϕ ∨ ψ
¬¬ϕ ⇒ ϕ

¬(ϕ ∨ ψ) ⇒ ¬ϕ ∧ ¬ψ
¬(ϕ ∧ ψ) ⇒ ¬ϕ ∨ ¬ψ

ϕ ∨ (ψ ∧ θ) ⇒ (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
(ψ ∧ θ) ∨ ϕ ⇒ (ψ ∨ ϕ) ∧ (θ ∨ ϕ)



DPLL algorithm
• Start from an empty assignment


• Repeat the following steps


- Deduce the value of literals and perform unit propagation


- If nothing to deduce, then guess the value of literal


- If a clause becomes empty we reached a contradiction (aka conflict)


• Backtrack to last “open” guess and try opposite value


- If the formula becomes empty we reached a satisfiable assignment


• If the search terminates without finding a satisfiable assignment the formula is unsatisfiable



Unit propagation
• A unit clause contains only one literal


• We deduce that literal must be true for the formula to be satisfied


• And unit propagation can be performed


- Discard all clauses containing the literal


- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}



Unit propagation
• A unit clause contains only one literal


• We deduce that literal must be true for the formula to be satisfied


• And unit propagation can be performed


- Discard all clauses containing the literal


- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}



Unit propagation
• A unit clause contains only one literal


• We deduce that literal must be true for the formula to be satisfied


• And unit propagation can be performed


- Discard all clauses containing the literal


- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}



Example SAT
A B C D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}



Example SAT
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1 deduce A
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1 deduce A
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Example SAT
A B C D

1 deduce A

1 0 deduce B

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}



Example SAT
A B C D

1 deduce A

1 0 deduce B

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}



Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C
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Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}
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Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

1 0 0 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}
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Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

1 0 0 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

{{}}

{}



Example UNSAT
A B C

{{A, B}, {A, B}, {B, C}, {B, C}}



Example UNSAT
A B C

1 guess A

{{A, B}, {A, B}, {B, C}, {B, C}}
{{B}, {B, C}, {B, C}}



Example UNSAT
A B C

1 guess A

1 1 deduce B

{{A, B}, {A, B}, {B, C}, {B, C}}
{{B}, {B, C}, {B, C}}

{{C}, {C}}



Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}



Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{B}, {B, C}, {B, C}}



Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

0 1 deduce B

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}



Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

0 1 deduce B

0 1 1 deduce C

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{B}, {B, C}, {B, C}}
{{C}, {C}}

{{}}



CDCL algorithm

• Conflict-Driven Clause Learning improves DPLL significantly


• CDCL keeps an implication graph with the decisions that led to a conflict


• From this graph it can “learn” a new clause that rules out that conflict


• Backtrack directly jumps (non-chronologically) to a decision where the 
conflict can still be avoided


• CDCL is at the basis of state-of-the-art SAT solvers



DIMACS

• Standard textual format for CNF


• Used by most SAT solvers


• Starts by declaring the number of variables and the number of clauses


• Each clause is described by a sequence of literals ended by 0


• Each literal is either a positive number identifying a variable or its negation



DIMACS

c example
p cnf 4 5
1 2 0
2 -3 4 0
-1 -2 0
-1 -3 -4 0
1 0

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}





Beyond SAT solving
• SAT solving deals only with propositional logic


• Satisfiability Modulo Theories (SMT) generalizes SAT


• Supports first-order logic with symbol interpretations restricted by theories


• Undecidable in general, but decidable under some theories and fragments


• Linear integer arithmetic


• Reals


• Arrays


• …



🥱



Let’s do it with Z3!

DEMO


