Propositional Logic

Nuno Macedo
(based on slides by Alcino Cunha)

Overview

Formal logic

* A formal language in which (well-formed) sentences are expressed
* A semantics that defines the meaning of the language expressions

* A proof system that provides rules for deriving valid judgements

Propositional logic

Propositional Logic (PL) deals with propositions and their relationships
Propositions can be either true or false

Atomic formulas are propositional variables that represent propositions
Compound formulas are built with logical connectives

Each formula is either true or false for a given variable interpretation

Syntax

Propositional variables

- AB,C, ...

Logical connectives

- T (true), L (false), =(not), A (and), V (or), — (implies), < (equivalent)
Auxiliary symbols

- Parenthesis (,)

Well-formed formulas follow the syntactic rules of propositional logic

Syntax

ABC,...e?
¢, Y, ... € FOI’IIIW

o, w=A,B,C,...

T

i

| ()

| (@ Ay)

| (@ V)

| (¢ = w)
| (¢ < w)

* |f parenthesis are omitted, connectives have precedence =, A,V , = , <>, and are right-associative

Semantics

A truth value assignment to variables & : 77 — {0,1}

Can be extended to & : Forms — {0,1} to compute the truth value of
a formula ¢

If /(@) = 1 we say that ¢ holds under &/, denoted by &/ F @

If (@) = 0 we say that ¢ does not hold under &/, denoted by & F ¢

Truth table semantics

A(T) d(L)

1 0

A(p) | (=)
0 1
1 0

dp) dw) | dPAy) dPpVy) AP -y APy

0 0
0 1
0 1
1 1

p— O bt
—_ O O

Inductive semantics

oA ET
o ¥ 1
A Ep

A E g

A EPAY
A EPVy
AE P>y
A EPeoy

Iff

Iff
Iff
Iff
Iff

A(p) =1

A ¥ @
A E@and A F y
A EQord Fy
A EPpord Fy
A FEQiff A Fy

Terminology

« Aformula ¢ is

- valid or a tautology iff it holds under all assignments, and we write F @
- satisfiable iff it holds under some assignments

- unsatisfiable or a contradiction iff it does not hold under all
assignments

- refutable iff it does not hold under some assignment

A formula ¢ is valid iff = is unsatisfiable

Examples

« BV (A — —B)isvalid A B | B A--B BV(A - B
O O | | 1
0 1 0 1 1
1 0 1 1 1
1 1 0 0 1

« A — (A V B) is both satisfiable and refutable
A B | -A -AVB A— (=AVB)

0 0O
0 1
1 O
1 1

Conseguence and equivalence

e () is a consequence of i, denoted by y F ¢, if for every &f that & F v,
A F ¢ also holds

» ¢ and y are equivalent, denoted by w = ¢, if 9 F wand y F ¢

s FYiff EFgp > wandp =vyiff F ¢ o w

Basic equivalences

GV)= PAND= ¢

pVp=T pAp=1

oV T=T ONT =

oV 1L =g dONL=1

GVY=yV GPANP=ywAy

PVPAN)=(PVPAN(PVE) pAPVE=(PDAP)V (P AD)
(pVyY)=EPAY (pAY) =PV Ty

PAPVY) =g g = ¢

p>yY="9Vy poy=0@->Y)AWy— Q)

Decidability

* A decision problem is decidable if there exists a mechanical method (aka an
algorithm) for determining if it is either true or false

» The decision problem “Is ¢ satisfiable?”, also known as the Boolean
satisfiability problem or SAT, is decidable

- Nalve approach, exponential in the number of variables: enumerate all possible
assignments and build the truth table for ¢

- Later we will see that modern SAT solvers implement more sophisticated
methods...

» Hence the decision problem “Is ¢ valid?” is also decidable

Modelling with PL

Formal modelling

* Logic allows us to reason formally during various software development tasks:
- Program analysis
- Artificial inteligence
- Hardware verification
- Programming languages
* (The relationship is symbiotic: software provides implementations of logics)
 The system under analysis must be represented in the selected formal system

- We call this task formal modelling

Allocation problems

Allocation problem

 Decide if a set of “items” can be placed in a set of “containers”
* Subject to a set of generic (often implicit) constraints
- At least / at most one item per container
- At least / at most one container per item
 And a set of problem specific constraints
- A specific item does not want to be placed in a specific container

- Two specific items do not want to be placed together

Allocating in PL

 Declare a matrix of |ltems| X | Containers | of propositional variables
- Variable p,. , Is true iff item x Is allocated to container a

e Specify the allocation constraints with propositional formulas

 SAT solve to get allocation

» Consider 3 containers (1,2,3) and 2 items (a, b)
* At least one container per item

(Pa1VPu2VPa3) NP1V DPpaV Dp3)

At most one container per item

(Generic constraints

Container

1

2

3

ltem

pa,l

P a,?2

pa,3

» Consider 3 containers (1,2,3) and k items (i, ..., I})
* At least one container per item

(L1 VPi2VPi3) Ao AP VP2V D 3)

* At most one container per item

(Generic constraints

Container

1

2

3

ltem

Pi1

Pi.2

Pi.3

Pi 1

Pi 2

Pi 3

Pi1

Pi»

Pi 3

 Consider [containers (¢, ..., ¢) and k items (a, ..., a;)

* At least one container per item

(piO,CO V...V pl-o,cl) A ... A\ (p,-k,CO V...V p,-kacl)

* At most one container per item

(Generic constraints

Container
Co | Cv Ci
o \Piyco|Pigcy| - | Pipey
I1 pil,co pil,cl ' pil,cl
ltem
Ik pik,co pik,cl . pik,cl

» Consider 3 containers (1,2,3) and 2 items (a, b)

* At least one container per item

(Pa1VPu2VPa3) NP1V DPpaV Dp3)

At most one container per item

(Pu1 APu2) AN (Pu1 APuz) A7 (Pun ADy3)
A

(Pp1 APp2) AN (Pp1 APp3) A (Ppo APp3)

(Generic constraints

Container

2

3

ltem

P a,?2

pa,3

» Consider 3 containers (1,2,3) and 2 items (a, b)

* At least one container per item

(Pa1VPu2VPa3) NP1V DPpaV Dp3)

At most one container per item

(7Pu1 V7 Pu) AP Y P 3) A(TPaa VP, 3)
A

(7P VP) AP VY P 3) A(TPRo Y TP 3)

(Generic constraints

Container

2

3

ltem

P a,?2

pa,3

» Consider 3 containers (1,2,3) and k items (i, ..., I})
* At least one container per item

(L1 VPi2VPi3) Ao AP VP2V D 3)

At most one container per item
(7pi 1 VP D) AP, 1 VP 3) AP 2V D, 3)
A ... A
(7P 1 VD D AP 1 VP 3) AP oV TPy)

(Generic constraints

Container

1

2

3

ltem

Pi1

Pi.2

Pi.3

Pi 1

Pi 2

Pi 3

Pi1

Pi»

Pi 3

 Consider [containers (¢, ..., ¢) and k items (a, ..., a;)

* At least one container per item

(piO,CO V...V pl-o,cl) A ... A\ (p,-k,CO V...V p,-kacl)

* At most one container per item
(7Pivey Y Pige) NPV T Pio) AN - AP oY D)

(7p i, ¥ P iOaCx+1) A(Tp i, ¥ P i09cx+2) A AT i, ¥ P iOaCl)

(_Ipik,cx N _Ipik,

(|

Ao A

Ao A
) A (_Ipik,cx \ _Ipik,

Cyt2

) N ... A (_Ipikacx V _Ipikacl)

(Generic constraints

Container
Co | Cv Ci
Io pio,co pio,cl piOaCl
I1 pil,co pil,cl pil,cl
ltem
Ik pik,co P [1,C1 P sC

Checking assertions

» After adding the constraints describing the allocation problem we can
check the validity of additional assertions

» To check if @ is valid add —¢ as a constraint and check for satisfiability

- If it is satisfiable, then —¢ holds for some assignment, so @ is not valid

Placement of guests

 \We have three chairs in a row and need to place Anne, Susan and Peter
- Anne does not want to sit next to Peter
- Anne does not want to sit in the left chair
- Susan does not want to sit to the left of Peter
* Implicit generic constraints
- Everyone must be sited in a chair (at least one chair per guest)

- No more than one guest per chair (at most one guest per chair)

Variables

Chair
Left | Center | Right
Anne xa,l xa,c xa,r
Guest | Susan | X X ¢ g 1
Peter | X, Xp.c Xp.r

At least one chalir per guest

(X VX o VX)) ANXVX VX) A (xp, VX,V xp,,,)

At most one guest per chair

(—Ixa,l V _'xs,l) A (—uxa,, V —pr,l) A (_'xs,l V —pr,l)
A
(—lxa,c V _'xs,c) A (_'xa,c V _pr,c) A (_"xs,c V _pr,c)

A
(7x,, VX) A (X, ,V —pr,,,) A (X, V —pr,,,)

Problem specific constraints

e Anne does not want to sit next to Peter

(X, = (X, A —pr,,,)) A((x, Vx,,)— —prac)
 Anne does not want to sit in the left chair
Al
* Susan does not want to sit to the left of Peter

(Xp,r — _'xs,c) A (xp,c — _'xs,l)

Finding a placement

* A placement is an assignment to variables for which the constraints hold

- SAT solving to show it is satisfiable: finding a &/ under which it holds
. We can do this manually, there are “only” 2° = 512 possible assignments

- Only one solution: x, ;, x, ., X, , true, all other variables false

,C?

e Later we will revisit this with automated SAT solvers

Feature model analysis

Variability modelling

A software product line (SPL) is a family of software products
Each product or variant supports different features
A feature is an increment in program functionality

A feature model is a compact representation of the variability of a SPL

Feature models

Mobile Phone

ese
@
I
- ~{(Basic] [coour | [vighresouion] ["Camera] [“wPs
— I

¢ Mandatory /0\ Alternative = -—-—+ Requires
& Optional /O or < -+ Excludes

https://doi.org/10.1016/}.is.2010.01.001

How many phone variants exist?

Mobile Phone

ese
@,
|
:‘ High resolution MP3

f |

¢ Mandatory /O\ Alternative = -—-—+ Requires
& Optional /O or < -+ Excludes

Feature model analysis

* Relevant analyses of a feature model
- check if it is not void (there are products)
- check if a feature is “dead” (no product can implement it)
- check if a feature is “core” (all products implement it)
- count how many different products exist

* All these analyses can be easily implemented using SAT solving

Feature model semantics

» A feature model can be encoded with a propositional formula ¢

 The presence of each feature corresponds to a propositional variable

» Each feature model primitive corresponds to a conjunct of ¢

Feature model semantics

r is the root feature r
f; mandatory sub-feature of f i ef
f optional sub-feature of f hH—=f
fi...f,, or sub-features of f HV..Vf < f
fi...f, xor sub-features of f (iV...VL, DA ASL DA o AT(AT)
f; requires f, H =/

f, excludes f, (fi AS>)

Feature model semantics

Mobile Phone

/l\g

Calls GPS Screen Media
Phone ! /?\ /‘\
Calls <« Phone :-—> Basic Colour || High resolution| | Camera MP3
GPS — Phone b |
Screen <> Phone b Mandatory /ON Aftemative -—- Requires
Media — Phone Y optonal N oOr <~ Excludes

(Basic V Color V Highres) <> Screen
—1(Basic A Color) A =(Basic A Highres) A =(Color A Highres)
(Camera V MP3) < Media

—1(GPS A Basic)
Camera — Highres

Non voidness

 Given a formula ¢ that encodes the semantics of a feature model

e Jo check if the feature model is not void

- check if @ is satisfiable

Dead feature

» Given a formula ¢ that encodes the semantics of a feature model
» To check if feature f is dead

- check if ¢ A fis unsatisfiable

Core feature

» Given a formula ¢ that encodes the semantics of a feature model
 To check if feature fis core

- check if ¢ A —fis unsatisfiable

Counting products

» Given a formula ¢ that encodes the semantics of a feature model

 TJo count the number of products count the number of iterations of the
following cycle

- Repeat while @ is satisfiable
» extract an assignment &/under which ¢ holds
» convert &f to a formula &f that holds only for &f

> add =</ as a new conjunct of ¢

Counting products

PDo=ANASBAC—>AAND = A)

A ={A~ 1B~ 1,C~ 0,D— 0}

P =ANA->B)AC—>AAD —>A) A (AANBA-CA-D)
Ar={A— 1B~ 1,C— 1,D+— 0}

o =AANA < BAC—>AAD->AAAABA-CA-D)A-(AABACA-D)
Ar={A-» 1B~ 1,C— 0,D - 1}

5

(A~ 1B~ 1,CH— 1,D— 1}

< &
AN EAN
e

