Structural design with Alloy

Alcino Cunha

lucid, systematic,
and penetrating
treatment of basic
and dynamic data
structures, sorting,
- recursive algorithms,
language structures,
and compiling

PRENTICE-HALL
SERIES IN
AUTOMATIC
COMPUTATION

NIKLAUS WIRTH

Software structures

Data structures
Database schemas
Architectures
Network topologies
Ontologies

Domain models

Structural design

 Understand entities and their relationships
* Elicit requirements

* EXxplore alternatives

Domain modelin

Different entries in the
same directory must
have different names.

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

Object

g ala UML

There are no other
objects except
directories and files.

File

P refers to
4 isa
Entry = Dir
< contains
___________ Y has Aisa
1
Name Root [-----

There is only one root.

Powered B

yIVisual Paradigm Community Edition @

Requirement elicitation

* Are the requirements consistent?
* Any forgotten or redundant requirements??

* Do the requirements entail all the expected properties?

“The core of software development |...| is the design of abstractions. An
abstraction is |...| an idea reduced to its essential form.”

F

L

—Daniel Jackson

Software Abstractions

Revised edition

Damel Jackson

Software design with Alloy

Alloy is a formal modeling language
Based on relational logic, an extension of first-order logic
Models can be automatically analyzed

Tallored for abstraction - everything is a relation!

Domain modeling with Alloy

Different entries in the
same directory must
have different names.

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

Object

Entry

< contains

----------- Y has

is a bisa

There are no other
objects except
directories and files.

File

Name

There is only one root.

Powered By

Visual Paradigm Community Edition €3

First-order logic

Signatures

Unary predicates are known as signatures and are declared with sig
Signatures are inhabited by atoms from a finite domain of discourse
Signatures can be top-level, extensions, or subsets

Top-level and extension signatures are disjoint

Signatures can be abstract, only containing atoms in the extensions

Signatures can have a multiplicity (lone, some, one)

Top-level signatures

Object C D

Entry C D

Name C D

Vx . (Object(x) A Entry(x))
Vx . (Object(x) A Name(x))
Vx . (Name(x) A Entry(x))

sig Object {}
sig Entry {}
sig Name {}

Extension signatures

Dir C D

File € D
sig Dir extends Object {} Vx . File(x) — Object(x)

sig File extends Object {} Vx . Dir(x) = Object(x)

Vx . (File(x) A Dir(x))

Different entries in the
same directory must
have different names.

Object is abstract

All objects except the root are referred to in at
least one entry (at most one for the case of

Object

e — - - - - -

There are no other

objects except

directories and files.

File

There is only one root.

directories).
I
I
|
l 1
P refers to
4 isa
1 .
Entry Dir
< contains
___________ Y has Aisa
1
Name I - — ~ ~ = -

Powered By

Visual Paradigm Community Edition

e

Abstract signatures

abstract sig Object {}
sig Dir extends Object {} Vx : Object . Dir(x) V File(x)
sig File extends Object {}

Subset signatures

Root C D

sig Root in Dir {} Vx.Root(x) — Dir(x)

There Is only one root

Different entries in the
same directory must
have different names.

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

P refers to
1 .
Entry Dir
< contains
___________ Y has Aisa
1
Name Root

Object

4 isa

There are no other

objects except

directories and files.

File

]

d By|Visual jradigm Community Edition

¢

Signature multiplicities

1x . Root(x)

one sig Root in Dir {} Vx,y : Root.x = y

Fields

Predicates of arity 2 or more are known as fields
Fields are inhabited by tuples of atoms
Must be declared inside the domain signature

Multiplicities (set, lone, some, one) can be imposed on the targets

If no multiplicity is imposed the default is one

sig Dir { contains C D X D

contains : set Entry Vx,y.contains(x, y) — Dir(x) A Entry(y)

}

Fields

refersTo C D X D
Vx,y.refersTo(x,y) — Entry(x) A Object(y)

sig Entry { Vx : Entry . dy. refersTo(x, y)

refersTo : one Object, VX,),Z. refersTo(x, y) A refersTo(x,z) = y =z
has : one Name has C D X D
} Vx,y.has(x,y) — Entry(x) A Name(y)

Vx : Entry. dy. has(x, y)
Vx,y,z.has(x,y) Ahas(x,z) > y=17

Facts

e Facts specify assumptions
fact { @ }
* Facts can be named
fact Name { ¢ }
* A single fact can have several constraints, one per line

fact {

¢
P

FOL vs Alloy

. L ¢

N ¢ && y

¢V ¢ || w

¢ -y ¢ => y

(P AW)V (¢ AO) ¢ => y else 0

¢p <y ¢ <=>y

FOL vs Alloy

@) not ¢

¢ ANy ¢ and y

¢Vy ¢ or y

b -y ¢ implies y

(@D AY)V (D) A 0O) ¢ implies y else 0

by o 1ff y

FOL vs Alloy

X=Yy X =y
A(x) x in A

R(x, y) x->y in R
Vx.A(x) = ¢ all x : A | ¢
Ix.A(xX) A @ some x : A | ¢

Each entry is contained in one directory

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

|

|

|

: There are no other

. 1 N e e e s s neeees objects except
Object directories and files.

P refers to

4 isa hisa

Entry File

Different entries in the
same directory must |___________ Y has
have different names.

There is only one root.

Name Root |----- -
Powered By|Visual Paradigm Community Edition @

Each entry is contained in one directory

fact {

all x : Entry | some y : Dir | y->xXx in contains
all x : Entry, v,2 : Dir {

y->X in contains and z->xX in contains implies y

}

Z

Commands

* Alloy has two types of analysis commands:

- run { @ } asks for an example that satisfies all facts and ¢

- check { @ } asks for a counter-example that satisfies all facts by
refutes assertion @

e Likewise facts, commands can be named and can have several
constraints, one per line

* In the visualizer it is possible to ask for more examples or counter-
examples by pressing New

Instances

Both examples and counter-examples are first-order structures

In Alloy first-order structures are known as instances

An instance is a valuation to all the signatures and fields

In an instance “everything is a relation”

- Signatures are unary relations (sets of unary tuples)

- Constants are singleton unary relations (sets with one unary tuple)

By default instances are depicted as graphs

Scopes

To ensure decidability commands have a scope

The scope imposes a limit on the size of the (finite) domain the Analyzer
will exhaustively explore

The default scope imposes a limit of 3 atoms per top-level signature
for can be used to specity a different scope for top-level signatures
but can be used to specify different scopes for specific signatures

exactly can be used to specify exact scopes

The small scope hypothesis

e [frun { @ } returns an instance then @ is consistent, else ¢ may be
Inconsistent

- Could be consistent with a bigger scope!
 [fcheck { ¢ } returns an instance then ¢ is invalid, else ¢ may be valid
- Could be invalid with a bigger scope!!!

* Anecdotical evidence suggests that most invalid assertions (or consistent
predicates) can be refuted (or withessed) with a small scope

Atoms

The universe of discourse contains atoms
Atoms are uninterpreted (no semantics)
Named automatically according to the respective signatures

Two instances are isomorphic (or symmetric) if they are equal modulo
renaming

The analysis implements a symmetry breaking mechanism to avoid
returning isomorphic instances

A simple command

run {} for 4 but exactly 2 Dir, 3 Name

A simple command

run {} for 4 but exactly 2 Dir, 3 Name

O @ (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

A= = E
— h: E Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

-
il

contains: 4 Dirl
has: 4 (Root)
contdins contains
contains
Y
Entry0 Entryl Entry2
Dir0
hadhadhas contains
Entry3
has

Name File

A simple command

run {} for 4 but exactly 2 Dir, 3 Name

O ® (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

2 A= 1= —~— | =
— h_: @ g Projection: none

dod
Viz Txt Table Tree Theme Magic Layout Evaluator New

i
[

contains: 4 Dir0
has: 4 Dirl (Root)
contains contgins contains
contains
Y Y
Entry0 Entryl Entry2 Entry3
has™~_|has has has

;

Name File

Instances as graphs

Instances as graphs

QO ® (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

I3 A= = 2
d‘%b — h: @ g Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

i
[

contains: 4 Dir0
has: 4 Dirl (Root)
contains contdins contains
contains
Y Y
Entry0 Entryl Entry2 Entry3

has

Name File

Instances as relations

Object = {(Dir0), (Dirl), (File)}

Dir = {(Dir0), (Dirl)}

File = {(File)}

Root = {(Dir0)}

Entry = {(Entry0), (Entryl), (Entry2), (Entry3)}

Name = {(Name) }

contains = {(Dirl,Entry0), (Dir0,Entryl), (Dir0,Entry2), (Dir0,Entry3)}
refersTo = {(Entry0O,File), (Entryl,File), (Entry2,File), (Entry3,File)}
has = {(Entry0O,Name), (Entryl,Name), (Entry2,Name), (Entry3,Name) }

Instances as tables

Dir0
Dirl
File

contains

Dirl
Dir0
Dir0
Dir0

Dir0
Dirl

Entry0
Entryl
Entry2
Entry3

Dir0

Entry0
Entryl
Entry?2
Entry3

File

refersTo

File
File
File
File

Name

Name

Entry0
Entryl
Entry?2
Entry3

Name
Name
Name
Name

Entry0
Entryl
Entry?2
Entry3

Additional requirements

O ® (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

_ A A= b= | | :
cﬂ%& = = E Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

contains: 4 Dir0
has: 4 Dirl (Root)
contains contdins contains
contains
Y Y
Entry0 Entryl Entry2 Entry3

has has

Name File

* All objects except the root are referred to In
at least one entry (at most one for the case
of directories)

O

el

Additional requirements

® (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

A= A=

has: 4

Txt §ree
contains:

= | [oos E ooe
h— g Projection: none
Theme Magic Layout Evaluator New
: DirO
Dirl (Root)
contains contdins contains
contains
Y Y
Entry0 Entryl Entry2 Entry3
has™~_lhas has has
Name File

* All objects except the root are referred to Iin

at least one entry (at most one for the case
of directories)

* Different entries in a directory must have
different names

q=

O @
I A= A=
d%b — —
Viz Txt Table Tree

contains: 4

has: 4

e

Additional requirements

Theme Magic Layout Evaluator

Dirl

contains

Entry

has

Dir0

(Root)

contdins

n

Entry

Name

File

(filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

Projection: none

New

contains

S

Entry3

Themes

* The visualizer theme can be customized
 Customization can ease the understanding and help validate the model

* |t is possible to customize colors, shapes, visiblility, ...

Theme customization

Theme customization

P (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name

A= = | v |
— h: @ E @ Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

Y

Il
il

Entry0 Entryl Entry2 Entry3
has: Name has: Name has: Name has: Name

File

Additional requirements

fact {

all x : Dir, y,z : Entry | y->x in refersTo and z->x in refersTo implies y = z
all x : Entry, y : Root | x->y not in refersTo
all x : Object | x not in Root implies some y : Entry | y->x in refersTo

all x : Dir, y,2 : Entry, w : Name {

X->y 1in contains and x->z 1in contains and y->w in has and z->w in has implies y = 2z

Relational logic

Relational logic

Relational logic extends FOL
Adds operators to combine predicates (relations) into terms
Terms denote derived relations

Adds transitive closure, which cannot be expressed in FOL

Syntax

LuUu=Xx,9,2,...
b, w=1tCu | P,O,R, ...
| T | @
| L | U
X, 9,2, ... €L | (7 ¢) | 1d
P,OR,... € P | (P Aw) [tU u
Lu,... € Termg | (¢ V) | tNu
by, ... € Formy | (¢p =) | 1\ u
| (P <) | X u
| (Vx. ¢) | teou
| (3x.) | 7

Formula semantics

M, A ET

M, A FE 1

M, A EtCu iff Z(¢)is asubset or equal to 7 (u)
M, A E g ff M, A ¥ P

M, A E DAy ff M, I E dand M, A E y
M, A E PVy iff M, A E por M, E
M, A E P — y iff M, A FE por ,d FEy
M, dE Doy iff M, A E @it M, A Ey

M, A ENx. ff M, A|x— alFE @foralla e D
M, A FEdx.¢p iff MM,A|x— a]l FE ¢forsomea € D

Term semantics

7 (x) = (4 X))}

7 (R) = I(R)

7(2) =1}

7(U) ={() |[x e D}
70ad) ={(x,x) | x € D}

7 (tUu) = {(xg,..
7(tNu)={(xg,..
7 (t\u) = {(x, ..
7 (tXu)={(xy,..
7 (teu) = {(xy,..
7 () = {(xy,..

X)) | (g ee s X)) E Z(OV (X, o, X) € 7 (1)}

X)) | (s oo X)) € T A (X5 e X)) € 7 (1)}

X)) | (s oo X)) € T A (X5 e X) € 7 (1)}

s X Vs s Vi) | (X oo X)) €O AV - V) € 7 (1)

s Xj—15 Vs oo es Vi) | (X5 o s X)) €T A (Vs vs Vo) € 7 (W) A Xy = ¥y}
5> Xg1) | (Xpgps -0 X1) € 7 ()}

7)) =7 (UtetUtetetU...)

FOL vs RL

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y)

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend

Vx.Vy.friend(x,y) — friend(y, x)

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend

Vx.Vy.friend(x,y) — friend(y, x) friend C friend’

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend
Vx.Vy.friend(x,y) — friend(y, x) friend C friend’

Vx.friend(x, x)

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend
Vx.Vy.friend(x,y) — friend(y, x) friend C friend’

Vx . ~friend(x, x) friend Nid C &

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend
Vx.Vy.friend(x,y) — friend(y, x) friend C friend’
Vx . friend(x, x) friend Nid C &

Vx.Vy.Ann(x) A Student(y) — friend(x, y)

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend
Vx.Vy.friend(x,y) — friend(y, x) friend C friend’
Vx . friend(x, x) friend Nid C &

Vx.Vy.Ann(x) A Student(y) — friend(x, y) Ann X Student C friend

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend
Vx.Vy.friend(x, y) — friend(y, x) friend C friend®
Vx . ~friend(x, x) friend Nid C &
Vx.Vy.Ann(x) A Student(y) — friend(x, y) Ann X Student C friend

Vx.Vy.x #y — friend(x, y)

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y)
Vx.Vy.friend(x,y) — friend(y, x)
Vx . friend(x, x)
Vx.Vy.Ann(x) A Student(y) — friend(x, y)

Vx.Vy.x #y — friend(x, y)

bff C friend
friend C friend’
fiendNid C &
Ann X Student C friend

(U x U)\id C friend

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y)
Vx.Vy.friend(x,y) — friend(y, x)
Vx . friend(x, x)
Vx.Vy.Ann(x) A Student(y) — friend(x, y)
Vx.Vy.x #y — friend(x, y)

Vx.Vy.x #y — friend(x, y)

bff C friend
friend C friend’
fiendNid C &
Ann X Student C friend

(U x U)\id C friend

FOL vs RL

Vx.Vy.Dbff(x,y) — friend(x, y) bff C friend
Vx.Vy.friend(x,y) — friend(y, x) friend C friend®
Vx . ~friend(x, x) friend Nid C @&
Vx.Vy.Ann(x) A Student(y) — friend(x, y) Ann X Student C friend
Vx.Vy.x #y — friend(x, y) (U x U)\id C friend

Vx.Vy.x #y — friend(x, y) Vx.Vy.xZ€y— x Xy C friend

Composition

Student = {(A), (M), (B), (R), (J)}
friend = {(J,A), (A,D), (A,B),(B,A),(B,P),(D,B, (C,R))} Peter

Composition

Charles

Student = {(A), (M), (B), (R), (J)]
friend = {(J,A), (A,D), (A,B), (B,A), (B,P),(D,B, (C,R))} Peter
friend « friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D,A), (D, P)}

Composition

Charles

Student = {(A), (M), (B), (R), (J)}
friend = {(J,A), (A,D), (A,B),(B,A),(B,P),(D,B,(C,R))} Peter
friend e friend = {(J, D), (J, B), (A, B), (A, P), (A,A), (B,B), (B,D), (D,A), (D,P)}
Ann e friend = {(B), (D)}

Composition

Charles

Student = {(A), (M), (B), (R), (J)}
friend = {(J,A), (A,D), (A,B), (B,A), (B,P),(D,B,(C,R))! Peter
friend e friend = {(J, D), (J, B), (A, B), (A, P), (A,A), (B,B), (B,D), (D,A), (D,P)}
Ann e friend = {(B), (D)}
Ann e friend e friend = {(A), (B), (P)}

Composition

Charles

Student = {(A), (M), (B), (R), (J)}
friend = {(J,A), (A,D), (A,B), (B,A), (B,P),(D,B,(C,R))! Peter
friend e friend = {(J, D), (J, B), (A, B), (A, P), (A,A), (B,B), (B,D), (D,A), (D,P)}
Ann e friend = {(B), (D)}
Ann e friend e friend = {(A), (B), (P)}
friend ¢ Ann = {(J), (B) }

Composition

Charles

Student = {(A), (M), (B), (R), (J)}
friend = {(J,A), (A,D), (A,B), (B,A), (B,P),(D,B,(C,R))! Peter
friend » friend = {(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)}
Ann e friend = {(B), (D)}
Ann e friend e friend = {(A), (B), (P)}
friend ¢ Ann = {(J), (B) }
friend e Student = {(J), (A), (D), (B), (C)}

FOL vs RL

FOL vs RL

Vx.dy.Student(y) A friend(x, y)

FOL vs RL

Vx.dy.Student(y) A friend(x, y) U C friend » Student

FOL vs RL

Vx.dy.Student(y) A friend(x, y) U C friend » Student

Vx.Vy.Vz.friend(x,y) A friend(y, z) — friend(x, 2)

FOL vs RL

Vx.dy.Student(y) A friend(x, y) U C friend » Student

Vx.Vy.Vz.friend(x, y) A friend(y, z) — friend(x, z) friend e friend C friend

Transitive closure

Student = {(A), (M), (B), (R), (J) }
friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B), (C,R)}
friend™ = {(J, A), (J, D), (J, B), (J, P), (A, D), (A, B), (A, P), (A, A),
(B,A), (B,P),(B,D),(B,B),(D,B),(D,A),(D,D),(D,P),(C,R))}

FOL # RL

Ann Is directly or indirectly a friend of everyone

U C Ann ¢ friend™

RL in Alloy

% none
U univ
id iden
I Cu [in u
rUuu [+ u
INu I & U
\u t - U
I XU [=> U
[elUl [« U

Syntactic sugar

I = U { in u and u in ¢
I 1= u not (f = u)
{ not in u not (¢ in u)
no A A = none
some A A != none
lone A all x,y : A | x =y
one A some A and lone A
A <: R R & (A -> univ)
R :> A R & (univ -> A)
*R “R + iden

all x,y : A | x != y implies ¢

all disj x,y : A | ¢
A | ¢ some x,y : A | x != y and ¢

some disj x,y :

FOL vs RL

fact {

all x : Entry | some y : Dir | y->xXx in contains
all x : Entry, y,z : Dir {

y->X 1n contalins and z->x in contains implies y

fact {

all x : Entry | one contains.xXx

FOL vs RL

fact {

all x : Dir, v,z : Entry {

y->xX 1n refersTo and z->x in refersTo implies y

fact {

all x : Dir | lone refersTo.x

Z

FOL vs RL

fact {

all x : Entry, y : Root | x->y not in refersTo

fact {

no refersTo.Root

FOL vs RL

fact {

all x : Object | x not in Root implies some y : Entry | y->x in refersTo

fact {

Object-Root in Entry.refersTo

FOL vs RL

fact {

all x : Dir, y,z : Entry, w : Name {

X->y in contains and xXx->z in contains and y->w in has and z->w 1n has implies y = z
}
}
fact {
all d : Dir, n : Name | lone (d.contains & has.n)

Everyone has different styles

Everyone has different styles

sig Person { style : one Style }
sig Style {}

Everyone has different styles

sig Person { style : one Style }
sig Style {}

all x,y : Person, z : Style \ Xx->z 1in style and y->z in style implies XxX=y

Everyone has different styles

sig Person { style : one Style }
sig Style {}

all x,y : Person, z : Style \ Xx->z 1in style and y->z in style implies XxX=y
all z : Style | lone style.z

style.~style in iden

Verification

Some instances

/ Dir0 \

Entry3
has: Namel

File

Filel

O @ (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name O O (filesystem) Run run$1 for 4 but exactly 2 Dir, 3 Name
2 A= A= = | 3 A ~ B 2 A= A= = | 3 A = I
H = = = Projection: none & = = = Projection: none
Viz Txt Table Tree Theme Magic Layout Evaluator New Viz Txt Table Tree Theme Magic Layout Evaluator New
Entry2 Entry0 Entryl Entry0 Entryl Entry2
has: NameO has: Name2 has: Namel has: Name2 has: Namel has: NameO

/ Dir0 \

Entry3
has: Namel

FileO

A desirable assertion

assert NoPartitions {

2?7

}

check NoPartitions

Reachable objects

Viz

5 @
iy

=
}E’:
Table Tree

llir

|

(filesystem) Run run$2 for 6

Theme Magic Layout

B

= 3
E Projection: none

Evaluator New

Entryl

has: Name3

Entry0

has: Name4

File

Entry4

has: Name?2

Entry3
has: Name3

Entry2
has: Name4

Reachable objects

Root.contains.refersTo

O O (filesystem) Run run$2 for 6

L A= A= = ; |
déb = h: @ Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

EEEH O

Entryl Entry0
has: Name3 has: Name4

W [\

Entry4 Entry3
has: Name?2 has: Name3

Entry2
has: Name4

Reachable objects

Root.contains.refersTo.contains.refersTo

O @ (filesystem) Run run$2 for 6

4 A= A= a— =t ~—
dob — — kz @ Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

]

W [\

Reachable objects

Root.contains.refersTo.contains.refersTo.contains.refersTo

O @ (filesystem) Run run$2 for 6

L A= A= = |
— = H= @ Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

I

eachable objects

Root.” (contains.refersTo)

O @ (filesystem) Run run$2 for 6

A= A= :
(E\, = = h: E Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

e

Entryl Entry0
has: Name3 has: Name4

I

Entry4 Entry3
has: Name?2 has: Name3
Entry2
has: Name4

n&

Reachable objects

Root.*(contains.refersTo)

O @ (filesystem) Run run$2 for 6

= &% = H
‘i' - g Projection: none
Viz Txt a agic Layout Evaluator New

File

A desirable assertion

assert NoPartitions {

Object in Root.*(contains.refersTo)

}

check NoPartitions

A counter-example

(filesystem) Check NoPartitions

A= = ' 3 ‘
— EZ @ Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

/ Dir0 \

QO
- @
i

Entry0 Entryl
has: Namel has: NameQ

File

Missing requirement

fact {

all d : Dir | d not in d.contains.refersTo

}

-

l
¥

Table Tree

—

Another counter-example

(filesystem) Check NoPartitions

Theme Magic Layout

Entry0

has: Namel

/ Dir0 \

Entryl

has: Namel

/ Dirl \

Projection: none

Evaluator

Missing requirement

fact {

all d : Dir | d not in d." (contains.refersTo)

}

Executing "Check NoPartitions™
Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch
586 vars. 37 primary vars. 860 clauses. 3ms.
No counterexample found. Assertion mpay be valid. 2ms.

Increasing confidence

* Increase the scope of check commands
check NoPartitions for 6
 Use run commands to validate the model
- Verify that good scenarios are SAT
- Verify that bad scenarios are UNSAT

- Use expects keyword to document expectation

Specifying scenarios

run Scenariol {

Object = Root
} expect 1

run Scenario?2 {

some disj fl1l,f2 : File, disj el,e2 : Entry, disj nl,n2 : Name {
contains = Root->el + Root->e?2
refersTo = el->fl + e2->f2
has = el->nl + e2->n2

}
} expect 1

run Scenario3 {

some disj fl1l,f2 : File, disj el,e2 : Entry, n : Name {
contains = Root->el + Root->e?2
refersTo = el->fl + e2->f2
has = el->n + e2->n

}
} expect 0

