Structural design with Alloy Alcino Cunha

lucid, systematic, and penetrating treatment of basic and dynamic data structures, sorting, recursive algorithms, language structures, and compiling

PRENTICE-HALL SERIES IN AUTOMATIC COMPUTATION

NIKLAUS WIRTH

Algorithms + Data Structures = Programs

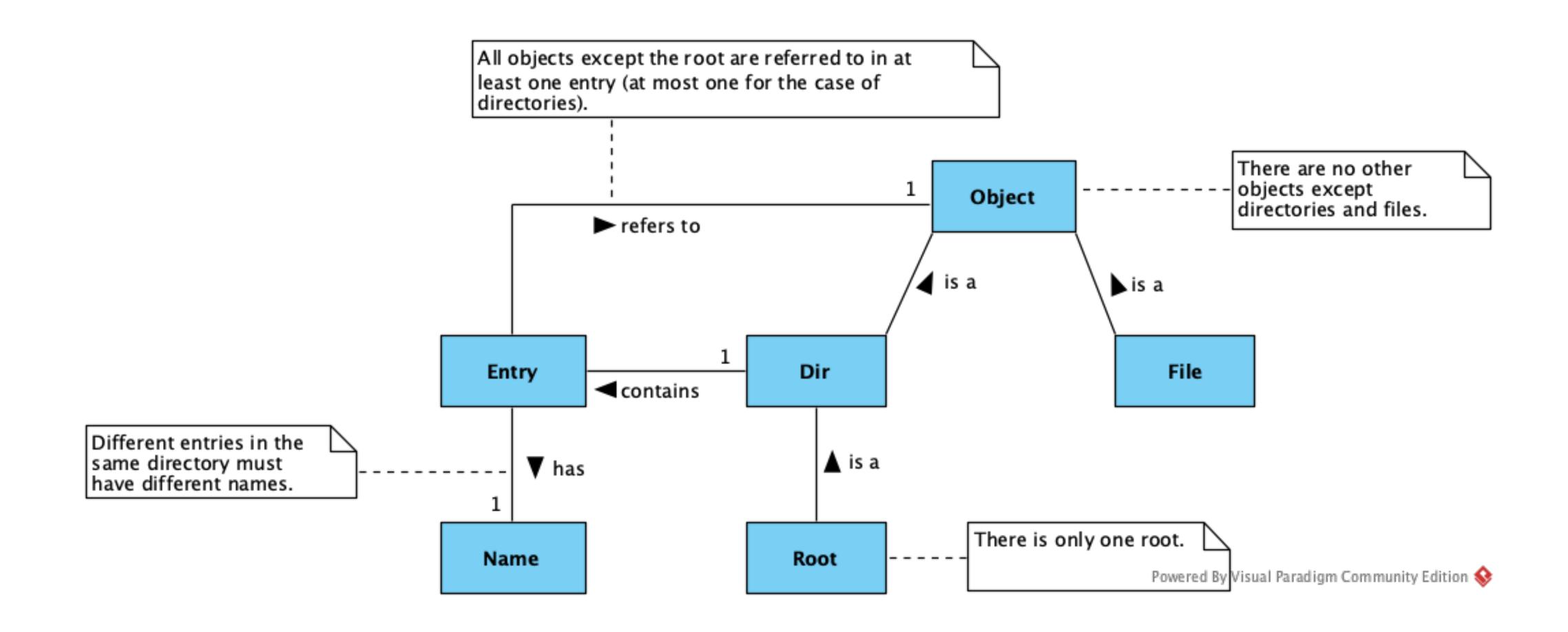
Software structures

- Data structures
- Database schemas
- Architectures
- Network topologies
- Ontologies
- Domain models

Structural design

- Understand entities and their relationships
- Elicit requirements
- Explore alternatives

Domain modeling a la UML

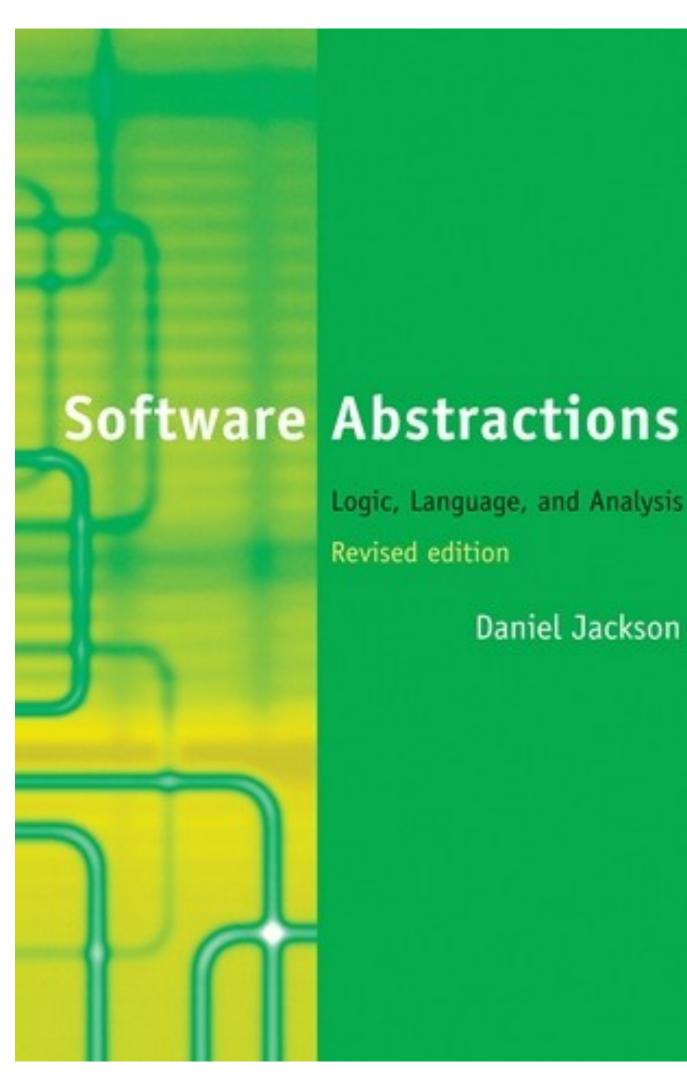


Requirement elicitation

- Are the requirements consistent?
- Any forgotten or redundant requirements?
- Do the requirements entail all the expected properties? \bullet

"The core of software development [...] is the *design* of abstractions. An abstraction is [...] an idea reduced to its essential form."

-Daniel Jackson



Software Abstractions

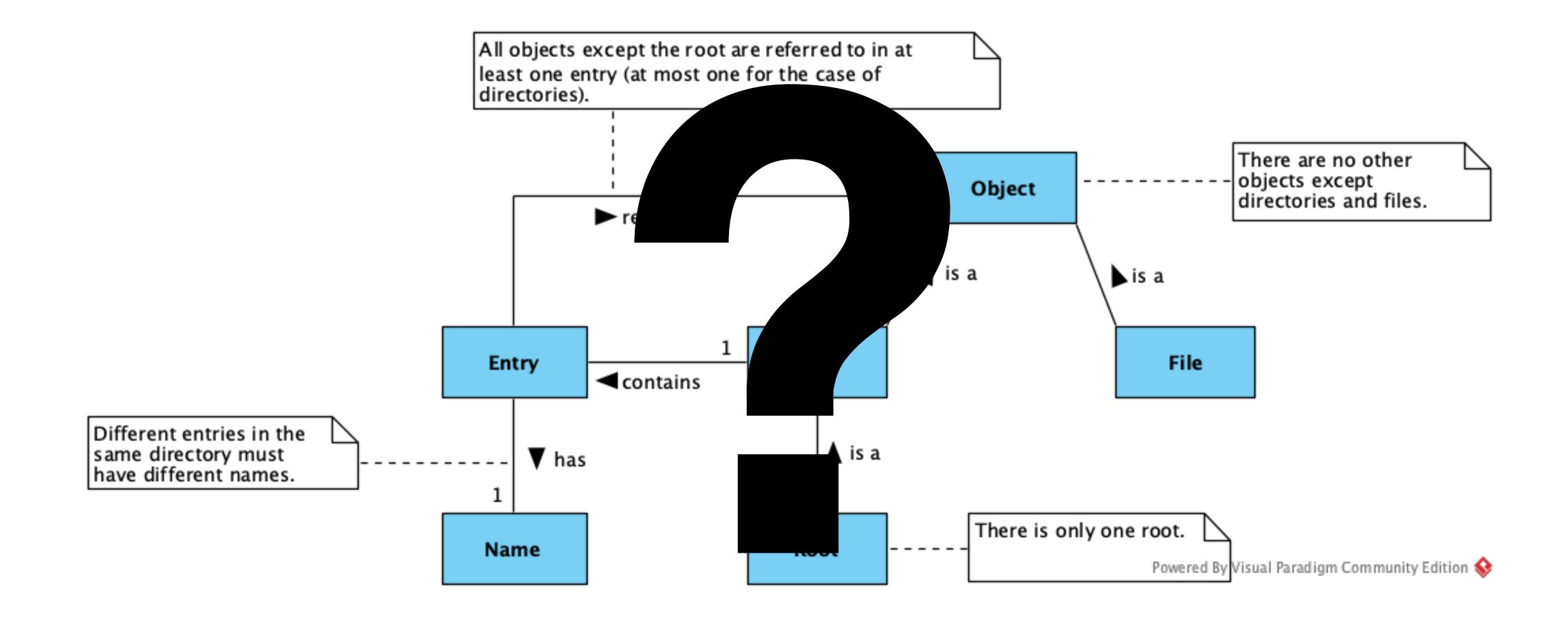
Logic, Language, and Analysis Revised edition

Daniel Jackson

Software design with Alloy

- Alloy is a formal modeling language
- Based on relational logic, an extension of first-order logic
- Models can be automatically analyzed
- Tailored for abstraction everything is a relation!

Domain modeling with Alloy



First-order logic

Signatures

- Unary predicates are known as signatures and are declared with sig
- Signatures are inhabited by atoms from a finite domain of discourse
- Signatures can be top-level, extensions, or subsets
- Top-level and extension signatures are disjoint
- Signatures can be abstract, only containing atoms in the extensions
- Signatures can have a multiplicity (lone, some, one)

- sig Object {} sig Entry {}
- sig Name {}

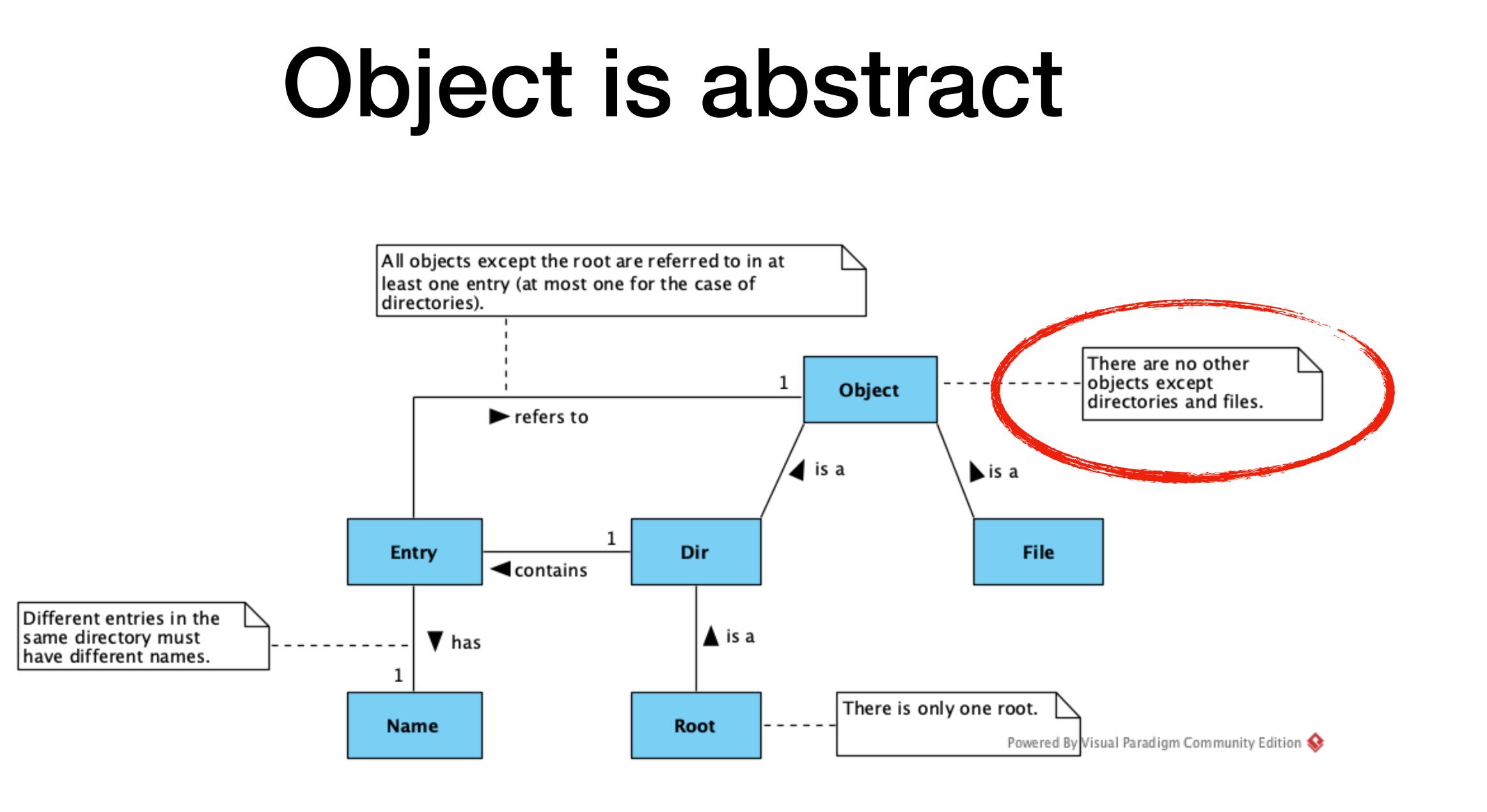
Top-level signatures

Object $\subseteq D$ Entry $\subseteq D$ Name $\subseteq D$ $\forall x . \neg (\text{Object}(x) \land \text{Entry}(x))$ $\forall x . \neg (\text{Object}(x) \land \text{Name}(x))$ $\forall x . \neg (Name(x) \land Entry(x))$

Extension signatures

sig Dir extends Object {}
sig File extends Object {}

Dir $\subseteq D$ File $\subseteq D$ $\forall x . File(x) \rightarrow Object(x)$ $\forall x . Dir(x) \rightarrow Object(x)$ $\forall x . \neg(File(x) \land Dir(x))$



abstract sig Object {} sig Dir extends Object {} sig File extends Object {}

Abstract signatures

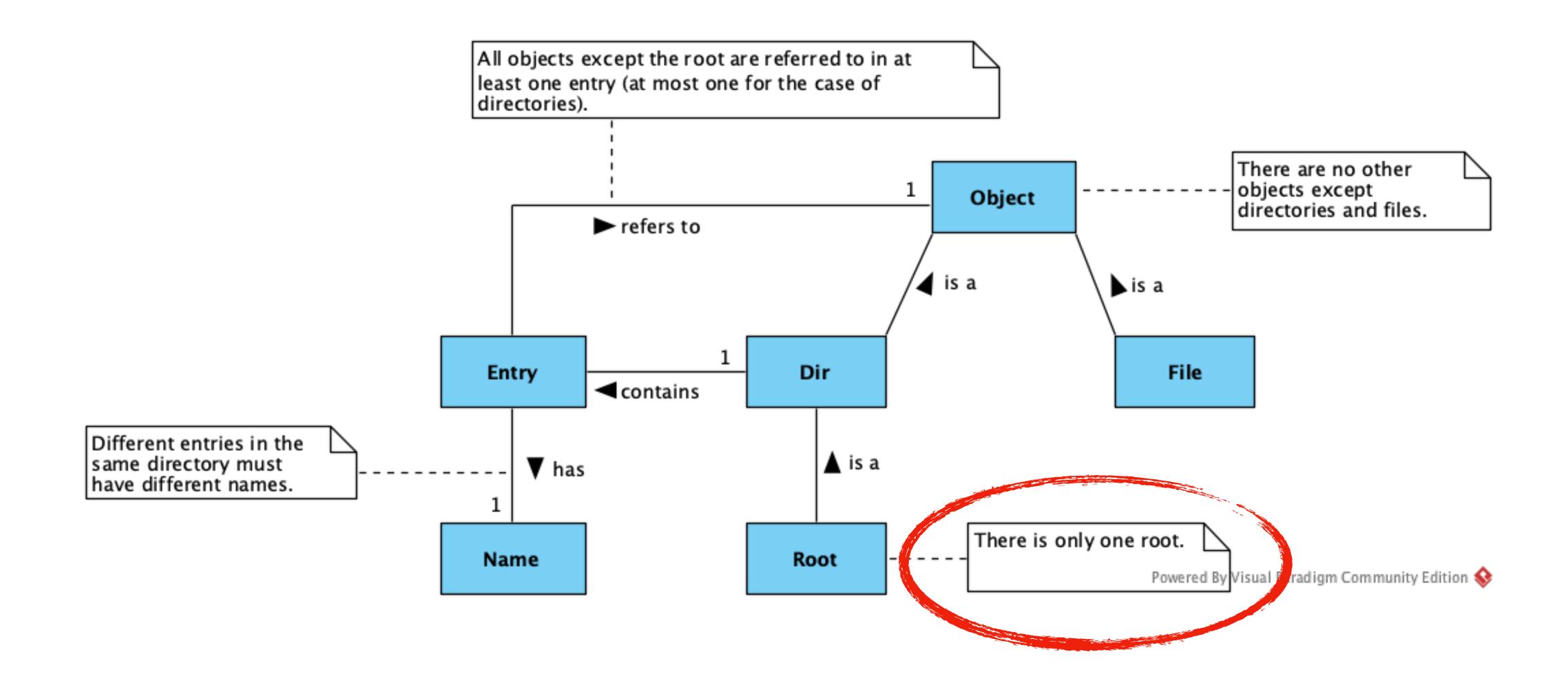
 $\forall x : \text{Object} . \text{Dir}(x) \lor \text{File}(x)$

Subset signatures

sig Root in Dir {}

Root $\subseteq D$ $\forall x . \operatorname{Root}(x) \to \operatorname{Dir}(x)$

There is only one root



one sig Root in Dir {}

Signature multiplicities

 $\exists x . \mathsf{Root}(x)$ $\forall x, y : \text{Root} . x = y$

- Predicates of arity 2 or more are known as *fields*
- Fields are inhabited by *tuples* of atoms
- Must be declared inside the *domain* signature
- Multiplicities (set, lone, some, one) can be imposed on the targets
- If no multiplicity is imposed the default is **one**

Fields

sig Dir { contains : set Entry }

Fields

contains $\subseteq D \times D$ $\forall x, y . contains(x, y) \rightarrow Dir(x) \land Entry(y)$

sig Entry { refersTo : one Object, has : one Name

Fields

- refersTo $\subseteq D \times D$
- $\forall x, y . refersTo(x, y) \rightarrow Entry(x) \land Object(y)$
- $\forall x : Entry . \exists y . refersTo(x, y)$
- $\forall x, y, z$. refersTo $(x, y) \land$ refersTo $(x, z) \rightarrow y = z$ has $\subseteq D \times D$
- $\forall x, y . has(x, y) \rightarrow Entry(x) \land Name(y)$
- $\forall x : \text{Entry} . \exists y . has(x, y)$
- $\forall x, y, z$. has $(x, y) \land has(x, z) \rightarrow y = z$

• *Facts* specify assumptions

fact { φ }

• Facts can be named

fact Name { φ }

• A single fact can have several constraints, one per line

```
fact {
  φ
  ψ
```

Facts

FOL vs Alloy

 $\neg \phi$ $\phi \land \psi$ $\phi \land \psi$ $\phi \land \psi$ $(\phi \land \psi) \lor (\neg \phi \land \theta)$ $\phi \leftrightarrow \psi$

!
$$\phi$$

 ϕ & & ψ
 ϕ | | ψ
 ϕ => ψ
 ϕ => ψ else θ
 ϕ <=> ψ

FOL vs Alloy

 $\neg \phi$ $\phi \land \psi$ $\phi \land \psi$ $\phi \land \psi$ $(\phi \land \psi) \lor (\neg \phi \land \theta)$ $\phi \leftrightarrow \psi$ not ϕ ϕ and ψ ϕ or ψ ϕ implies ψ ϕ implies ψ else θ ϕ iff ψ

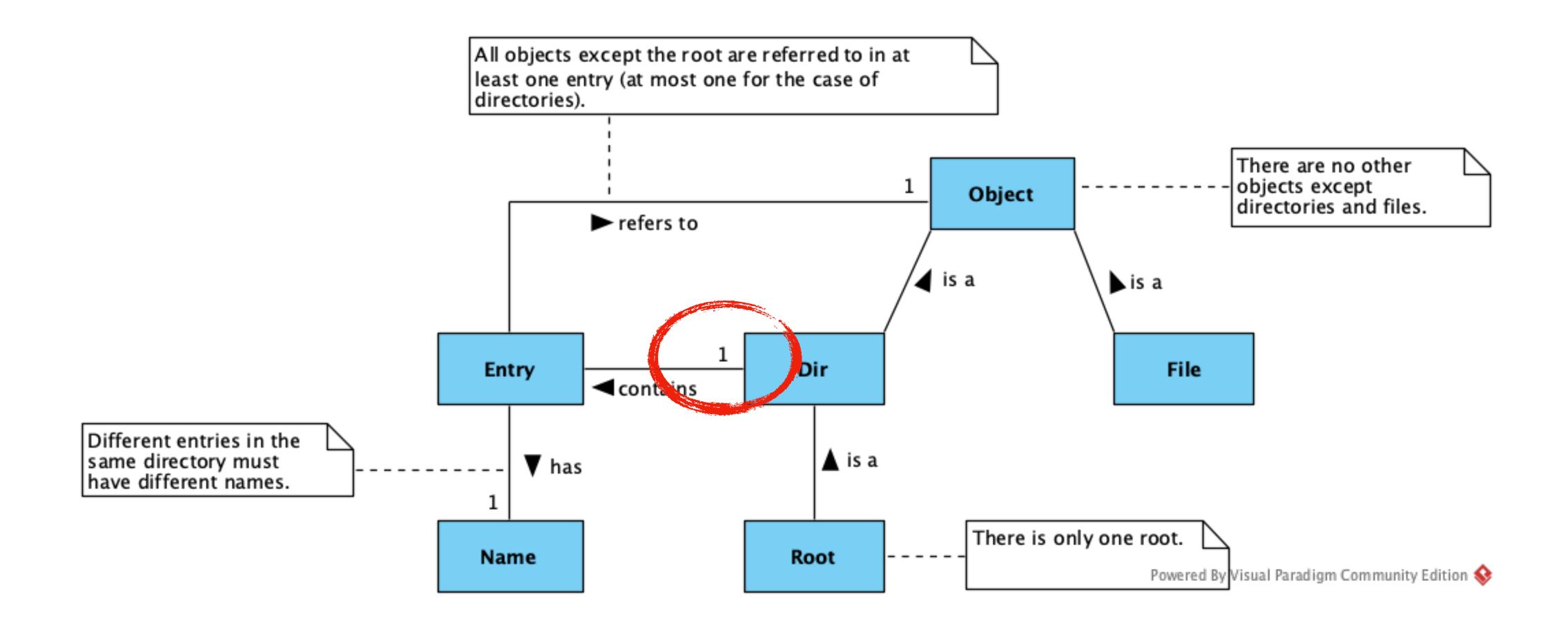
FOL vs Alloy

x = yA(x)R(x, y)

 $\forall x \, . \, A(x) \to \phi$ $\exists x \, . \, A(x) \land \phi$

x = y x in A x ->y in Rall $x : A \mid \phi$ some $x : A \mid \phi$

Each entry is contained in one directory



Each entry is contained in one directory

fact {
 // Each entry is contained in one directory
 all x : Entry | some y : Dir | y->x in contains
 all x : Entry, y,z : Dir {
 y->x in contains and z->x in contains implies y = z
 }
}

Commands

- Alloy has two types of analysis commands:
 - run { φ } asks for an example that satisfies all facts and φ
 - **check** { ϕ } asks for a *counter-example* that satisfies all facts by refutes assertion ϕ
- Likewise facts, commands can be named and can have several constraints, one per line
- In the visualizer it is possible to ask for more examples or counterexamples by pressing New

Instances

- Both examples and counter-examples are first-order structures
- In Alloy first-order structures are known as instances
- An instance is a valuation to all the signatures and fields
- In an instance "everything is a relation"
 - Signatures are unary relations (sets of unary tuples)
 - Constants are singleton unary relations (sets with one unary tuple)
- By default instances are depicted as graphs

Scopes

- To ensure decidability commands have a scope
- The scope imposes a limit on the size of the (finite) domain the Analyzer will exhaustively explore
- The default scope imposes a limit of 3 atoms per top-level signature
- for can be used to specify a different scope for top-level signatures
- but can be used to specify different scopes for specific signatures
- exactly can be used to specify exact scopes

The small scope hypothesis

- If run { φ } returns an instance then φ is consistent, else φ may be inconsistent
 - Could be consistent with a bigger scope!
- If **check** { φ } returns an instance then φ is *invalid*, else φ **may be valid**
 - Could be invalid with a bigger scope!!!
- Anecdotical evidence suggests that most invalid assertions (or consistent predicates) can be refuted (or witnessed) with a small scope

Atoms

- The universe of discourse contains atoms
- Atoms are *uninterpreted* (no semantics)
- Named automatically according to the respective signatures
- Two instances are *isomorphic* (or *symmetric*) if they are equal modulo renaming
- The analysis implements a symmetry breaking mechanism to avoid returning isomorphic instances

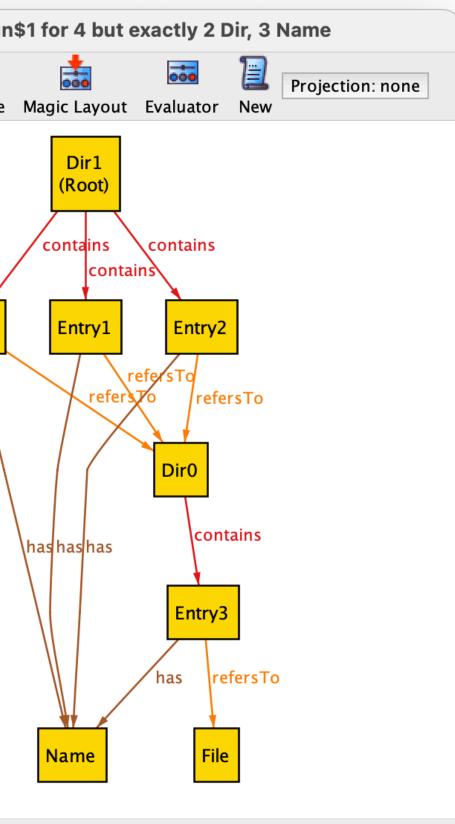
A simple command

run {} for 4 but exactly 2 Dir, 3 Name

A simple command

			A				000	≣			00	
		T	ā	bl	e	•	Tre	ee		Т	he	me
10 10 10	o a ef	n s: fe	ta 2	ir 1 5 T	1s To	:	4					
									ſ	En	Itry	/0

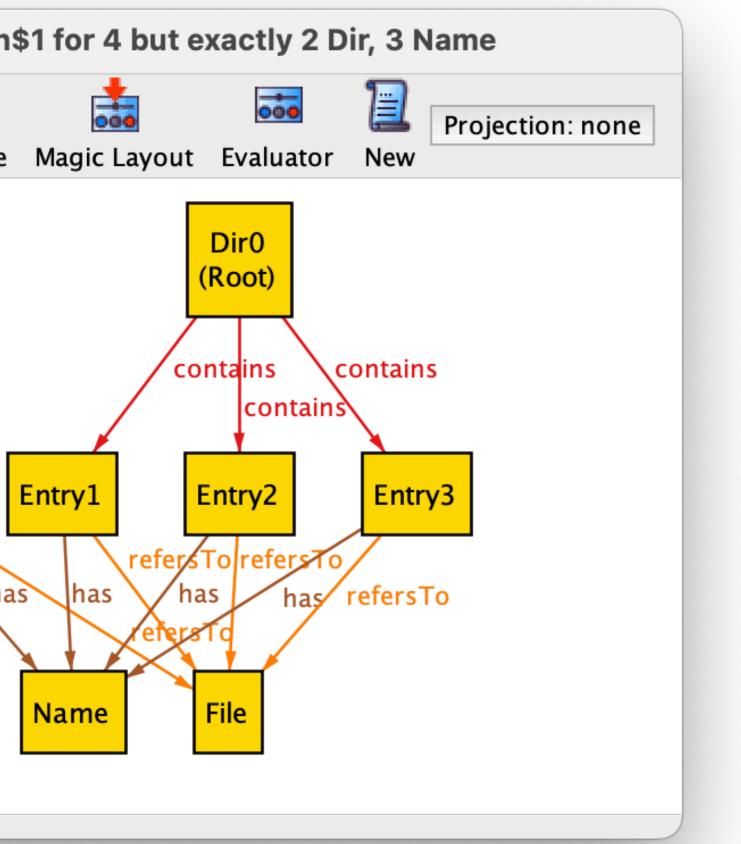
run {} for 4 but exactly 2 Dir, 3 Name



A simple command

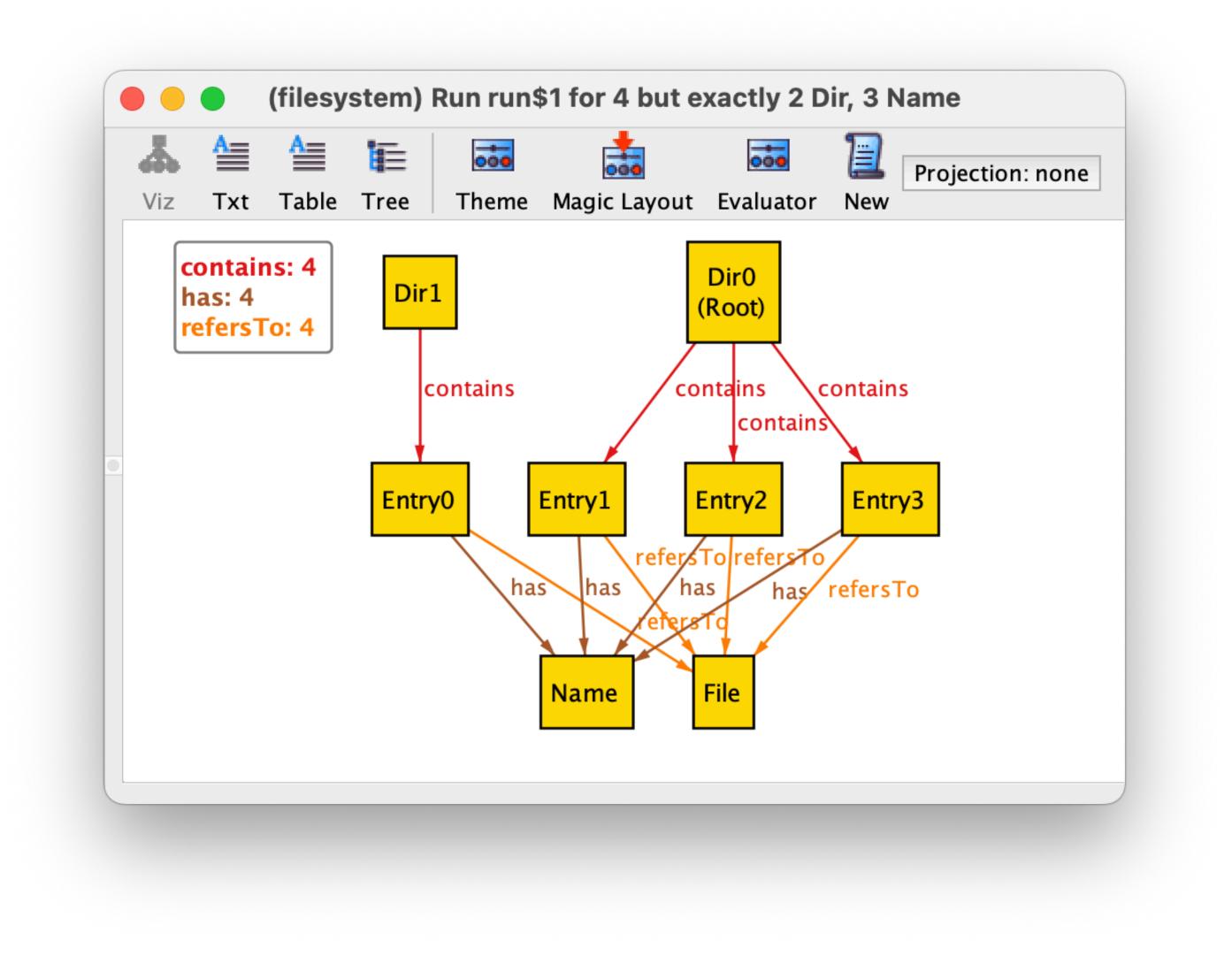
● ● ● (files	-	Run run
<u> A= A=</u>		1
666 = =		000
Viz Txt Tabl	e Tree	Theme
contains: 4 has: 4 refersTo: 4	Dir	contains

run {} for 4 but exactly 2 Dir, 3 Name



Instances as graphs

Instances as graphs



Object	=	{(Dir0),(Dir1),(File)}
Dir	=	{(Dir0),(Dir1)}
File	=	{(File)}
Root	=	{(Dir0)}
Entry	=	{(Entry0),(Entry1),(Entry2)
Name	=	{(Name)}
contains	=	{(Dir1,Entry0),(Dir0,Entry
refersTo	=	<pre>{(Entry0,File),(Entry1,Fil</pre>
has	=	{(Entry0,Name),(Entry1,Nam

Instances as relations

2),(Entry3)}

y1),(Dir0,Entry2),(Dir0,Entry3)} le),(Entry2,File),(Entry3,File)} me),(Entry2,Name),(Entry3,Name)}

Instances as tables

Dir	Root
Dir0	Dir0
Dir1	

Object	
Dir0	
Dir1	
File	

contains			
Dir1	Entry0		
Dir0	Entry1		
Dir0	Entry2		
Dir0	Entry3		

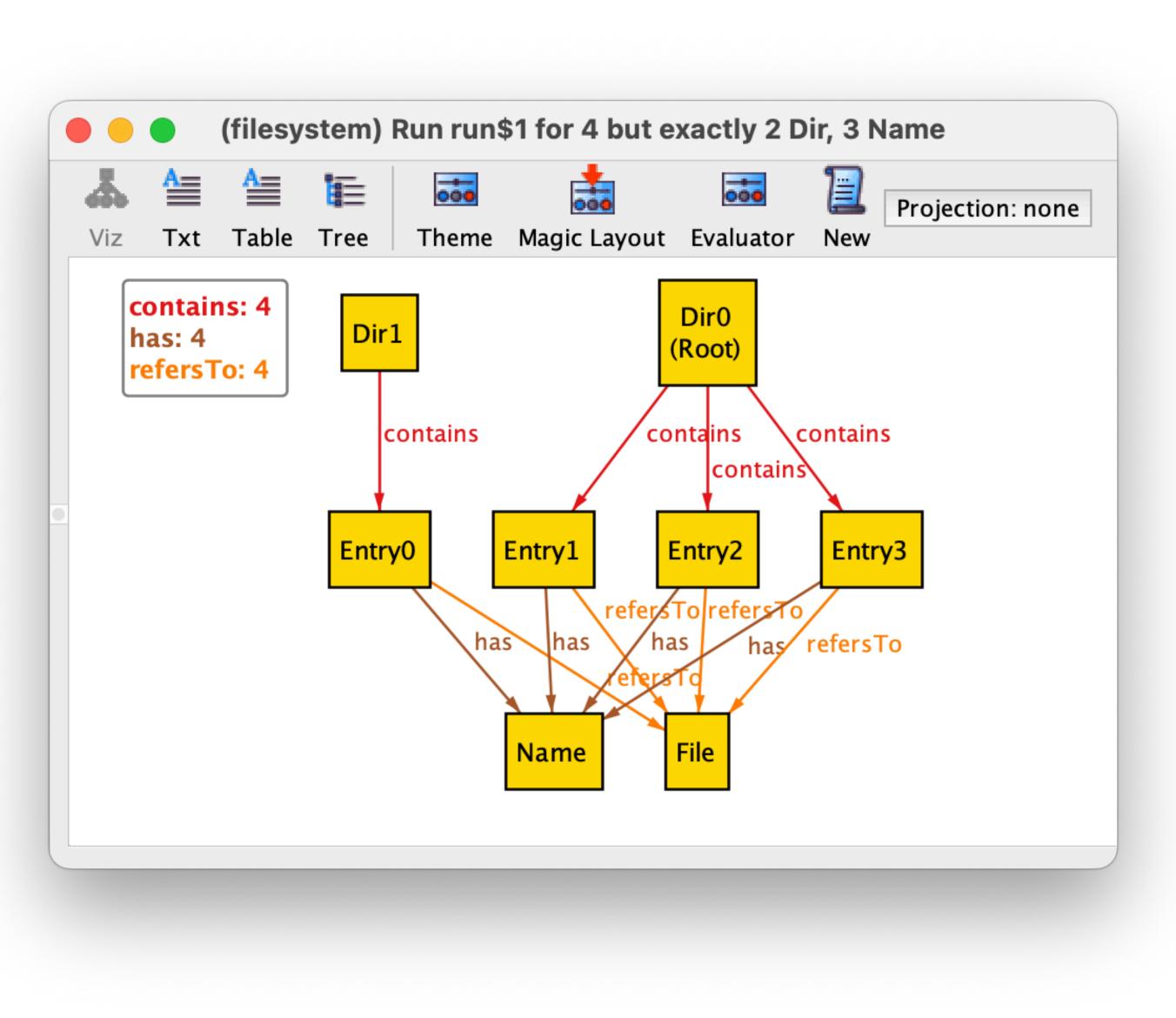
refe	refersTo		
Entry0	File		
Entry1	File		
Entry2	File		
Entry3	File		

File
File

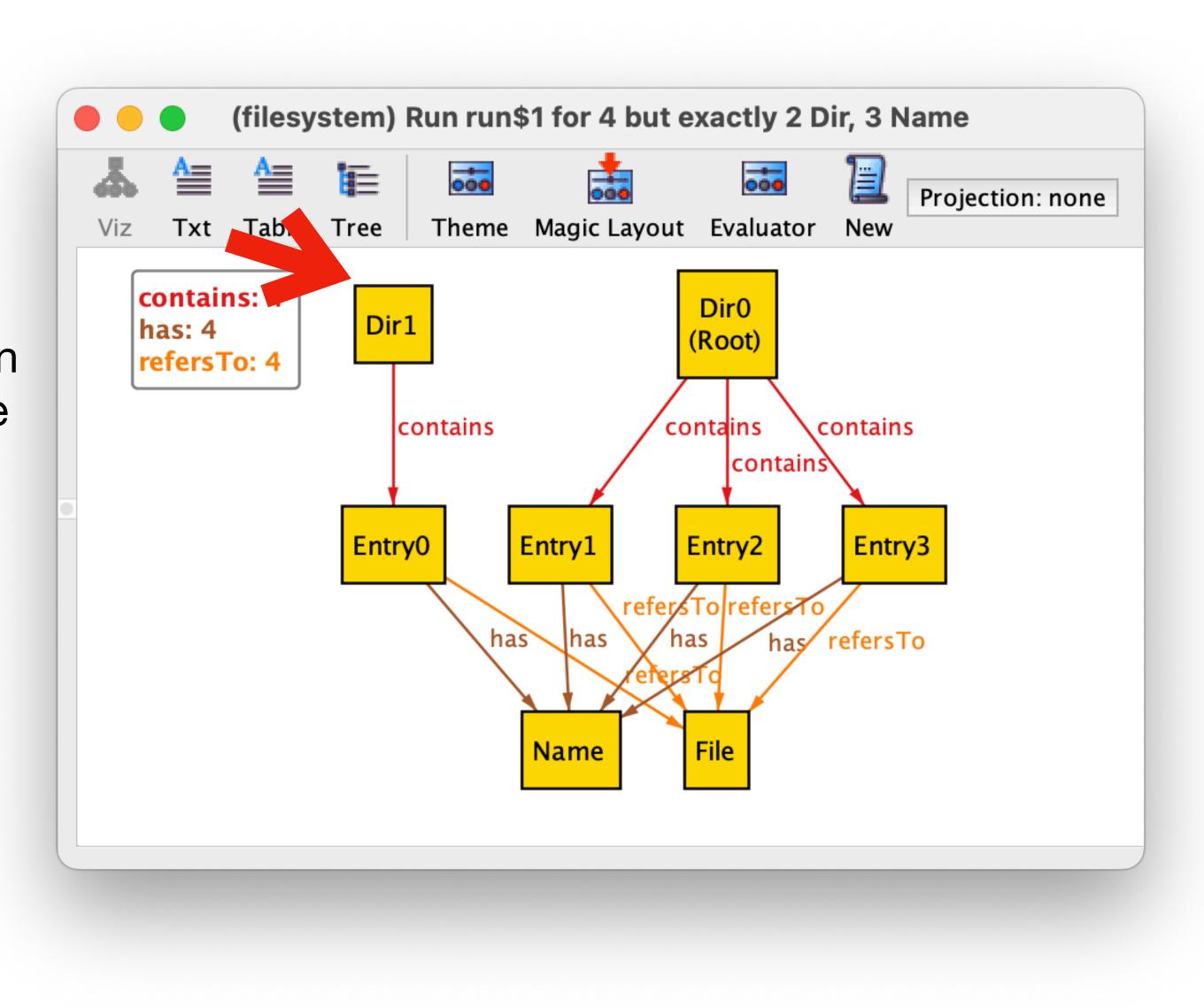
Name

Entry
Entry0
Entry1
Entry2
Entry3

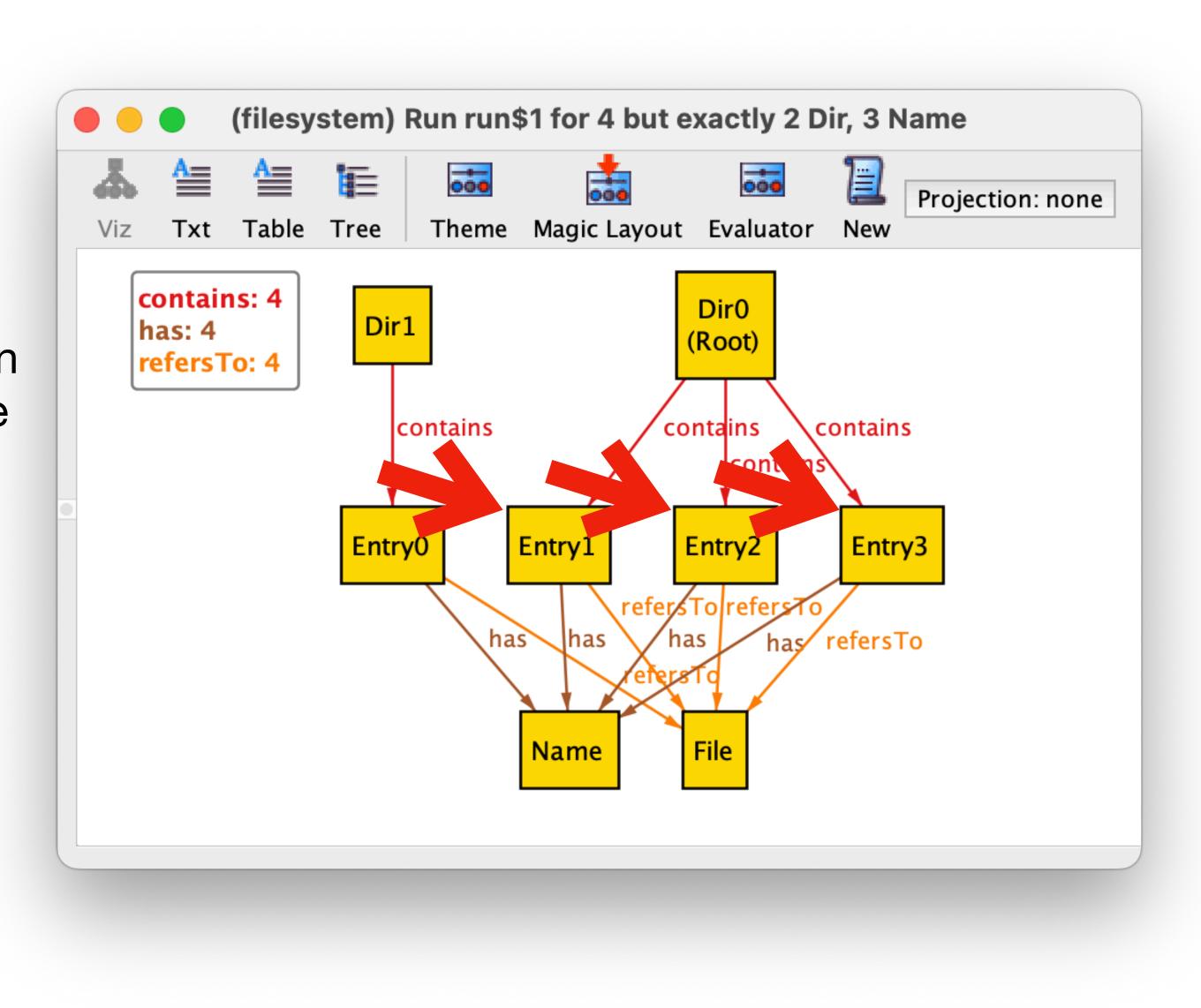
has		
Entry0	Name	
Entry1	Name	
Entry2	Name	
Entry3	Name	



 All objects except the root are referred to in at least one entry (at most one for the case of directories)



- All objects except the root are referred to in at least one entry (at most one for the case of directories)
- Different entries in a directory must have \bullet different names



Themes

- The visualizer theme can be customized
- Customization can ease the understanding and help validate the model
- It is possible to customize colors, shapes, visibility, ...

Theme customization

Theme customization



fact { // All directories are referred to in at most one entry all x : Dir, y,z : Entry | y->x in refersTo and z->x in refersTo implies y = z // The root is not referred in any entry all x : Entry, y : Root | x->y not in refersTo // All objects except the root are referred to in at least one entry all x : Object | x not in Root implies some y : Entry | y->x in refersTo // Different entries in a directory must have different names all x : Dir, y,z : Entry, w : Name { $x \rightarrow y$ in contains and $x \rightarrow z$ in contains and $y \rightarrow w$ in has and $z \rightarrow w$ in has implies y = z

Relational logic

Relational logic

- Relational logic extends FOL
- Adds operators to combine predicates (relations) into terms
- Terms denote derived relations
- Adds transitive closure, which cannot be expressed in FOL

 $x, y, z, \ldots \in \mathcal{X}$ $P, Q, R, \ldots \in \mathscr{P}$ $t, u, \ldots \in \mathbf{Term}_{\mathscr{P}}$ $\phi, \psi, \ldots \in \mathbf{Form}_{\mathscr{P}}$

Syntax

 $\phi, \psi \doteq t \subseteq u$ $|\top$ $|\perp$ $|(\neg \phi)|$ $|(\phi \land \psi)|$ $|(\phi \lor \psi)|$ $|(\phi \rightarrow \psi)|$ $|(\phi \leftrightarrow \psi)|$ $|(\forall x.\phi)|$ $|(\exists x.\phi)|$

 $t, u \doteq x, y, z, \dots$ $|P,Q,R,\ldots$ Ø id $t \cup u$ $t \cap u$ $|t \setminus u|$ $t \times u$ $t \bullet u$ t° t^+

 $\mathcal{M}, \mathcal{A} \models \mathsf{T}$ $\mathcal{M}, \mathcal{A} \nvDash \bot$ $\mathcal{M}, \mathcal{A} \models \neg \phi$ iff $\mathcal{M}, \mathcal{A} \models \phi \land \psi$ iff $\mathcal{M}, \mathcal{A} \models \phi \lor \psi$ iff $\mathcal{M}, \mathcal{A} \models \phi \rightarrow \psi$ iff $\mathcal{M}, \mathcal{A} \models \phi \leftrightarrow \psi$ iff

Formula semantics

 $\mathcal{M}, \mathcal{A} \models t \subseteq u$ iff $\mathcal{V}(t)$ is a subset or equal to $\mathcal{V}(u)$ $\mathcal{M}, \mathcal{A} \nvDash \phi$ $\mathcal{M}, \mathcal{A} \vDash \phi \text{ and } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A} \vDash \phi \text{ or } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A} \nvDash \phi \text{ or } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A} \vDash \phi \text{ iff } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A} \models \forall x . \phi \quad \text{iff} \quad \mathcal{M}, \mathcal{A}[x \mapsto a] \models \phi \text{ for all } a \in D$ $\mathcal{M}, \mathcal{A} \models \exists x . \phi \quad \text{iff} \quad \mathcal{M}, \mathcal{A}[x \mapsto a] \models \phi \text{ for some } a \in D$

Term semantics

$$\begin{split} \mathscr{V}(x) &\doteq \{(\mathscr{A}(x))\} \\ \mathscr{V}(R) &\doteq I(R) \\ \mathscr{V}(\emptyset) &\doteq \{\} \\ \mathscr{V}(U) &\doteq \{(x) \mid x \in D\} \\ \mathscr{V}(\mathbf{id}) &\doteq \{(x,x) \mid x \in D\} \\ \mathscr{V}(\mathbf{id}) &\doteq \{(x_1, \dots, x_{|t|}) \mid (x_1, \dots, x_{|t|}) \in \mathscr{V}(t) \lor (x_1, \dots, x_{|t|}) \in \mathscr{V}(u)\} \\ \mathscr{V}(t \cup u) &\doteq \{(x_1, \dots, x_{|t|}) \mid (x_1, \dots, x_{|t|}) \in \mathscr{V}(t) \land (x_1, \dots, x_{|t|}) \in \mathscr{V}(u)\} \\ \mathscr{V}(t \cap u) &\doteq \{(x_1, \dots, x_{|t|}) \mid (x_1, \dots, x_{|t|}) \in \mathscr{V}(t) \land (x_1, \dots, x_{|t|}) \notin \mathscr{V}(u)\} \\ \mathscr{V}(t \setminus u) &\doteq \{(x_1, \dots, x_{|t|}) \mid (x_1, \dots, x_{|t|}) \in \mathscr{V}(t) \land (y_1, \dots, y_{|u|}) \in \mathscr{V}(u)\} \\ \mathscr{V}(t \times u) &\doteq \{(x_1, \dots, x_{|t|-1}, y_2, \dots, y_{|u|}) \mid (x_1, \dots, x_{|t|}) \in \mathscr{V}(t) \land (y_1, \dots, y_{|u|}) \in \mathscr{V}(u) \land x_{|t|} = y_1 \\ \mathscr{V}(t^\circ) &\doteq \{(x_1, \dots, x_{|t|}) \mid (x_{|t|}, \dots, x_1) \in \mathscr{V}(t)\} \\ \mathscr{V}(t^+) &\doteq \mathscr{V}(t \cup t \circ t \cup t \circ t \cup \ldots) \end{split}$$

FOL VS RL

FOL VS RL

bff \subseteq friend

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

$bff \subseteq friend$

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

$bff \subseteq friend$

friend \subseteq friend°

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

 $\forall x . \neg friend(x, x)$

$bff \subseteq friend$

friend \subseteq friend°

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

 $\forall x . \neg friend(x, x)$

bff \subseteq friend

friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

 $\forall x . \neg friend(x, x)$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

FOL VS RL

bff \subseteq friend

friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

 $\forall x . \neg friend(x, x)$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

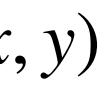
FOL VS RL

bff \subseteq friend

friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

Ann \times Student \subseteq friend



 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

 $\forall x . \neg friend(x, x)$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

 $\forall x . \forall y . x \neq y \rightarrow friend(x, y)$

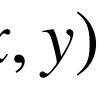
FOL VS RL

bff \subseteq friend

friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

Ann \times Student \subseteq friend



 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

 $\forall x . \neg friend(x, x)$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

 $\forall x . \forall y . x \neq y \rightarrow \mathsf{friend}(x, y)$

FOL VS RL

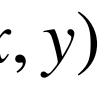
bff \subseteq friend

friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

Ann \times Student \subseteq friend

$(\mathbf{U} \times \mathbf{U}) \setminus \mathbf{id} \subseteq \mathbf{friend}$



 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

$$\forall x . \neg friend(x, x)$$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

 $\forall x . \forall y . x \neq y \rightarrow \mathsf{friend}(x, y)$

 $\forall x . \forall y . x \neq y \rightarrow \mathsf{friend}(x, y)$

FOL VS RL

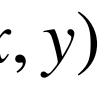
bff \subseteq friend

friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

Ann \times Student \subseteq friend

$(\mathbf{U} \times \mathbf{U}) \setminus \mathbf{id} \subseteq \mathbf{friend}$



 $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

$$\forall x . \neg friend(x, x)$$

 $\forall x . \forall y . Ann(x) \land Student(y) \rightarrow friend(x, y)$

 $\forall x . \forall y . x \neq y \rightarrow \mathsf{friend}(x, y)$

 $\forall x . \forall y . x \neq y \rightarrow \mathsf{friend}(x, y)$

FOL VS RL

bff \subseteq friend

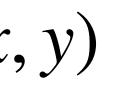
friend \subseteq friend°

friend \cap id $\subseteq \emptyset$

Ann \times Student \subseteq friend

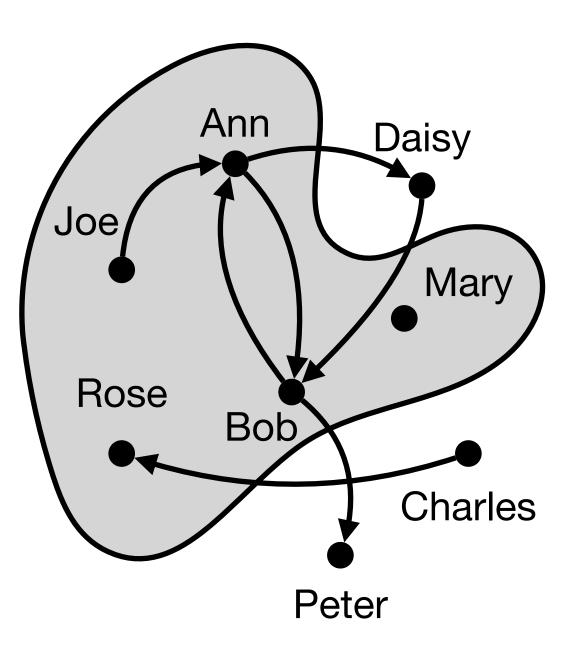
$(\mathbf{U} \times \mathbf{U}) \setminus \mathbf{id} \subseteq \mathbf{friend}$

 $\forall x . \forall y . x \notin y \rightarrow x \times y \subseteq \text{friend}$



Composition

Student = $\{(A), (M), (B), (R), (J)\}$ friend = $\{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\}$



Composition Student = $\{(A), (M), (B), (R), (J)\}$ friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))} friend • friend = $\{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}$

Composition Student = $\{(A), (M), (B), (R), (J)\}$ friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))} friend • friend = $\{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}$ Ann • friend = $\{(B), (D)\}$

Composition Student = $\{(A), (M), (B), (R), (J)\}$ friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))} friend • friend = $\{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}$

Ann • friend = $\{(B), (D)\}$

Ann • friend • friend = $\{(A), (B), (P)\}$

Composition Student = $\{(A), (M), (B), (R), (J)\}$ friend = {(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))} friend • friend = $\{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}$

- - Ann friend = $\{(B), (D)\}$
- Ann friend friend = $\{(A), (B), (P)\}$

friend • Ann = $\{(J), (B)\}$

Composition Student = $\{(A), (M), (B), (R), (J)\}$ friend = $\{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B, (C, R))\}$ friend • friend = $\{(J, D), (J, B), (A, B), (A, P), (A, A), (B, B), (B, D), (D, A), (D, P)\}$

- - Ann friend = $\{(B), (D)\}$
- Ann friend friend = $\{(A), (B), (P)\}$

friend • Ann = $\{(J), (B)\}$

friend • Student = $\{(J), (A), (D), (B), (C)\}$

$\forall x . \exists y . \mathsf{Student}(y) \land \mathsf{friend}(x, y)$

$\forall x . \exists y . \mathsf{Student}(y) \land \mathsf{friend}(x, y)$

FOL VS RL

$U \subseteq$ friend • Student

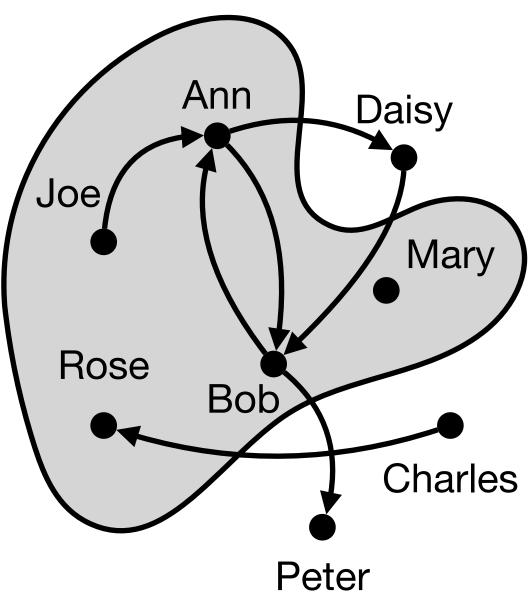
$\forall x . \exists y . \mathsf{Student}(y) \land \mathsf{friend}(x, y)$ $U \subseteq friend \bullet Student$

 $\forall x . \forall y . \forall z . friend(x, y) \land friend(y, z) \rightarrow friend(x, z)$

$\forall x . \exists y . \mathsf{Student}(y) \land \mathsf{friend}(x, y)$ $U \subseteq friend \bullet Student$ $\forall x . \forall y . \forall z . friend(x, y) \land friend(y, z) \rightarrow friend(x, z)$ friend • friend \subseteq friend

Transitive closure

 $\begin{aligned} \text{Student} &= \{(A), (M), (B), (R), (J)\} \\ \text{friend} &= \{(J, A), (A, D), (A, B), (B, A), (B, P), (D, B), (C, R)\} \\ \text{friend}^+ &= \{(J, A), (J, D), (J, B), (J, P), (A, D), (A, B), (A, P), (A, A), \\ &\quad (B, A), (B, P), (B, D), (B, B), (D, B), (D, A), (D, D), (D, P), (C, R))\} \end{aligned}$



Ann is directly or indirectly a friend of everyone $U \subseteq Ann \bullet friend^+$

FOL 7 RL

Ø U id $t \subseteq u$ $t \cup u$ $t \cap u$ $t \setminus u$ $t \times u$ $t \bullet u$ t° **∠**+

RL in Alloy

none univ iden t in u t + ut & U *t* – *u* $t \rightarrow u$ t • U ~*t* \mathbf{A}

Syntactic sugar

$$t = u$$

$$t != u$$

$$t not in u$$

$$no A$$

$$some A$$

$$lone A$$

$$A <: R$$

$$R :> A$$

$$*R$$
all disj x, y : A | \phi
$$some disj x, y : A | \phi$$

t in u and u in tnot (t = u)not (t in u)A = noneA != none**all** $x, y : A \mid x = y$ some A and lone A $R \& (A \rightarrow univ)$ $R \& (univ \rightarrow A)$ R + iden all $x, y : A \mid x != y$ implies ϕ some x, y: $A \mid x \mid = y$ and ϕ

fact { // Each entry is contained in one directory all x : Entry, y,z : Dir { fact {

// Each entry is contained in one directory all x : Entry | one contains.x

- all x : Entry | some y : Dir | y->x in contains
 - $y \rightarrow x$ in contains and $z \rightarrow x$ in contains implies y = z

fact { // All directories are referred to in at most one entry all x : Dir, y,z : Entry { $y \rightarrow x$ in refersTo and $z \rightarrow x$ in refersTo implies y = zfact { // All directories are referred to in at most one entry **all** x : Dir | **lone** refersTo.x

fact { // The root is not referred in any entry all x : Entry, y : Root | x->y not in refersTo

fact { // The root is not referred in any entry **no** refersTo.Root

fact { all x : Object | x not in Root implies some y : Entry | y->x in refersTo }

fact { Object-Root in Entry.refersTo

FOL VS RL

// All objects except the root are referred to in at least one entry

// All objects except the root are referred to in at least one entry

fact { // Different entries in a directory must have different names all x : Dir, y,z : Entry, w : Name { }

fact { all d : Dir, n : Name | lone (d.contains & has.n)

FOL VS RL

 $x \rightarrow y$ in contains and $x \rightarrow z$ in contains and $y \rightarrow w$ in has and $z \rightarrow w$ in has implies y = z

// Different entries in a directory must have different names

sig Person { style : one Style }
sig Style {}

sig Person { style : one Style }
sig Style {}

// First order style

all x,y : Person, z : Style | x->z in style and y->z in style implies x=y

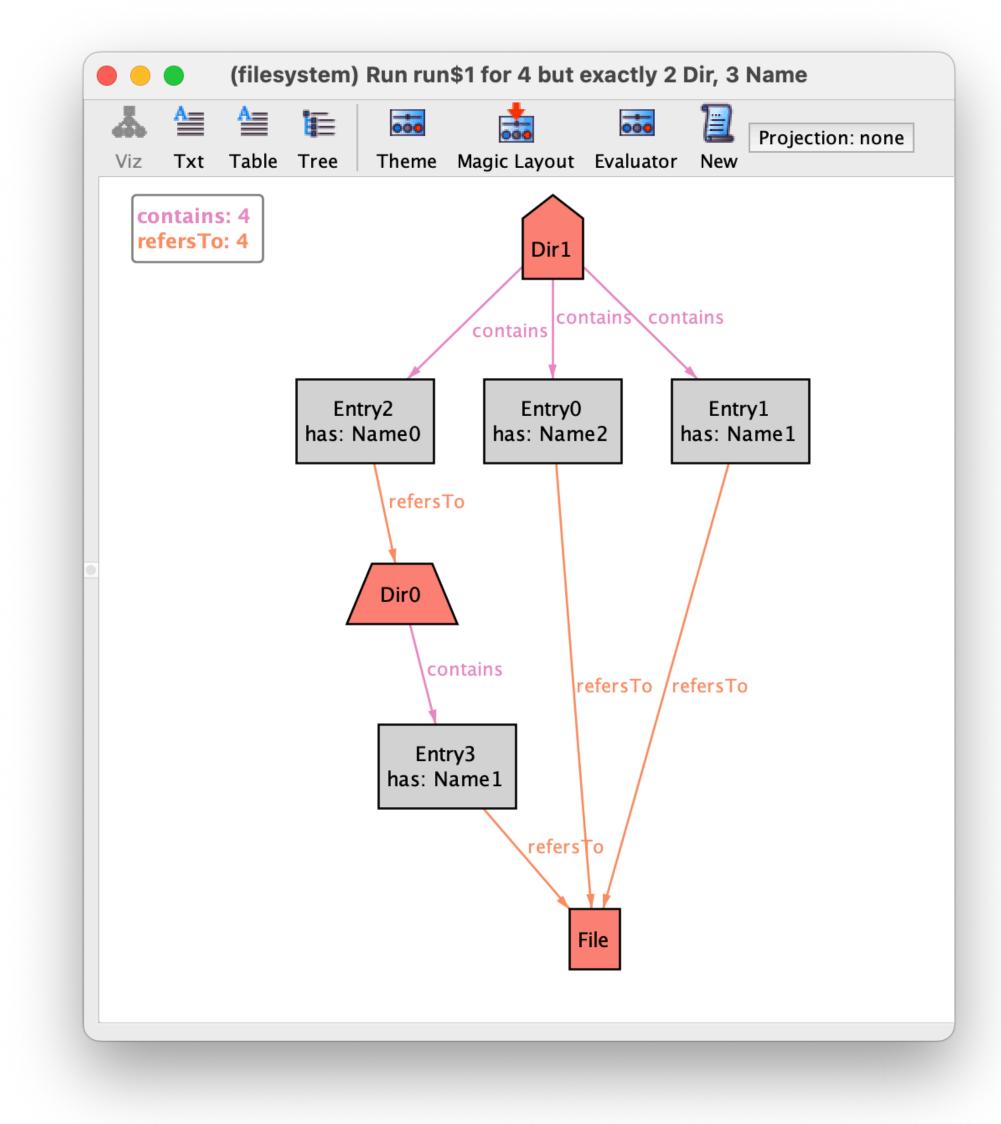
sig Person { style : one Style }
sig Style {}

// First order style
all x,y : Person, z : Style | x->z in style and y->z in style implies x=y

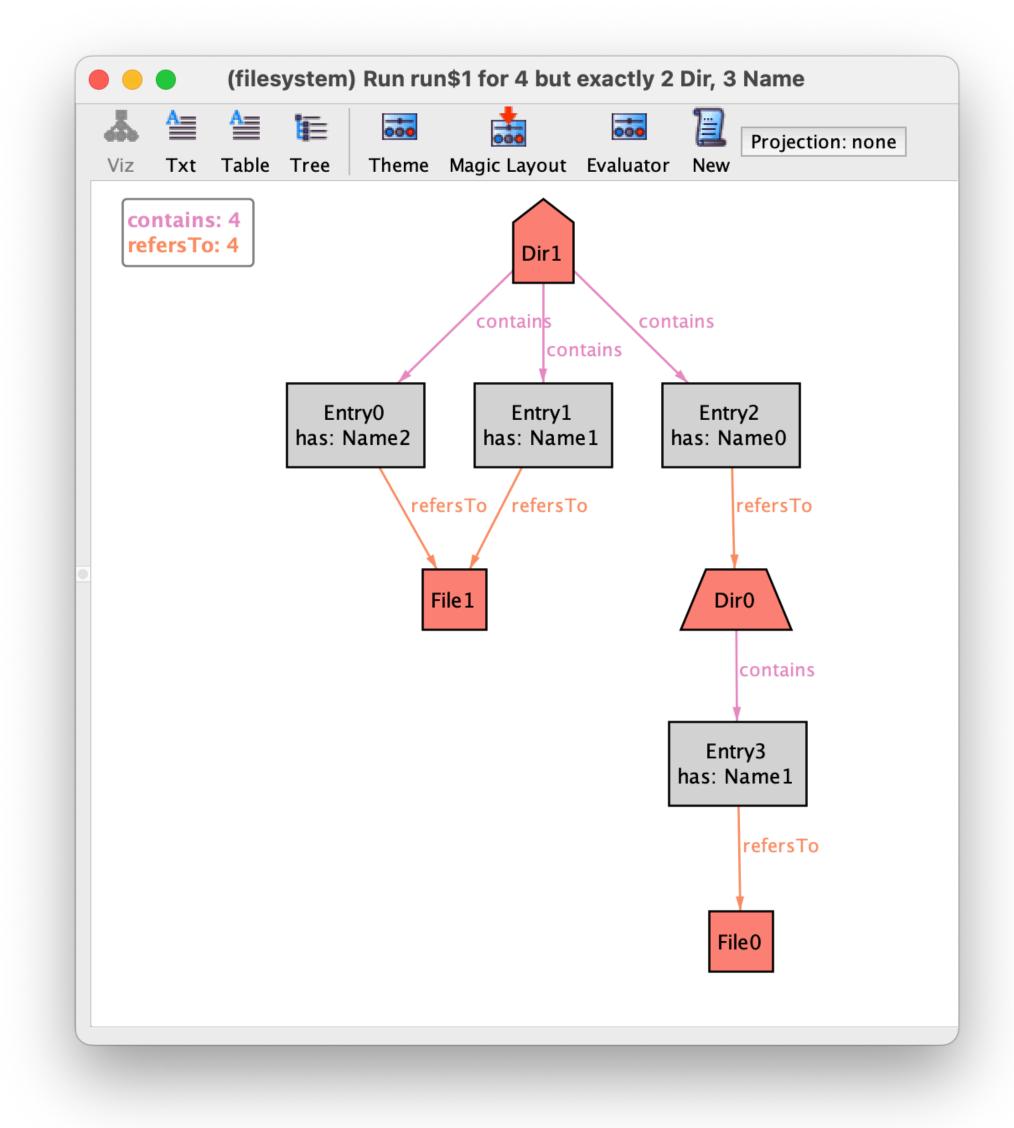
// Relational or navigational style
all z : Style | lone style.z

// Point-free style
style.~style in iden

Verification



Some instances

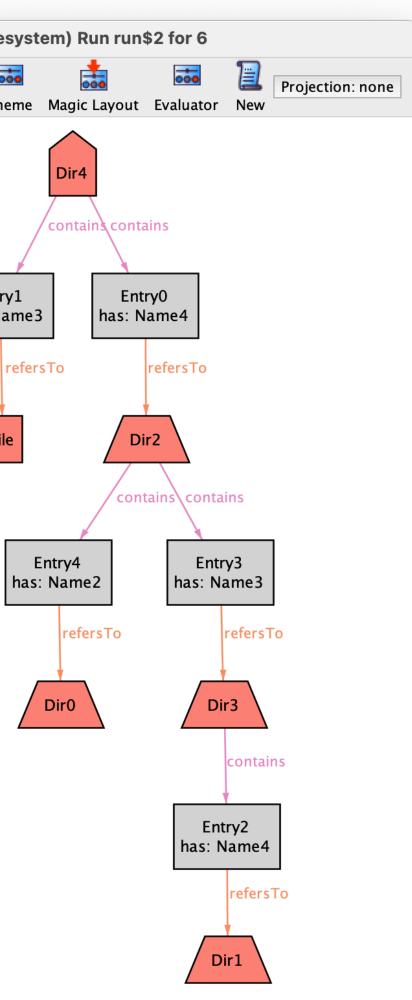


A desirable assertion

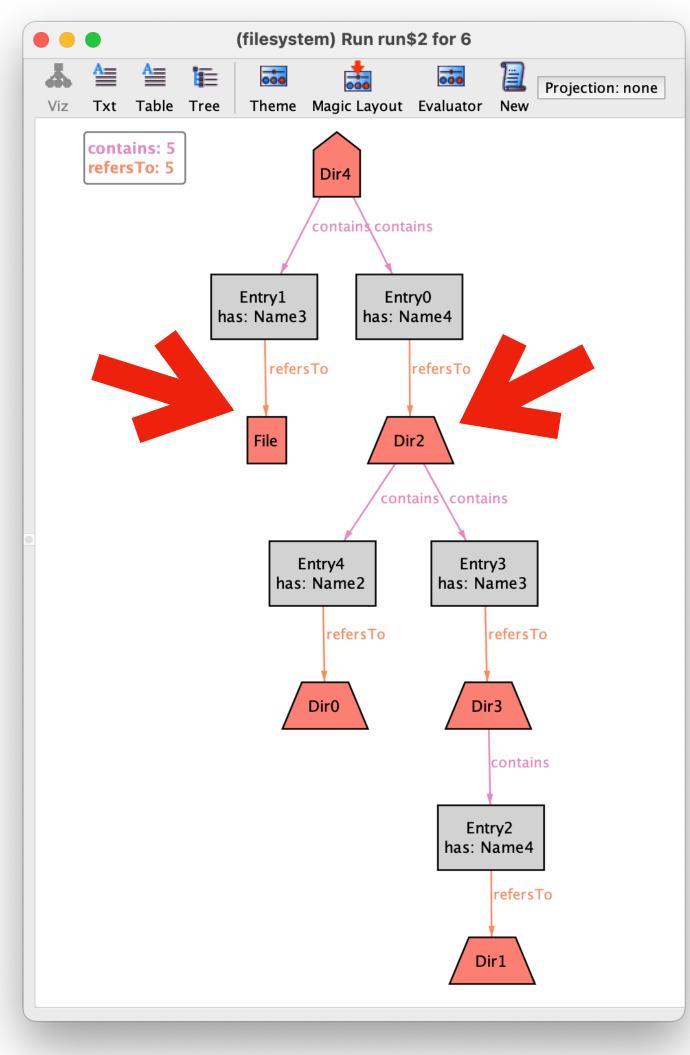
assert NoPartitions { // All objects are reachable from the root ???

check NoPartitions

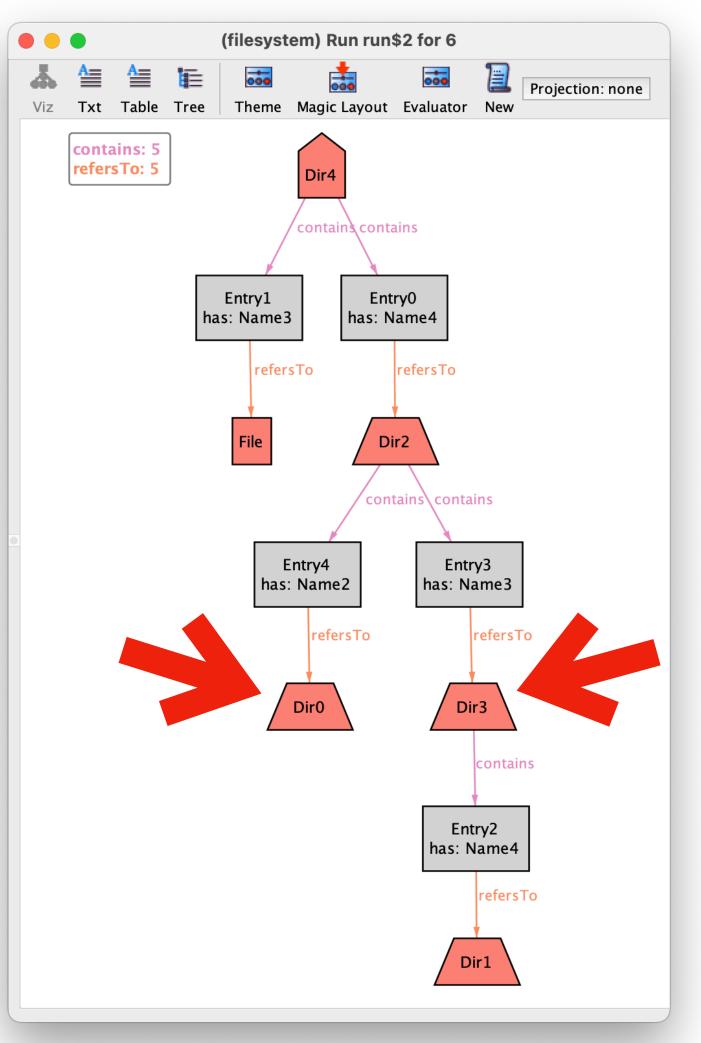
	•			(files
Å Viz	A Txt	A Table	। Tree	The
	conta refer	ains: 5 sTo: 5		
			,	
				Entry
			ha	s: Na
				File
				[



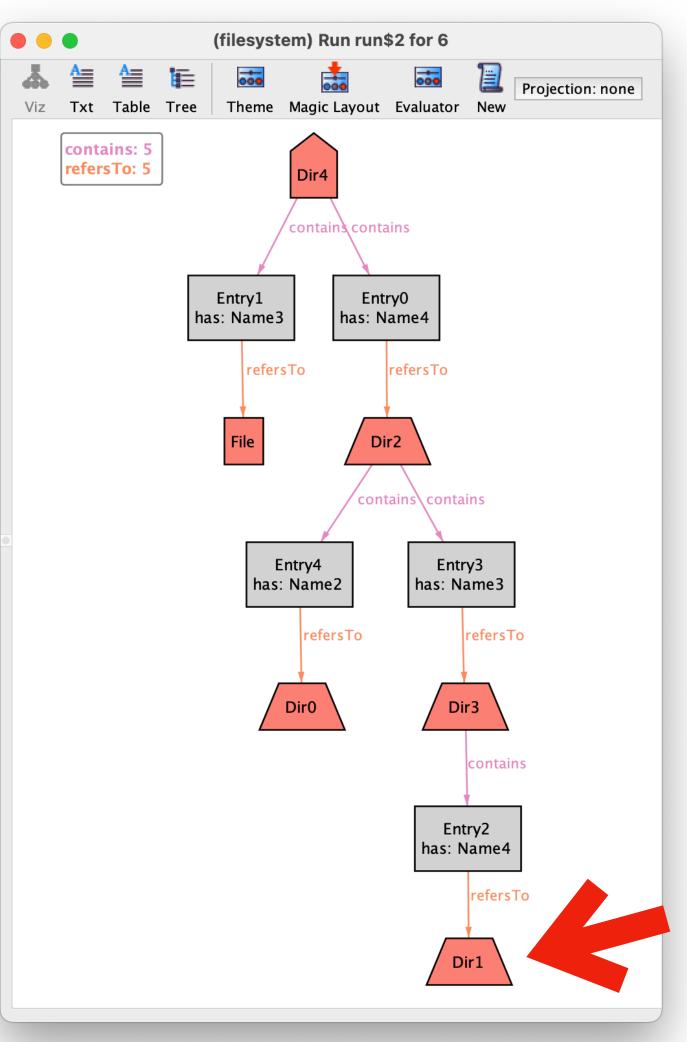
Root.contains.refersTo



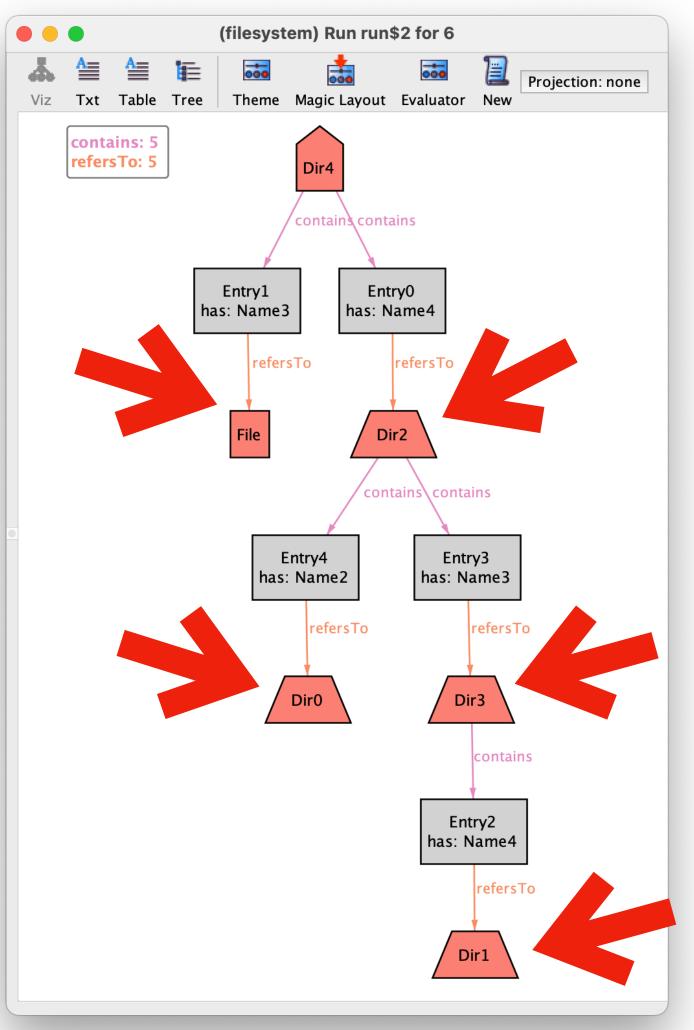
Root.contains.refersTo.contains.refersTo



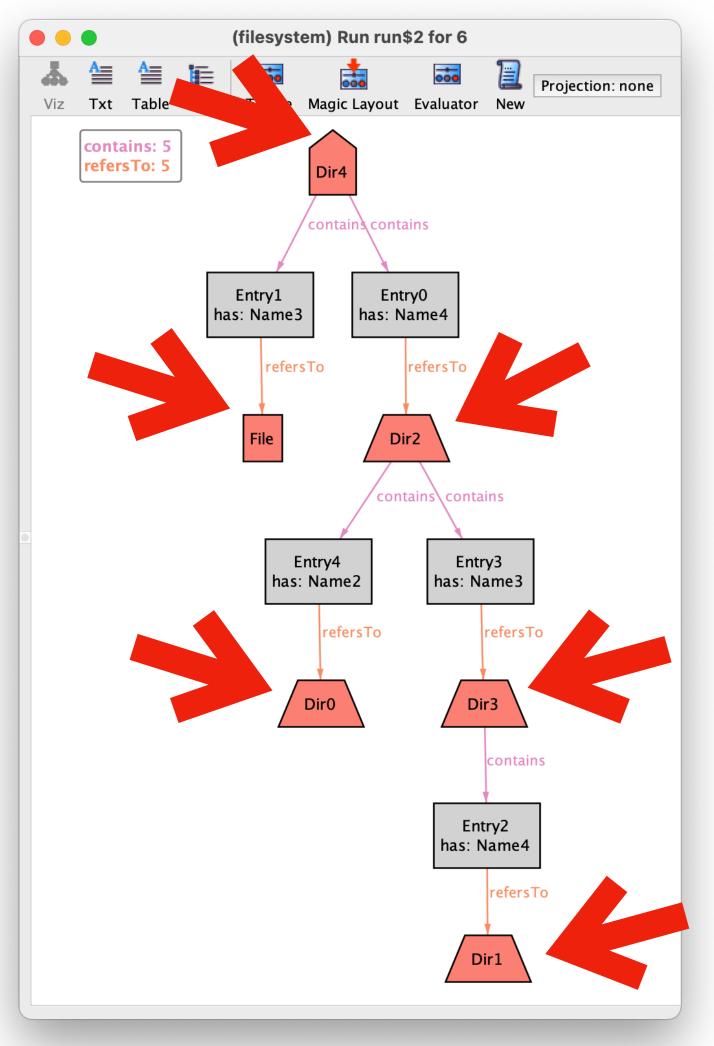
Root.contains.refersTo.contains.refersTo.contains.refersTo



Root.^(contains.refersTo)



Root.*(contains.refersTo)



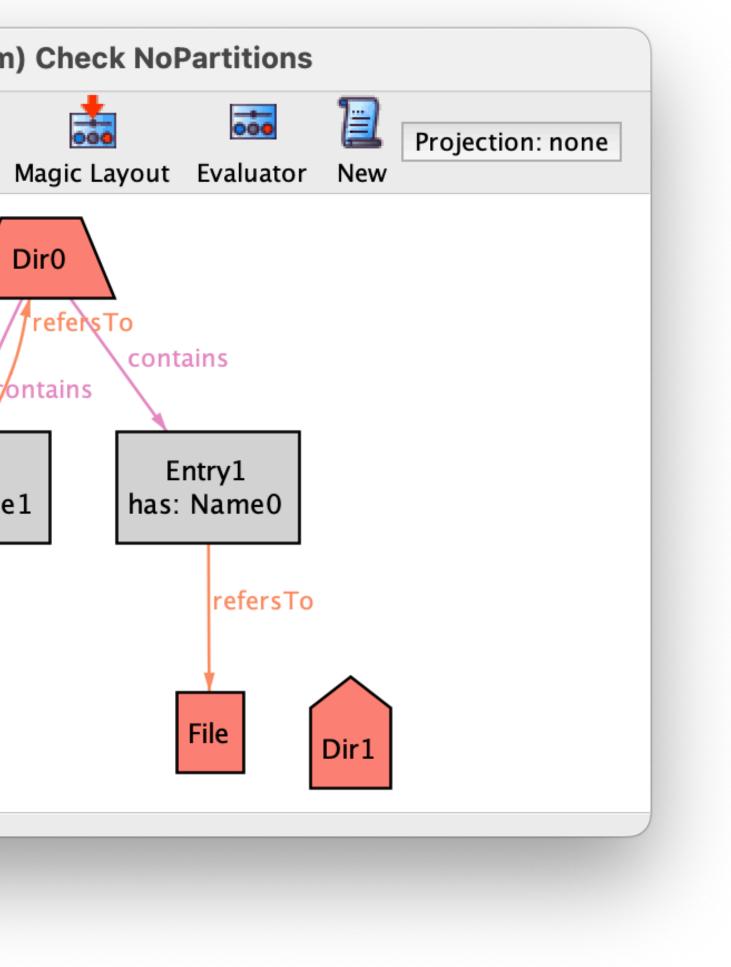
A desirable assertion

assert NoPartitions { // All objects are reachable from the root Object in Root.*(contains.refersTo)

check NoPartitions

A counter-example

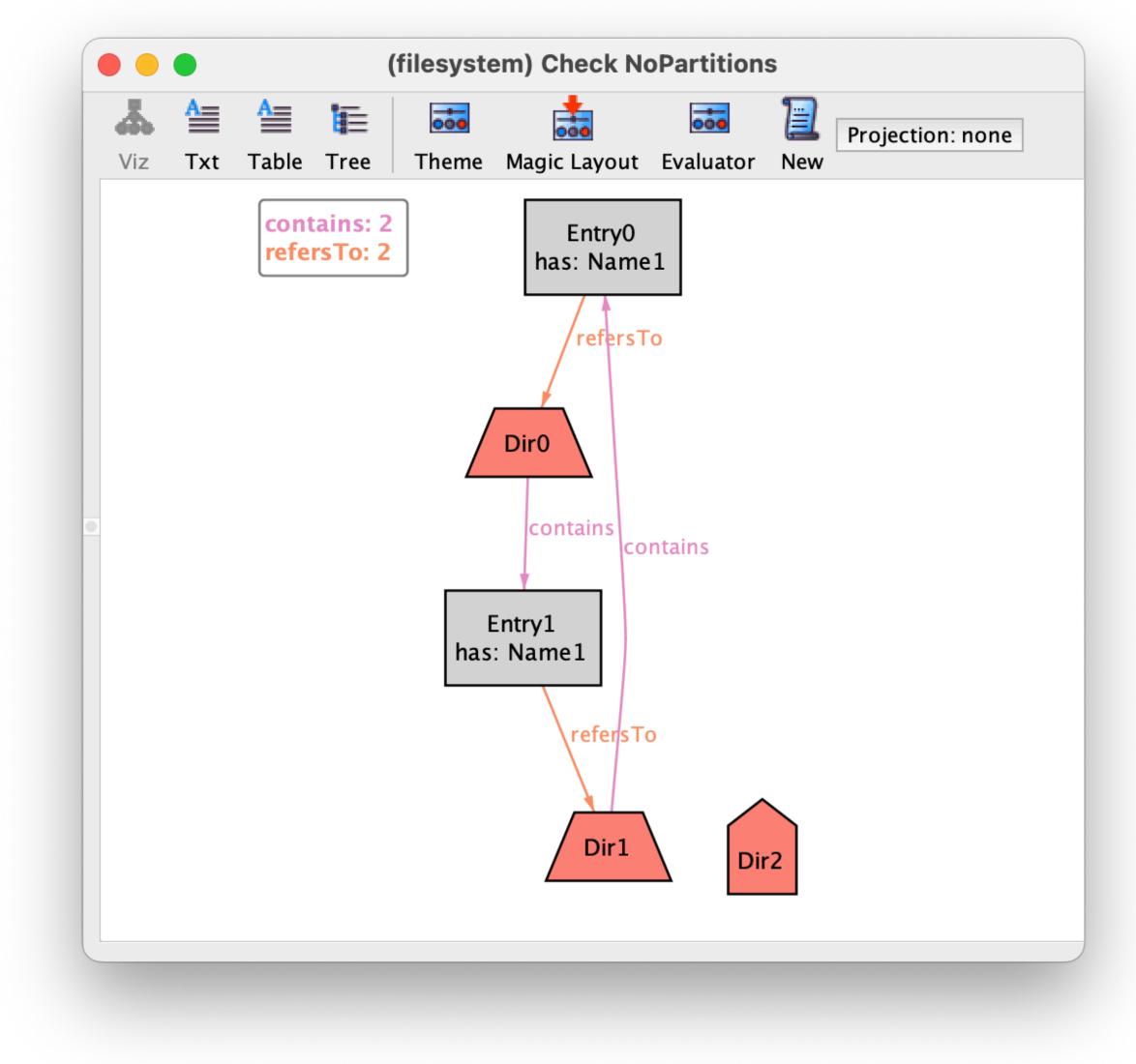
å		<u>A</u>	Ē	000
Vi	z Tx	kt Table	Tree	Theme
		contains refersTo	: 2 : 2	
				Entry(has: Nan



Missing requirement

fact { // A directory cannot be contained in itself all d : Dir | d not in d.contains.refersTo }

Another counter-example



Missing requirement

fact { // A directory cannot be contained in itself all d : Dir | d not in d.^(contains.refersTo) }

Executing "Check NoPartitions" 586 vars. 37 primary vars. 860 clauses. 3ms. No counterexample found. Assertion may be valid. 2ms.

Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch



Increasing confidence

- Increase the scope of check commands
 - check NoPartitions for 6
- Use run commands to validate the model
 - Verify that good scenarios are SAT
 - Verify that bad scenarios are UNSAT
 - Use expects keyword to document expectation

Specifying scenarios

```
run Scenario1 {
    // An empty file system
    Object = Root
} expect 1
run Scenario2 {
    // A file system with only two files with different names
    some disj f1,f2 : File, disj e1,e2 : Entry, disj n1,n2 : Name {
        contains = Root->e1 + Root->e2
        refersTo = e1 - f1 + e2 - f2
                 = e1 - n1 + e2 - n2
        has
} expect 1
run Scenario3 {
    // A file system with only two files with the same name
    some disj f1,f2 : File, disj e1,e2 : Entry, n : Name {
        contains = Root->e1 + Root->e2
        refersTo = e1 - f1 + e2 - f2
                 = e1 - n + e2 - n
        has
} expect 0
```

