
Propositional Logic
Alcino Cunha

Overview

Terminology

• Propositions can be either true or false

• Propositional variables are identifiers that represent propositions

• Propositional variables are the atomic formulas of propositional logic

• Compound formulas can be formed using logical connectives

Syntax
• Propositional variables

-

• Logical connectives

-

• Auxiliary symbols

- Parenthesis

A, B, C, …

⊤ (true), ⊥ (false), ¬(not), ∧ (and), ∨ (or), → (implies), ↔ (equivalent)

Syntax

ϕ, ψ ≐ A, B, C, …
∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)

A, B, C, … ∈ 𝒱
ϕ, ψ, … ∈ Form𝒱

Semantics

• Given an assignment

• We can extend it to to compute the truth value of a
formula

• If we say that holds under , denoted by

• If we say that does not hold under , denoted by

𝒜 : 𝒱 → {0,1}

𝒜 : Form𝒱 → {0,1}

𝒜(ϕ) = 1 ϕ 𝒜 𝒜 ⊨ ϕ

𝒜(ϕ) = 0 ϕ 𝒜 𝒜 ⊭ ϕ

Truth table semantics

𝒜(ϕ) 𝒜(ψ) 𝒜(ϕ ∧ ψ) 𝒜(ϕ ∨ ψ) 𝒜(ϕ → ψ) 𝒜(ϕ ↔ ψ)
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

𝒜(⊤) 𝒜(⊥)
1 0

𝒜(ϕ) 𝒜(¬ϕ)
0 1
1 0

Inductive semantics

𝒜 ⊨ ⊤
𝒜 ⊭ ⊥
𝒜 ⊨ p iff 𝒜(p) = 1

𝒜 ⊨ ¬ϕ iff 𝒜 ⊭ ϕ
𝒜 ⊨ ϕ ∧ ψ iff 𝒜 ⊨ ϕ and 𝒜 ⊨ ψ
𝒜 ⊨ ϕ ∨ ψ iff 𝒜 ⊨ ϕ or 𝒜 ⊨ ψ
𝒜 ⊨ ϕ → ψ iff 𝒜 ⊭ ϕ or 𝒜 ⊨ ψ
𝒜 ⊨ ϕ ↔ ψ iff 𝒜 ⊨ ϕ iff 𝒜 ⊨ ψ

More terminology
• A formula is

- valid or a tautology iff it holds under all assignments

- satisfiable iff it holds under some assignment

- unsatisfiable or a contradiction iff it does not hold under all
assignments

- refutable iff it does not hold under some assignment

• A formula is valid iff is unsatisfiable

ϕ

ϕ ¬ϕ

Examples
• is valid

• is both satisfiable and refutable

B ∨ (A → ¬B)

A → (¬A ∨ B)

A B ¬B A → ¬B B ∨ (A → ¬B)
0 0 1 1 1
0 1 0 1 1
1 0 1 1 1
1 1 0 0 1

A B ¬A ¬A ∨ B A → (¬A ∨ B)
0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

Decidability
• A decision problem is decidable if there exists a mechanical method (aka an

algorithm) for determining if it is either true or false

• The decision problem “Is satisfiable?”, also known as the Boolean
satisfiability problem or SAT, is decidable

- A naïve approach is to enumerate all possible assignments and check if
holds for some of them using the truth table method

- Later we will see that many SAT solvers implement more sophisticated
methods...

• Hence the decision problem “Is valid?” is also decidable

ϕ

ϕ

ϕ

🥱

Feature model analysis

Variability modelling

• A software product line (SPL) is a family of software products

• Each product or variant supports different features

• A feature is an increment in program functionality

• A feature model is a compact representation of the variability of a SPL

Feature models

https://doi.org/10.1016/j.is.2010.01.001

How many phone variants exist?

Feature model analysis
• Relevant analyses of a feature model

- check if it is not void (there are products)

- check if a feature is “dead” (no product can implement it)

- check if a feature is “core” (all products implement it)

- count how many different products exist

• All these analyses can be easily implemented using a SAT solver

Feature model semantics

• A feature model can be encoded with a propositional formula

• Each feature corresponds to a propositional variable

• Each feature model primitive corresponds to a conjunct of

ϕ

ϕ

Feature model semantics

r is the root feature r
f1 mandatory sub-feature of f f1 ↔ f

f1 optional sub-feature of f f1 → f
f1, …, fn or sub-features of f f1 ∨ … ∨ fn ↔ f
f1, …, fn xor sub-features of f (f1 ∨ … ∨ fn ↔ f) ∧ ⋀i<j ¬(fi ∧ fj)

f1 requires f2 f1 → f2
f1 excludes f2 ¬(f1 ∧ f2)

Feature model semantics

Phone
Calls ↔ Phone
GPS → Phone
Screen ↔ Phone
Media → Phone
(Basic ∨ Color ∨ Highres) ↔ Screen
¬(Basic ∧ Color) ∧ ¬(Basic ∧ Highres) ∧ ¬(Color ∧ Highres)
(Camera ∨ MP3) ↔ Media
¬(GPS ∧ Basic)
Camera → Highres

Non voidness

• Given a formula that encodes the semantics of a feature model

• To check if the feature model is not void

- check if is satisfiable

ϕ

ϕ

Dead feature

• Given a formula that encodes the semantics of a feature model

• To check if feature is dead

- check if is unsatisfiable

ϕ

f

ϕ ∧ f

Core feature

• Given a formula that encodes the semantics of a feature model

• To check if feature is core

- check if is unsatisfiable

ϕ

f

ϕ ∧ ¬f

Counting products
• Given a formula that encodes the semantics of a feature model

• To count the number of products count the number of iterations of the
following cycle

- Repeat while is satisfiable

‣ extract an assignment under which holds

‣ convert to a formula that holds only for

‣ add as a new conjunct of

ϕ

ϕ

𝒜 ϕ

𝒜 𝒜 𝒜

¬𝒜 ϕ

Counting products

ϕ0 ≡ A ∧ (A ↔ B) ∧ (C → A) ∧ (D → A)
𝒜1 ≡ {A ↦ 1,B ↦ 1,C ↦ 0,D ↦ 0}
ϕ1 ≡ A ∧ (A ↔ B) ∧ (C → A) ∧ (D → A) ∧ ¬(A ∧ B ∧ ¬C ∧ ¬D)
𝒜2 ≡ {A ↦ 1,B ↦ 1,C ↦ 1,D ↦ 0}
ϕ2 ≡ A ∧ (A ↔ B) ∧ (C → A) ∧ (D → A) ∧ ¬(A ∧ B ∧ ¬C ∧ ¬D) ∧ ¬(A ∧ B ∧ C ∧ ¬D)
𝒜3 ≡ {A ↦ 1,B ↦ 1,C ↦ 0,D ↦ 1}
ϕ3 ≡ …
𝒜4 ≡ {A ↦ 1,B ↦ 1,C ↦ 1,D ↦ 1}
ϕ4 ≡ …

Let’s do it with Z3!

DEMO

SAT solving

Complexity

• Given a propositional formula , the decision problem “Is satisfiable?”
is known as the Boolean satisfiability problem or SAT

- SAT is decidable

- SAT is NP-complete

ϕ ϕ

NP-completeness
• Nondeterministic polynomial time (NP) is a complexity class for decision

problems

- Problem instances have “proofs” verifiable in polynomial time

- SAT is in NP (proofs are assignments)

• A NP problem is NP-complete if every problem in NP is reducible to it in
polynomial time

- SAT was the first problem to be show to be NP-complete

- but we do not known if or P ⊆ NP P = NP P ≠ NP

Graph colouring
• The decision problem “Can an undirected graph be coloured with k

colours”? is also NP-complete

• Can the following graph be coloured with 3 colours?

1

2

3

4

Brute force

1

2

3

4

1 2 3 4
R R R R ✗

Brute force

1

2

3

4

1 2 3 4
R R R R ✗

R R R G ✗

Brute force

1

2

3

4

1 2 3 4
R R R R ✗

R R R G ✗

R R R B ✗

R R G R ✗

R R G G ✗

R R G B ✗

Brute force

1

2

3

4

1 2 3 4
R R R R ✗

R R R G ✗

R R R B ✗

R R G R ✗

R R G G ✗

R R G B ✗

R R B R ✗

...
R G G B ✓

Backtracking

1

2

3

4

1 2 3 4

R

Backtracking

1

2

3

4

1 2 3 4

R

R G

Backtracking

1

2

3

4

1 2 3 4

R

R G

R G B

Backtracking

1

2

3

4

1 2 3 4

R

R G

R G B

R G B ? ✗

Backtracking

1

2

3

4

1 2 3 4

R

R G

R G B

R G B ? ✗

R G G

Backtracking

1

2

3

4

1 2 3 4

R

R G

R G B

R G B ? ✗

R G G

R G G B ✓

DPLL algorithm

• Introduced by Davis, Putman, Logemann, and Loveland

• Backtracking algorithm that incrementally searches for a satisfiable
assignment

• Works on propositional logic formulas in conjunctive normal form (CNF)

CNF
• A formula in CNF is a conjunction of clauses

• A clause is disjunction of literals

• A literal is a propositional variable or its negation

• Any formula can converted to CNF by applying well-known rewrite rules

• Formulas in CNF can be represented in a compact way

(A ∨ B) ∧ (B ∨ ¬C ∨ D) ∧ (¬A ∨ ¬B) ∧ (¬A ∨ ¬C ∨ ¬D) ∧ A

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Conversion to CNF

ϕ ↔ ψ ⇒ (ϕ → ψ) ∧ (ψ → ϕ)
ϕ → ψ ⇒ ¬ϕ ∨ ψ
¬¬ϕ ⇒ ϕ

¬(ϕ ∨ ψ) ⇒ ¬ϕ ∧ ¬ψ
¬(ϕ ∧ ψ) ⇒ ¬ϕ ∨ ¬ψ

ϕ ∨ (ψ ∧ θ) ⇒ (ϕ ∨ ψ) ∧ (ϕ ∨ θ)
(ψ ∧ θ) ∨ ϕ ⇒ (ψ ∨ ϕ) ∧ (θ ∨ ϕ)

DPLL algorithm
• Start from an empty assignment

• Repeat the following steps

- Deduce the value of literals and perform unit propagation

- If deduce is not possible then guess the value of literal

- If a clause becomes empty we reached a contradiction (aka conflict)

• Backtrack to last “open” guess and try opposite value

- If the formula becomes empty we reached a satisfiable assignment

• If the search terminates without finding a satisfiable assignment the formula is unsatisfiable

Unit propagation
• A unit clause contains only one literal

• The formula can only be satisfied if that literal is made true

• And unit propagation can be performed

- Discard all clauses containing the literal

- Discard the literal complement from all clauses

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

Example SAT
A B C D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

Example SAT
A B C D

1 deduce A

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

{{}}

Example SAT
A B C D

1 deduce A

1 0 deduce B

1 0 1 guess C

1 0 1 1 deduce D

1 0 0 guess C

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

{{B, C, D}, {B}, {C, D}}

{{C, D}, {C, D}}

{{D}, {D}}

{{}}

{}

Example UNSAT
A B C

{{A, B}, {A, B}, {B, C}, {B, C}}

Example UNSAT
A B C

1 guess A

{{A, B}, {A, B}, {B, C}, {B, C}}

{{B}, {B, C}, {B, C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

{{A, B}, {A, B}, {B, C}, {B, C}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

{{B}, {B, C}, {B, C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

0 1 deduce B

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

Example UNSAT
A B C

1 guess A

1 1 deduce B

1 1 1 deduce C

0 guess A

0 1 deduce B

0 1 1 deduce C

{{A, B}, {A, B}, {B, C}, {B, C}}

{{}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

{{B}, {B, C}, {B, C}}

{{C}, {C}}

{{}}

CDCL algorithm

• Conflict-Driven Clause Learning improves DPLL significantly

• CDCL keeps an implication graph with the decisions that led to a conflict

• From this graph it can “learn” a new clause that rules out that conflict

• Backtrack directly jumps (non-chronologically) to a decision where the
conflict can still be avoided

• CDCL is at the basis of state-of-the-art SAL solvers

DIMACS

• Standard textual format for CNF

• Used by most SAT solvers

• Starts by declaring the number of variables and the number of clauses

• Each clause is described by a sequence of literals ended by 0

• Each literal is either a positive number identifying a variable or its negation

DIMACS

c example
p cnf 4 5
1 2 0
2 -3 4 0
-1 -2 0
-1 -3 -4 0
1 0

{{A, B}, {B, C, D}, {A, B}, {A, C, D}, {A}}

🥱

Allocation problems

Allocation problem
• Decide if a set of “items” can be placed in a set of “containers”

• Subject to a set of generic (often implicit) constraints

- At least / at most one item per container

- At least / at most one container per item

• And a set of problem specific constraints

- A specific item does not want to be placed in a specific container

- Two specific items do not want to be placed together

- ...

Allocating with SAT

• Declare a matrix of of propositional variables

- Variable is true iff item is allocated to container

• Specify the allocation constraints with propositional formulas

• SAT solve to get allocation

| Items | × |Containers |

px,a x a

Generic constraints

• At least one container per item

• At most one container per item

(pa,1 ∨ pa,2 ∨ pa,3) ∧ (pb,1 ∨ pb,2 ∨ pb,3)
Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Generic constraints

• At least one container per item

• At most one container per item

⋀
x∈Item

(px,1 ∨ px,2 ∨ px,3)
Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Generic constraints

• At least one container per item

• At most one container per item

⋀
x∈Item

⋁
a∈Container

px,a

Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Generic constraints

• At least one container per item

• At most one container per item

⋀
x∈Item

⋁
a∈Container

px,a

⋀
x∈Item

⋀
a<b∈Container

(¬px,a ∨ ¬px,b)

Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Generic constraints

• At least one container per item

• At most one container per item

⋀
x∈Item

⋁
a∈Container

px,a

(¬pa,1 ∨ ¬pa,2) ∧ (¬pa,1 ∨ ¬pa,3) ∧ (¬pa,2 ∨ ¬pa,3)
∧

(¬pb,1 ∨ ¬pb,2) ∧ (¬pb,1 ∨ ¬pb,3) ∧ (¬pb,2 ∨ ¬pb,3)

Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Generic constraints

• At least one container per item

• At most one container per item

⋀
x∈Item

⋁
a∈Container

px,a

⋀
x∈Item

((¬px,1 ∨ ¬px,2) ∧ (¬px,1 ∨ ¬px,3) ∧ (¬px,2 ∨ ¬px,3))

Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Generic constraints

• At least one container per item

• At most one container per item

⋀
x∈Item

⋁
a∈Container

px,a

⋀
x∈Item

⋀
a<b∈Container

(¬px,a ∨ ¬px,b)

Container

1 2 3

Item
a

b

pa,1 pa,2 pa,3

pb,1 pb,2 pb,3

Checking assertions

• After adding the constraints describing the allocation problem we can
check the validity of assertions

• To check if is valid add as a constraint and check if the problem is
unsat

ϕ ¬ϕ

Placement of guests
• We have three chairs in a row and need to place Anne, Susan and Peter

- Anne does not want to sit next to Peter

- Anne does not want to sit in the left chair

- Susan does not want to sit to the left of Peter

• Implicit generic constraints

- Everyone must be sited in a chair (at least one chair per guest)

- No more than one guest per chair (at most one guest per chair)

Variables
Chair

Left Center Right

Guest

Anne

Susan

Peter

xa,l xa,c xa,r

xs,l xs,c

xp,l

xs,r

xp,c xp,r

At least one chair per guest

⋀i∈Guest⋁k∈Chair xi,k
≡

(xa,l ∨ xa,c ∨ xa,r) ∧ (xs,l ∨ xs,c ∨ xs,r) ∧ (xp,l ∨ xp,c ∨ xp,r)

At most one guest per chair

⋀k∈Chair⋀i<j∈Guest (¬xi,k ∨ ¬xj,k)
≡

(¬xa,l ∨ ¬xs,l) ∧ (¬xa,l ∨ ¬xp,l) ∧ (¬xs,l ∨ ¬xp,l)
∧

(¬xa,c ∨ ¬xs,c) ∧ (¬xa,c ∨ ¬xp,c) ∧ (¬xs,c ∨ ¬xp,c)
∧

(¬xa,r ∨ ¬xs,r) ∧ (¬xa,r ∨ ¬xp,r) ∧ (¬xs,r ∨ ¬xp,r)

Problem specific constraints
• Anne does not want to sit next to Peter

• Anne does not want to sit in the left chair

• Susan does not want to sit to the left of Peter

¬xa,l

(xp,r → ¬xs,c) ∧ (xp,c → ¬xs,l)

(xa,c → (¬xp,l ∧ ¬xp,r)) ∧ ((xa,l ∨ xa,r) → ¬xp,c)

Let’s do it with Z3!

DEMO

Graph colouring
• Can the following graph be coloured with 3 colours?

• Allocate colours to vertices such that

- Every vertex has one colour

• At least one colour per vertex

• At most one colour per vertex

- Adjacent vertices have different colours

1

2

3

4

Variables
Colour

Red Green Blue

Vertex

1

2

3

4

x1,r x1,g x1,b

x2,r x2,g

x3,r

x2,b

x3,g x3,b

x4,r x4,g x4,b

Every vertex has one colour

⋀
i∈Vertex

⋁
k∈Colour

xi,k

⋀
i∈Vertex

⋀
k<l∈Colour

(¬xi,k ∨ ¬xi,l)

Adjacent vertices have different colours

1

2

3

4

⋀k∈Colour (¬x1,k ∨ ¬x2,k)
∧

⋀k∈Colour (¬x1,k ∨ ¬x3,k)
∧

⋀k∈Colour (¬x1,k ∨ ¬x4,k)
∧

⋀k∈Colour (¬x2,k ∨ ¬x4,k)
∧

⋀k∈Colour (¬x3,k ∨ ¬x4,k)

Let’s do it with Z3!

DEMO

