Formal Methods In
Software Engineering

2024/25

(Lightweight) formal methods

* Rigorous approaches

 Formal languages (logics)

 Automatic proof technigues

* High-level and user-friendly tools

Applications

Variability modelling
Domain modelling
Data-structure design
App design

Program testing

Progam verification

Variability modelling

Mobile Phone

eds
@
I
-~{(Basic] [calour | [tighrsotution] ["Gamera] [w5 _
I

¢ Mandatory A\ Alternative -—-= Requires
& Optional /O or <+ Excludes

https://doi.org/10.1016/}.is.2010.01.001

Different entries in the
same directory must
have different names.

Domain modelling

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

Object

1
P refers to
1 .
Entry Dir
< contains
___________ Y has Aisa
1
Name Root |-----

4 isa hisa

There are no other

objects except
directories and files.

File

There is only one root.

Powered By

Visual Paradigm Community Edition

¢

Data-structure design

App design

Program testing

IS a partial description of

are derived from can be run against

Abstract Executable
tests

tests

are abstract versions of

Program verification

e {J < B research.google G C ['1] + O

Go gle Research Who we are v Research areas v Our work v Programs & events v Careers Blog Q

Home » Blog >

Extra, Extra - Read Al
About It: Nearly All Binary

Google Research

Searches and Mergesorts
are Broken

June 2, 2006 - Posted by Joshua Bloch, Software Engineer

| remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming Ph.D. students to write a binary search, and then
dissected one of our implementations in front of the class. Of course it was broken, as were most of our implementations. This made a real impression
on me, as did the treatment of this material in his wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000). The key lesson was to

Display a menu ,fIly consider the invariants in your programs.

l_ecturers

e Alcino Cunha (MAC)

- alcino@di.uminho.pt

- Ed7 2.15
e Jorge Sousa Pinto (JSP)

- |sp@di.uminho.pt

- Edr 2.28

mailto:alcino@di.uminho.pt
mailto:jsp@di.uminho.pt

Program

 Computational logic (MAC + JSP)
 Formal software design with Alloy (MAC)

* Deductive program verification with Why3 (JSP)

Schedule

1h TP2 (JSP) TP4 (MAC)
CP2 2.06 CP1 0.17

12h

190 T (MAC + JSP)

o CP1 0.08

(Eh TP1 (JSP) TP3 (MAC)
CP2 2.02 Ed7 1.10

16h

7h TP5 (MAC)

CP12.23

Assessment

e Continuous assessment

- Written test (80%) - 14 Dez

- Practical exercises (20%) - 27 Set, 18 Out, 1 Nov, 29 Nov (e-learning)
 Assessment by examination

- Written exam (100%) - 20 Jan

* Final grades above 18 require a “defence” with a small project/challenge

https://haslab.qgithub.io/MFES/

https://haslab.github.io/MFES/

Questions?

