Mastering Alloy

Alcino Cunha

Overloading

Overloading

* Fields in disjoint sighatures can be overloaded (have the same name)

 Ambiguity errors may occur

Overloading example

abstract sig Object {}

sig Dir extends Object {
contains : set Entry

}

sig File extends Object {}

one sig Root extends Dir {}

sig Entry {
contains : one Object,
has : one Name

}
sig Name {}

Constraints

fact {
// All directories are referred to in at most one entry
all d : Dir | lone contains.d

// The root is not referred in any entry
no contains.Root

// All objects except the root are referred to in at least one entry
Object - Root in Entry.contains

// Different entries in a directory must have different names
all d : Dir, n : Name | lone (d.contains & has.n)

Constraints

fact {

all d : Dir | d not in d."(contains.contains)

Ambiguity errors

run { some contains }

A type error has occurred:

This name 1is ambiguous due to multiple matches:
field this/Dir <: contains

field this/Entry <: contains

Resolving ambiguities

run { some d : Dir | some d.contains }
run { some contains & Dir->Entry }

run { some Dir <: contains }

Predicates and functions

Predicates

* In Alloy predicates are parametrized reusable constraints
- Can also be derived propositions (without arguments)

- Parameters can be arbitrary relations

* Only hold when invoked in a fact, command, or other predicates

e Recursive definitions are not allowed

* Run commands can directly ask for an instance satisfying a predicate

- Atoms instantiating the parameters are shown in the visualizer

Predicate example

pred i1isreachable [d : Dir, o : Object] {
O 1n d.” (contains.refersTo)

}

fact {

all d : Dir | not isreachable[d,d]

Higher-order predicate example

pred acyclic [r : univ -> univ] {
no “r & iden

}

fact {

acyclic[contalins.refersTo]

}

Functions

 Functions are parametrized reusable expressions
- Parameters can be arbitrary relations

* Functions without parameters can be used to define derived relations
- These show up In the visualizer

e Recursive definitions are not allowed

Function example

fun descendants [d : Dir] : set Object {
d.” (contains.refersTo)

}

fact {

all d : Dir | d not in descendants[d]

Derived relation example

fun children : Dir -> Object {
contains.refersTo

}

fact {

all d : Dir | d not in d."children

Isualizing derived relations

O @ (filesystem) Run run$1 for 3 but exactly 2 Dir, 3 Name

— —— » — ! -
H= E % E Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

Il

-
I
i

Entry2 Entry0 Entryl
has: NameQO has: Name2 has: Namel

/ Dir0 \ File

Modules

A specification can be split into modules

The module name is declared in the first line with keyword module

A module can be imported with an open statement

- The imported model name must match the path of the corresponding file
- To disambiguate a call to an entity, the module name can be prepended
- An alias can be given with the as keyword

A module can be parametrised by one or more signatures

Module example

module relation

pred acyclic [r : univ -> univ] {
no "r & iden

}

Module example

open relation
fact {

acyclic[contalins.refersTo]

Parametrized module example

module graph[node]

pred complete[adj : node -> node] {
all n : node | n.adj = node-n

}

Parametrized module example

open graph[Person]

sig Person {
friend : set Person

}

fact { complete[friend] }

We are all friends

O O (friends) Run example for exactly 4 Person

A= A= — [— [—a—
H= E Iﬁ E Projection: none

Txt Table Tree Theme Magic Layout Evaluator New

Person0O

Predefined modules

util/relation

util/ternary

util/graph[A]

util/natural

util/boolean

util/ordering[A]

Useful functions and predicates for binary relations

Useful functions and predicates for ternary relations

Useful functions and predicates for graphs with nodes from signature A

Natural numbers, including some arithmetic operations

Boolean type, including common logical connectives

Imposes a total order on signature A

util/ordering

Imposes a total order on the parameter signature

For efficiency reasons the scope on that signature becomes exact
Visualiser attempts to name atoms according to the order

Many useful functions and relations, including

- next and prev binary relations

- first and last singleton sets

- 1t, 1te, gt, and gte comparison predicates

util/ordering example

open util/ordering[Date]

sig Date {}

sig Entry {
refersTo : one Object,
has : one Name,
date : one Date

fact {

all e : Entry, c : e.refersTo.contains | lt[e.date, c.date]

N-ary relations

N-ary relationships a la UML

0..
Name Object
P contents / \

Dir File

&

Ternary relation example

abstract sig Object {}

sig Dir extends Object {
contents : Name -> lone Object

}

sig File extends Object {}

one sig Root extends Dir {}

sig Name {}

Composition

contents

Dir0 NameO Dirl

/; Dir0 Namel File
Dir0

Dirl Name(File
Dirl Namel File

Root . contents

Name(Dirl

Namel File

Constraints

fact {

all d : Dir | lone contents.d
no contents.Root

Object - Root in Name. (Dir.contents)

Constraints

fun children : Dir -> Object {
2272

}

fact {

all d : Dir | d not in d."children

Comprehension

{ x;2A,....,x,:A | ¢ }

Constraints

fun children : Dir -> Object {

{ x : Dir, y : Object | some x.contents.y }

}

fact {

all d : Dir | d not in d."children

Visualizing N-ary relations

O ® (file_system_ternary) Run run$1 for 4 but exactly 2 Dir, 3 Name

A= b= ' 000 " »
= = oo E 059) Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

| |

P
ll

/ Dir0 \

Filel FileO

Type system

Arity error

run { some has & File }

A type error has occurred:

& can be used only between 2 expressions of the same arity.
Left type = {this/Entry->this/Name}

Right type = {this/File}

Ambiguity error

run { some contains }

A type error has occurred:

This name 1is ambiguous due to multiple matches:
field this/Dir <: contains

field this/Entry <: contains

Irrelevance warning

run { some Dir.has }

Warning #1

The join operation here always yields an empty set.
Left type = {this/Dir}

Right type = {this/Entry->this/Name}

Test automation

v <

3 0:- NetworkX

(® Network Analysis in Python

\JIIIIPIU rauio

Small-world

s metric

Sparsifiers

Structural holes

Summarization

Swap

Threshold Graphs

Time dependent

Tournament

Traversal

Tree

Triads

Vitality

Voronoi cells

Walks

Wiener Index
Functions
Graph generators
Linear algebra
Converting to and from other data formats
Relabeling nodes
Reading and writing graphs
Drawing
Randomness

Exceptions

NetworkX

Install

networkx.org

Tutorial Reference Gallery Developer Releases Guides®

is_arborescence(G)

Returns True if G is an arborescence.

An arborescence is a directed tree with maximum in-degree equal to 1.

Parameters:
G : graph
The graph to test.

Returns:
b : bool

A boolean that is True if G is an arborescence.

e See also

is_tree

Notes

In another convention, an arborescence is known as a tree.

Examples

>>> G = nx.DiGraph([(@, 1), (o, 2), (2, 3), (3, 4)])
>>> nx.1s_arborescence(G)

True

>>> G.remove_edge(0, 1)

>>> G.add_edge(1, 2) # maximum in-degree is 2

>>> nx.1s_arborescence(G)

False

@ ¢

h +
Q Search = +
[source]

K

OA B

:= On this page

is_arborescence()

3.3 (stable) ~

NetworkX

A+ < , networkx.org ¢ @ =
O,
& O‘. NetWOI’k X Install Tutorial Reference Gallery Developer Releases Guides@ Q Search = + K O ﬁ 3.3 (stable) ~

(® Network Analysis in Python

Loioring

Communicability strongly_connected_components (G) [source]

- . := On this page
Communities Generate nodes in strongly connected components of graph.
strongly_connected_components()
| Components
Parameters:

Connectivit
! G : NetworkX Graph

Cores .
A directed graph.

Covering

Cycles Returns:

Cuts comp : generator of sets

, A generator of sets of nodes, one for each strongly connected component of G.
D-Separation

Directed Acyclic Graphs Raises:

Distance Measures NetworkXNotimplemented
Distance-Regular Graphs If G is undirected.
Dominance

Dominating Sets e Seealso

Efficiency connected_components

Eulerian weakly_connected_components

kosaraju_strongly connected_components

Flows

Graph Hashing

Graphical degree sequence Notes
Hierarchy er as
Uses Tarjan's algorithm[R827335e01166-1]_ with Nuutila’'s modifications[R827335e01166-2]_.
Hybrid Nonrecursive version of algorithm.
Isolates
Isomorphism References
Link Analysis

[1] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing

AL A AN A~ A=

Link Prediction

Model-based testing

IS an abstract description of

IS derived from can be run against

Executable

Abstract

test test

IS an abstract version of

Arborescence

some s1g Node {
adj : set Node
pred isArborescence {
all n : Node | lone adj.n
all n : Node | n not in n."adj
some n : Node | Node-n in n."adj

run {isArborescence} for 7
run {not isArborescence} for 7

Components

sig Node {
adj : set Node,

component : one Component
}
sig Component {}
fact {

all x,y : Node | x.component = y.component iff x in y.*adj and y in x.*adj

Component = Node.component

run {} for 6

Let’s do it with Alloy API!

