First-order Logic

Alcino Cunha

Overview

Terminology

* First-order logic uses quantified variables to express properties over a
domain (or universe) of discourse

* |t also uses predicates to capture relationships between elements of the
domain

* First-order logic is also known as predicate logic

Predicates

Predicates are relations, sets of tuples of elements of the domain
All tuples have the same length, the arity of the predicate
Binary predicates (of arity 2) represent relationships between elements

Unary predicates (of arity 1) represent sets of elements

Binary predicates

friend = {(Ann, Peter), (Ann, Mary), (Mary, Ann), (Peter, Mary) }

Ann Jane
. friend o
Joe

Ann Peter ® Mary
Ann Mar Bob

y Rose o Mia
Mary Ann ® ®
Peter Mary

Peter

friend(Ann, Peter)

Unary predicates

Student = {(Ann), (Mary), (Joe), (Bob), (Rose)}

Ann
Mary

Joe
Bob

Rose

Student(Ann)

Functions, constants, and terms

* Functions are special relationships between tuples of elements and
exactly one element

 The number of elements in the input is the arity of the function
 Constants denote specific elements of the domain

 With functions, constants, and variables we can build terms that
represent specific elements of the domain

Unary functions

bff = {Ann — Mary, Mary — Ann, Peter — Joe, Joe — Rose,
Rose — Peter, Bob — Mia, Jane — Ann, Mia — Bob}

Ann

JO
0

Jane
e
Mary
Bob
Rose @a

Peter

Rose = bff(bff(Peter))

Syntax

Variables: x, y, z, ...

Constants: a, b, c, ...

Functions: f, g, h, ...

Predicates: P, O, R, ...

Logic connectives: T, L ,7,A,V, =, <,V (forall), d (exists)
Equality: =

Auxiliary symbols: parenthesis, dot

X, V,2,... €L

a,b,c,... €€
f,g,h,...eF
P,O,R,... e &

7 =6UFUP

tu,... € Termy
O,y, ... € Formy,

LuU=Xx,9,2,...

a,b,c, ...

ft1, ooty

Examples

Ann is the bff of Mary Ann = bff(Mary)

Ann is friend of everyone Vx . friend(Ann, x)
Friendship is symmetric Vx.Vy.friend(x,y) — friend(y, x)
Bffs are friends Vx . friend(x, bff(x))

Everyone has a student friend Vx.dy.Student(y) A friend(x, y)

Functions vs predicates

* Functions and constants simplify the writing of formulas but are not
strictly necessary

A function f of arity n can be represented by a predicate of arity n + 1 with
additional constraints
Vx.dy.f(x,y)

Vx. Vy.Vz.f(x, V) Af(x,2) > y=2

A constant a is just a function of arity 0 and can also be represented by a
predicate of arity 1 with additional constraints

dx . a(x)
Vx.Vy.ax)Aa(y) > x =y

Functions vs predicates

Vx . friend(x, bff(x)) Vx.Vy.bff(x,y) — friend(x, y)

Vx.Ann(x) —» Vy.friend(x,
Vx . friend(Ann, x) (%) Y (x,)

dx.Ann(x) A Vy. friend(x, y)

Ann = bff(Mary) Vx.Vy.Ann(x) A Mary(y) — bff(x, y)
dx.dy.Ann(x) A Mary(y) A bff(x, y)

Simplified syntax

¢, w=Pxy,....xp)
A=Y

-

1

(—¢)

(P Ay)
(P V)
(P — w)
(P <)
(Vx.)
(dx. @)

X, V,2,... €L
P,O.R,... € &
7 =P

O, y, ... € Formy,

Semantics

* To determine the truth value of a formula we need a structure % = (D, I)

- D is a set with the domain of discourse

- [is an interpretation for predicates, for each P € & we have I(P) C D'

» We also need an assignment &/ : & +— D with the value of the free variables
- Avariable is free if it is not associated with a quantifier, otherwise it is bound

- A formula without free variables is closed

» The fact that ¢ holds under ./ with &/ is denoted by /4, o F ¢

Inductive semantics

M, A ET
M, A FE 1
M, A E P(x,...,x,)
M, A Ex=y
M, A E ¢
M, A E DNy
M, A E OV y
M, I E P—y
M, E Py
M,d ENx.P
M, E dx. P

ff (A (x)), ..., d(x,)) € I(P)

iff A (x) is equal to & (y)
iff M, A ¥ @

iff M,dE Qand M, A F y
iff M, A E or M,d FEy
iff M, A E pordl,d FEy
iff M, A E Qiff M, A E

iff M, d|x— a]lFE ¢foralae D

iff A, d|x

— a] F ¢ forsomea € D

Example

Vx.Vy.friend(x,y) — friend(y, x)

Ann Jane Ann Jane
o
Mary Mary
Bob Bob

v X

Example

Vx.dy.Student(y) A friend(x, y)

Bob

More terminology

« Aformula @ is

- valid or a tautology iff it holds under all interpretations with all
assignments

- satisfiable iff it holds under some interpretation with some assignment

- unsatisfiable or a contradiction iff it does not hold under all
interpretations with all assignments

- refutable iff it does not hold under some interpretation with some
assignment

Decidability

» The decision problem “Is ¢ satisfiable?” when @ is a first-order formula is
undecidable

- Solvers for FOL may not terminate or answer with an unknown
* There are two strategies to “recover” decidabllity

- Bound the domain of analysis up to a finite scope (effectively reducing
FOL to PL)

- Work on subsets of FOL (theories) that are decidable, e.g. linear
arithmetic

Domain modelling

Domain modelin

Different entries in the
same directory must
have different names.

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

Object

g ala UML

There are no other
objects except
directories and files.

File

P refers to
4 isa
Entry = Dir
< contains
___________ Y has Aisa
1
Name Root [-----

There is only one root.

Powered B

yIVisual Paradigm Community Edition @

Domain model analysis

* Are the requirements consistent?
* Any forgotten or redundant requirements??

* Do the requirements entail all the expected properties?

Entities

 The “Is a” relationship denotes a specialization or extension
 Formally it can be seen as a subset relationship
* All entities in a diagram not related by “is a” are disjoint

- Top-level entities are disjoint

- Multiple extensions of the same entity are disjoint

Formalizing entities

 Each entity can be formalized by a unary predicate
* Constraints should be added to specify
- The subset relationship of extension signatures

- The disjointness of all other signatures

Different entries in the
same directory must
have different names.

Formalizing entities

directories).

All objects except the root are referred to in at
least one entry (at most one for the case of

P refers to

Entry

----------- Y has

Name

< contains

Dir

Aisa

Root

Object

4isa

There are no other
objects except
directories and files.

File

There is only one root.

Powered By

Visual Paradigm Community Edition @

Object C D
File C

Dir C
Root C
Entry C

O O O T G

Name C

Formalizing entities

Vx . (Object(x) A Entry(x))
Vx . (Object(x) A Name(x))
Vx . (Name(x) A Entry(x))
Vx . File(x) — Object(x)
Vx . Dir(x) — Object(x)
Vx . (File(x) A Dir(x))
Vx .Root(x) — Dir(x)

Formalizing associations

 Each association relationship can be formalized by a predicate
* Constraints should be added to specify
- The type of related entities

- The multiplicity restrictions at each end

Bounded quantifiers

Vx:A.¢p = Vx.Ax) — ¢
dx:A.¢ = 3Ax.AX) AP
Vx:A,y:B.¢p = Vx:A.Vy:B.¢
Vx,y:A.Q = Vx:A,yv:A.¢
dx:A,y:B.¢ = dx:A.dy:B.¢
dx,y:A.@ = dx:A,y:A.¢

Different entries in the
same directory must
have different names.

Formalizing associations

All objects except the root are referred to in at

least one entry (at most one for the case of
directories).

Object

There are no other
objects except
directories and files.

File

There is only one root.

P refers to
4isa
Entry 1 Dir
< contains
___________ Y has Aisa
1
Name Root |------

Powered B

v[Visual Paradigm Community Edition @

contains C D X D
refersTo C D X D
has C DX D

Syntactic sugar

Vx:A.¢p = Vx.Ax) — ¢
dx:A.¢ = 3Ax.AX) AP
Vx:A,y:B.¢p = Vx:A.Vy:B.¢
Vx,y:A.Q = Vx:A,yv:A.¢
dx:A,y:B.¢ = dx:A.dy:B.¢
dx,y:A.@ = dx:A,y:A.¢

Formalizing associations

Vx,y.contains(x,y) — Dir(x) A Entry(y)
Vx,y.refersTo(x,y) — Entry(x) A Object(y)
Vx,y.has(x,y) = Entry(x) A Name(y)

Vx : Entry. dy. has(x, y)
Vx,y,z.has(x,y) Ahas(x,z7) > y =72
Vx : Entry . dy. refersTo(x, y)
Vx,y,z.refersTo(x, y) A refersTo(x,z) > y =z
Vx : Entry. dy. contains(y, x)

Vx,y, z.contains(y, x) A contains(z,x) > y =z

Specifying requirements

* There is only one root
1x . Root(x)

Vx,y:Root.x =y

 There are no other objects except directories and files
Vx : Object. Dir(x) V File(x)

e Different entries in the same directory must have different names

Vx,y,z,w.contains(x, y) A contains(x, z) A has(y, w) A has(z,w) > y =7

Specifying requirements

* All objects except the root are referred to in at least one entry (at most one
for the case of directories)

- All objects except the root are referred to in at least one entry
Vx : Object . ~Root(x) — dy.refersTo(y, x)
- The root is not referred in any entry
Vx : Entry, y : Root . —refersTo(x, y)

- All directories are referred to in at most one entry

Vx : Dir.Vy, z.refersTo(y, x) A refersTo(z,x) = y = 2

Domain model analysis

* Are the requirements consistent?
- Check if the specified requirements are SAT
* Any forgotten or redundant requirements??
- Inspect specific scenarios
* Do the requirements entail all the expected properties?

- Check the validity of expected properties

Let’s do it with Z3!

Scenario depiction

Limitations

* Very tedious to formalize entities and associations
e Scenarios are very difficult to understand

* Analysis can diverge

