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Overview



Terminology

• First-order logic uses quantified variables to express properties over a 
domain (or universe) of discourse


• It also uses predicates to capture relationships between elements of the 
domain


• First-order logic is also known as predicate logic



Predicates

• Predicates are relations, sets of tuples of elements of the domain


• All tuples have the same length, the arity of the predicate


• Binary predicates (of arity 2) represent relationships between elements 


• Unary predicates (of arity 1) represent sets of elements



Binary predicates

friend
Ann Peter
Ann Mary
Mary Ann
Peter Mary

friend = {(Ann, Peter), (Ann, Mary), (Mary, Ann), (Peter, Mary)}
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Joe

Rose
Bob

Mia

Jane

friend(Ann, Peter)



Unary predicates

Student
Ann
Mary
Joe
Bob
Rose

Student = {(Ann), (Mary), (Joe), (Bob), (Rose)}
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Student(Ann)



Functions, constants, and terms

• Functions are special relationships between tuples of elements and 
exactly one element


• The number of elements in the input is the arity of the function


• Constants denote specific elements of the domain


• With functions, constants, and variables we can build terms that 
represent specific elements of the domain



Unary functions
bff = {Ann ↦ Mary, Mary ↦ Ann, Peter ↦ Joe, Joe ↦ Rose,

Rose ↦ Peter, Bob ↦ Mia, Jane ↦ Ann, Mia ↦ Bob}
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Rose = bff(bff(Peter))



Syntax
• Variables: 


• Constants:  


• Functions: 


• Predicates: 


• Logic connectives: 


• Equality: 


• Auxiliary symbols: parenthesis, dot

x, y, z, …

a, b, c, …

f, g, h, …

P, Q, R, …

⊤ , ⊥ , ¬, ∧ , ∨ , → , ↔ , ∀ (for all), ∃ (exists)

=



Syntax
ϕ, ψ ≐ P(t1, …, t|P|)

∣ t = u
∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)
∣ (∀x . ϕ)
∣ (∃x . ϕ)

x, y, z, … ∈ 𝒳
a, b, c, … ∈ 𝒞
f, g, h, … ∈ ℱ

P, Q, R, … ∈ 𝒫
𝒱 = 𝒞 ∪ ℱ ∪ 𝒫

t, u, … ∈ Term𝒱

ϕ, ψ, … ∈ Form𝒱

t, u ≐ x, y, z, …
∣ a, b, c, …
∣ f(t1, …, t|f|)



Examples

• Ann is the bff of Mary


• Ann is friend of everyone


• Friendship is symmetric


• Bffs are friends


• Everyone has a student friend

Ann = bff(Mary)

∀x . friend(Ann, x)

∀x . ∀y . friend(x, y) → friend(y, x)

∀x . friend(x, bff(x))

∀x . ∃y . Student(y) ∧ friend(x, y)



Functions vs predicates
• Functions and constants simplify the writing of formulas but are not 

strictly necessary


• A function  of arity  can be represented by a predicate of arity  with 
additional constraints


• A constant  is just a function of arity 0 and can also be represented by a 
predicate of arity 1 with additional constraints

f n n + 1

a

∀x . ∃y . f(x, y)
∀x . ∀y . ∀z . f(x, y) ∧ f(x, z) → y = z

∃x . a(x)
∀x . ∀y . a(x) ∧ a(y) → x = y



Functions vs predicates

∀x . friend(x, bff(x)) ∀x . ∀y . bff(x, y) → friend(x, y)

∀x . friend(Ann, x)
∀x . Ann(x) → ∀y . friend(x, y)

Ann = bff(Mary) ∀x . ∀y . Ann(x) ∧ Mary(y) → bff(x, y)

∃x . Ann(x) ∧ ∀y . friend(x, y)

∃x . ∃y . Ann(x) ∧ Mary(y) ∧ bff(x, y)



Simplified syntax
ϕ, ψ ≐ P(x1, …, x|P|)

∣ x = y
∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)
∣ (∀x . ϕ)
∣ (∃x . ϕ)

x, y, z, … ∈ 𝒳
P, Q, R, … ∈ 𝒫

𝒱 = 𝒫
ϕ, ψ, … ∈ Form𝒱



Semantics
• To determine the truth value of a formula we need a structure 


-  is a set with the domain of discourse


-  is an interpretation for predicates, for each  we have 


• We also need an assignment  with the value of the free variables


- A variable is free if it is not associated with a quantifier, otherwise it is bound


- A formula without free variables is closed 

• The fact that  holds under  with  is denoted by 

ℳ = (D, I)

D

I P ∈ 𝒫 I(P) ⊆ D|P|

𝒜 : 𝒳 ↦ D

ϕ ℳ 𝒜 ℳ, 𝒜 ⊨ ϕ



Inductive semantics
ℳ, 𝒜 ⊨ ⊤
ℳ, 𝒜 ⊭ ⊥

ℳ, 𝒜 ⊨ P(x1, …, xn) iff (𝒜(x1), …, 𝒜(xn)) ∈ I(P)
ℳ, 𝒜 ⊨ x = y iff 𝒜(x) is equal to 𝒜(y)
ℳ, 𝒜 ⊨ ¬ϕ iff ℳ, 𝒜 ⊭ ϕ

ℳ, 𝒜 ⊨ ϕ ∧ ψ iff ℳ, 𝒜 ⊨ ϕ and ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ∨ ψ iff ℳ, 𝒜 ⊨ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ → ψ iff ℳ, 𝒜 ⊭ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ↔ ψ iff ℳ, 𝒜 ⊨ ϕ iff ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ∀x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for all a ∈ D
ℳ, 𝒜 ⊨ ∃x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for some a ∈ D



Example

Ann

Mary

Bob

Jane Ann

Mary

Bob

Jane

∀x . ∀y . friend(x, y) → friend(y, x)

✓ ✗



Example

Ann

Mary

Bob

Jane Ann

Mary

Bob

Jane

✓✗

∀x . ∃y . Student(y) ∧ friend(x, y)



More terminology
• A formula  is


- valid or a tautology iff it holds under all interpretations with all 
assignments


- satisfiable iff it holds under some interpretation with some assignment


- unsatisfiable or a contradiction iff it does not hold under all 
interpretations with all assignments


- refutable iff it does not hold under some interpretation with some 
assignment

ϕ



Decidability
• The decision problem “Is  satisfiable?” when  is a first-order formula is 

undecidable


- Solvers for FOL may not terminate or answer with an unknown


• There are two strategies to “recover” decidability


- Bound the domain of analysis up to a finite scope (effectively reducing 
FOL to PL)


- Work on subsets of FOL (theories) that are decidable, e.g. linear 
arithmetic

ϕ ϕ



🥱



Domain modelling



Domain modeling a la UML



Domain model analysis

• Are the requirements consistent?


• Any forgotten or redundant requirements?


• Do the requirements entail all the expected properties?



Entities

• The “is a” relationship denotes a specialization or extension


• Formally it can be seen as a subset relationship


• All entities in a diagram not related by “is a” are disjoint


- Top-level entities are disjoint


- Multiple extensions of the same entity are disjoint



Formalizing entities

• Each entity can be formalized by a unary predicate


• Constraints should be added to specify


- The subset relationship of extension signatures


- The disjointness of all other signatures



Formalizing entities

Object ⊆ D
File ⊆ D
Dir ⊆ D

Root ⊆ D
Entry ⊆ D

Name ⊆ D



Formalizing entities

∀x . ¬(Object(x) ∧ Entry(x))
∀x . ¬(Object(x) ∧ Name(x))
∀x . ¬(Name(x) ∧ Entry(x))

∀x . File(x) → Object(x)
∀x . Dir(x) → Object(x)
∀x . ¬(File(x) ∧ Dir(x))
∀x . Root(x) → Dir(x)



Formalizing associations

• Each association relationship can be formalized by a predicate


• Constraints should be added to specify


- The type of related entities


- The multiplicity restrictions at each end



Bounded quantifiers

∀x : A . ϕ ≡ ∀x . A(x) → ϕ
∃x : A . ϕ ≡ ∃x . A(x) ∧ ϕ

∀x : A, y : B . ϕ ≡ ∀x : A . ∀y : B . ϕ
∀x, y : A . ϕ ≡ ∀x : A, y : A . ϕ

∃x : A, y : B . ϕ ≡ ∃x : A . ∃y : B . ϕ
∃x, y : A . ϕ ≡ ∃x : A, y : A . ϕ



Formalizing associations

contains ⊆ D × D
refersTo ⊆ D × D

has ⊆ D × D



Syntactic sugar

∀x : A . ϕ ≡ ∀x . A(x) → ϕ
∃x : A . ϕ ≡ ∃x . A(x) ∧ ϕ

∀x : A, y : B . ϕ ≡ ∀x : A . ∀y : B . ϕ
∀x, y : A . ϕ ≡ ∀x : A, y : A . ϕ

∃x : A, y : B . ϕ ≡ ∃x : A . ∃y : B . ϕ
∃x, y : A . ϕ ≡ ∃x : A, y : A . ϕ



Formalizing associations
∀x, y . contains(x, y) → Dir(x) ∧ Entry(y)

∀x, y . refersTo(x, y) → Entry(x) ∧ Object(y)
∀x, y . has(x, y) → Entry(x) ∧ Name(y)

∀x : Entry . ∃y . has(x, y)
∀x, y, z . has(x, y) ∧ has(x, z) → y = z

∀x : Entry . ∃y . refersTo(x, y)
∀x, y, z . refersTo(x, y) ∧ refersTo(x, z) → y = z

∀x : Entry . ∃y . contains(y, x)
∀x, y, z . contains(y, x) ∧ contains(z, x) → y = z



Specifying requirements
• There is only one root


• There are no other objects except directories and files


• Different entries in the same directory must have different names

∃x . Root(x)
∀x, y : Root . x = y

∀x : Object . Dir(x) ∨ File(x)

∀x, y, z, w . contains(x, y) ∧ contains(x, z) ∧ has(y, w) ∧ has(z, w) → y = z



Specifying requirements
• All objects except the root are referred to in at least one entry (at most one 

for the case of directories)


- All objects except the root are referred to in at least one entry


- The root is not referred in any entry


- All directories are referred to in at most one entry

∀x : Object . ¬Root(x) → ∃y . refersTo(y, x)

∀x : Dir . ∀y, z . refersTo(y, x) ∧ refersTo(z, x) → y = z

∀x : Entry, y : Root . ¬refersTo(x, y)



Domain model analysis
• Are the requirements consistent?


- Check if the specified requirements are SAT


• Any forgotten or redundant requirements?


- Inspect specific scenarios


• Do the requirements entail all the expected properties?


- Check the validity of expected properties



Let’s do it with Z3!

DEMO



Scenario depiction
Root

Entry1 Entry2

File Dir

Entry3



Limitations

• Very tedious to formalize entities and associations


• Scenarios are very difficult to understand 


• Analysis can diverge



🤔
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