First-order Logic Alcino Cunha

Overview

Terminology

- First-order logic uses quantified variables to express properties over a domain (or universe) of discourse
- It also uses predicates to capture relationships between elements of the domain
- First-order logic is also known as predicate logic

Predicates

- Predicates are relations, sets of tuples of elements of the domain
- All tuples have the same length, the arity of the predicate
- Binary predicates (of arity 2) represent relationships between elements
- Unary predicates (of arity 1) represent sets of elements

Binary predicates

$friend = \{(Ann, Peter), (Ann, Mary), (Mary, Ann), (Peter, Mary)\}$

friend	
Ann	Peter
Ann	Mary
Mary	Ann
Peter	Mary

friend(Ann, Peter)

Unary predicates

Student	
Ann	
Mary	
Joe	
Bob	
Rose	

Student(Ann)

Student = $\{(Ann), (Mary), (Joe), (Bob), (Rose)\}$

Functions, constants, and terms

- Functions are special relationships between tuples of elements and exactly one element
- The number of elements in the input is the arity of the function
- Constants denote specific elements of the domain
- With functions, constants, and variables we can build **terms** that represent specific elements of the domain

Unary functions

bff = {Ann \mapsto Mary, Mary \mapsto Ann, Peter \mapsto Joe, Joe \mapsto Rose, Rose \mapsto Peter, Bob \mapsto Mia, Jane \mapsto Ann, Mia \mapsto Bob $\}$

Rose = bff(bff(Peter))

- Variables: *x*, *y*, *z*, ...
- Constants: *a*, *b*, *c*, ...
- Functions: f, g, h, \ldots
- Predicates: *P*, *Q*, *R*, ...
- Logic connectives: $T, \bot, \neg, \land, \lor, \lor, \leftrightarrow, \forall$ (for all), \exists (exists)
- Equality: =
- Auxiliary symbols: parenthesis, dot

Syntax

 $x, y, z, \ldots \in \mathcal{X}$ $a, b, c, \ldots \in \mathscr{C}$ $f, g, h, \ldots \in \mathcal{F}$ $P, Q, R, \ldots \in \mathscr{P}$ $\mathcal{V} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ $t, u, \ldots \in \mathbf{Term}_{\mathscr{V}}$ $\phi, \psi, \ldots \in \mathbf{Form}_{\mathscr{V}}$

Syntax

 $\phi, \psi \doteq P(t_1, \dots, t_{|P|})$ t = u $|\top$ $|\perp$ $|(\neg \phi)$ $|(\phi \land \psi)|$ $|(\phi \lor \psi)|$ $|(\phi \rightarrow \psi)$ $|(\phi \leftrightarrow \psi)|$ $|(\forall x.\phi)|$ $|(\exists x.\phi)|$

 $t, u \doteq x, y, z, \dots$ $|a,b,c,\ldots$ $| f(t_1, ..., t_{|f|})$

Examples

- Ann is the bff of Mary
- Ann is friend of everyone
- Friendship is symmetric
- Bffs are friends
- Everyone has a student friend

Ann = bff(Mary) $\forall x . friend(Ann, x)$ $\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$ $\forall x . friend(x, bff(x))$ $\forall x . \exists y . Student(y) \land friend(x, y)$

Functions vs predicates

- Functions and constants simplify the writing of formulas but are not strictly necessary
- A function *f* of arity *n* can be represented by a predicate of arity n + 1 with additional constraints $\forall x . \exists y . f(x, y)$ $\forall x . \forall y . \forall z . f(x, y) \land f(x, z) \rightarrow y = z$
 - stant *a* is just a function of a
- A constant a is just a function of arity 0 and can also be represented by a predicate of arity 1 with additional constraints

$$\forall x . \forall y . a(x)$$

 $\exists x . a(x)$ $(x) \land a(y) \rightarrow x = y$

Functions vs predicates

$\forall x . friend(x, bff(x))$

$\forall x . friend(Ann, x)$

Ann = bff(Mary)

 $\forall x . \forall y . bff(x, y) \rightarrow friend(x, y)$

 $\forall x . \operatorname{Ann}(x) \rightarrow \forall y . \operatorname{friend}(x, y)$ $\exists x . \operatorname{Ann}(x) \land \forall y . \operatorname{friend}(x, y)$

 $\forall x . \forall y . \operatorname{Ann}(x) \land \operatorname{Mary}(y) \rightarrow \operatorname{bff}(x, y)$ $\exists x . \exists y . \operatorname{Ann}(x) \land \operatorname{Mary}(y) \land \operatorname{bff}(x, y)$

Simplified syntax

 $x, y, z, \dots \in \mathcal{X}$ $P, Q, R, \dots \in \mathcal{P}$ $\mathcal{V} = \mathcal{P}$ $\phi, \psi, \dots \in \mathbf{Form}_{\mathcal{V}}$

 $\phi, \psi \doteq P(x_1, \dots, x_{|P|})$ x = y $|\top$ $|(\neg \phi)|$ $|(\phi \land \psi)$ $|(\phi \lor \psi)$ $|(\phi \rightarrow \psi)$ $|(\phi \leftrightarrow \psi)|$ $|(\forall x.\phi)$ $|(\exists x.\phi)$

Semantics

- To determine the truth value of a formula we need a structure $\mathcal{M} = (D, I)$
 - D is a set with the **domain** of discourse
 - *I* is an interpretation for predicates, for each $P \in \mathscr{P}$ we have $I(P) \subseteq D^{|P|}$
- We also need an assignment $\mathscr{A}: \mathscr{X} \mapsto D$ with the value of the free variables
 - A variable is free if it is not associated with a quantifier, otherwise it is bound
 - A formula without free variables is closed
- The fact that ϕ holds under \mathscr{M} with \mathscr{A} is denoted by $\mathscr{M}, \mathscr{A} \vDash \phi$

Inductive semantics

 $\mathcal{M}, \mathcal{A} \models \mathsf{T}$ $\mathcal{M}, \mathcal{A} \nvDash \bot$ $\mathcal{M}, \mathcal{A} \models P(x_1, \dots, x_n)$ iff $\mathcal{M}, \mathcal{A} \models x = y$ iff $\mathcal{M}, \mathcal{A} \models \neg \phi$ iff $\mathcal{M}, \mathcal{A} \models \phi \land \psi$ iff $\mathcal{M}, \mathcal{A} \models \phi \lor \psi$ iff $\mathcal{M}, \mathcal{A} \models \phi \rightarrow \psi$ iff $\mathcal{M}, \mathcal{A} \models \phi \leftrightarrow \psi$ iff $\mathcal{M}, \mathcal{A} \models \forall x \, . \, \phi$ iff $\mathcal{M}, \mathcal{A} \models \exists x \, . \, \phi$

 $(\mathscr{A}(x_1), \ldots, \mathscr{A}(x_n)) \in I(P)$ $\mathscr{A}(x)$ is equal to $\mathscr{A}(y)$ $\mathcal{M}, \mathcal{A} \nvDash \phi$ $\mathcal{M}, \mathcal{A} \models \phi \text{ and } \mathcal{M}, \mathcal{A} \models \psi$ $\mathcal{M}, \mathcal{A} \vDash \phi \text{ or } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A} \nvDash \phi \text{ or } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A} \vDash \phi \text{ iff } \mathcal{M}, \mathcal{A} \vDash \psi$ $\mathcal{M}, \mathcal{A}[x \mapsto a] \models \phi$ for all $a \in D$ iff $\mathcal{M}, \mathcal{A}[x \mapsto a] \models \phi$ for some $a \in D$

$\forall x . \forall y . friend(x, y) \rightarrow friend(y, x)$

Example

$\forall x . \exists y . \mathsf{Student}(y) \land \mathsf{friend}(x, y)$

Example

More terminology

- A formula ϕ is
 - valid or a tautology iff it holds under all interpretations with all assignments
 - satisfiable iff it holds under some interpretation with some assignment
 - unsatisfiable or a contradiction iff it does not hold under all interpretations with all assignments
 - refutable iff it does not hold under some interpretation with some assignment

Decidability

- The decision problem "Is ϕ satisfiable?" when ϕ is a first-order formula is **undecidable**
 - Solvers for FOL may not terminate or answer with an unknown
- There are two strategies to "recover" decidability
 - Bound the domain of analysis up to a finite scope (effectively reducing FOL to PL)
 - Work on subsets of FOL (theories) that are decidable, e.g. linear arithmetic

Domain modelling

Domain modeling a la UML

Domain model analysis

- Are the requirements consistent?
- Any forgotten or redundant requirements?
- Do the requirements entail all the expected properties? \bullet

Entities

- The "is a" relationship denotes a specialization or extension
- Formally it can be seen as a subset relationship
- All entities in a diagram not related by "is a" are disjoint
 - Top-level entities are disjoint
 - Multiple extensions of the same entity are disjoint

Formalizing entities

- Each entity can be formalized by a unary predicate
- Constraints should be added to specify
 - The subset relationship of extension signatures
 - The disjointness of all other signatures

Formalizing entities

Object $\subseteq D$ File $\subseteq D$ $\mathsf{Dir} \subseteq D$ Root $\subseteq D$ Entry $\subseteq D$ Name $\subseteq D$

directories and files.

Formalizing entities

- $\forall x . \neg (\text{Object}(x) \land \text{Entry}(x))$ $\forall x . \neg (\text{Object}(x) \land \text{Name}(x))$ $\forall x . \neg (Name(x) \land Entry(x))$ $\forall x . File(x) \rightarrow Object(x)$ $\forall x . Dir(x) \rightarrow Object(x)$ $\forall x . \neg (File(x) \land Dir(x))$ $\forall x . \operatorname{Root}(x) \rightarrow \operatorname{Dir}(x)$

Formalizing associations

- Each association relationship can be formalized by a predicate
- Constraints should be added to specify
 - The type of related entities
 - The multiplicity restrictions at each end

Bounded quantifiers

 $\forall x : A . \phi \quad \equiv \quad \forall x . A(x) \to \phi$ $\exists x : A . \phi \quad \equiv \quad \exists x . A(x) \land \phi$

 $\forall x : A, y : B. \phi \equiv \forall x : A. \forall y : B. \phi$ $\forall x, y : A . \phi \equiv \forall x : A, y : A . \phi$ $\exists x : A, y : B. \phi \equiv \exists x : A. \exists y : B. \phi$ $\exists x, y : A . \phi \equiv \exists x : A, y : A . \phi$

Formalizing associations

There are no other directories and files.

contains $\subseteq D \times D$ refersTo $\subseteq D \times D$ has $\subseteq D \times D$

Syntactic sugar

 $\forall x : A . \phi \quad \equiv \quad \forall x . A(x) \to \phi$ $\exists x : A . \phi \quad \equiv \quad \exists x . A(x) \land \phi$

 $\forall x : A, y : B. \phi \equiv \forall x : A. \forall y : B. \phi$ $\forall x, y : A . \phi \equiv \forall x : A, y : A . \phi$ $\exists x : A, y : B. \phi \equiv \exists x : A. \exists y : B. \phi$ $\exists x, y : A . \phi \equiv \exists x : A, y : A . \phi$

Formalizing associations

- $\forall x, y . contains(x, y) \rightarrow Dir(x) \land Entry(y)$
- $\forall x, y . refersTo(x, y) \rightarrow Entry(x) \land Object(y)$
 - $\forall x, y . has(x, y) \rightarrow Entry(x) \land Name(y)$
 - $\forall x : \text{Entry} . \exists y . has(x, y)$
 - $\forall x, y, z . has(x, y) \land has(x, z) \rightarrow y = z$
 - $\forall x : Entry . \exists y . refersTo(x, y)$
- $\forall x, y, z . refersTo(x, y) \land refersTo(x, z) \rightarrow y = z$
 - $\forall x : Entry . \exists y . contains(y, x)$
- $\forall x, y, z$. contains $(y, x) \land \text{contains}(z, x) \rightarrow y = z$

• There is only one root

- There are no other objects except directories and files $\forall x : \text{Object} . \text{Dir}(x) \lor \text{File}(x)$
- Different entries in the same directory must have different names

Specifying requirements

- $\exists x . \operatorname{Root}(x)$
- $\forall x, y : \text{Root} . x = y$

 $\forall x, y, z, w$. contains $(x, y) \land$ contains $(x, z) \land$ has $(y, w) \land$ has $(z, w) \rightarrow y = z$

- for the case of directories)
 - All objects except the root are referred to in at least one entry
 - $\forall x : \text{Object.} \neg \text{Root}(x) \rightarrow \exists y . \text{refersTo}(y, x)$
 - The root is not referred in any entry
 - All directories are referred to in at most one entry

Specifying requirements

• All objects except the root are referred to in at least one entry (at most one

 $\forall x : \text{Entry}, y : \text{Root} . \neg \text{refersTo}(x, y)$

 $\forall x : \text{Dir} \ \forall y, z \text{ . refersTo}(y, x) \land \text{refersTo}(z, x) \rightarrow y = z$

Domain model analysis

- Are the requirements consistent?
 - Check if the specified requirements are SAT
- Any forgotten or redundant requirements?
 - Inspect specific scenarios
- Do the requirements entail all the expected properties?
 - Check the validity of expected properties

Let's do it with Z3!

Scenario depiction

Limitations

- Very tedious to formalize entities and associations
- Scenarios are very difficult to understand
- Analysis can diverge

