
First-order Logic
Alcino Cunha

Overview

Terminology

• First-order logic uses quantified variables to express properties over a
domain (or universe) of discourse

• It also uses predicates to capture relationships between elements of the
domain

• First-order logic is also known as predicate logic

Predicates

• Predicates are relations, sets of tuples of elements of the domain

• All tuples have the same length, the arity of the predicate

• Binary predicates (of arity 2) represent relationships between elements

• Unary predicates (of arity 1) represent sets of elements

Binary predicates

friend
Ann Peter
Ann Mary
Mary Ann
Peter Mary

friend = {(Ann, Peter), (Ann, Mary), (Mary, Ann), (Peter, Mary)}

Ann

Mary

Peter

Joe

Rose
Bob

Mia

Jane

friend(Ann, Peter)

Unary predicates

Student
Ann
Mary
Joe
Bob
Rose

Student = {(Ann), (Mary), (Joe), (Bob), (Rose)}

Ann

Mary

Peter

Joe

Rose
Bob

Mia

Jane

Student(Ann)

Functions, constants, and terms

• Functions are special relationships between tuples of elements and
exactly one element

• The number of elements in the input is the arity of the function

• Constants denote specific elements of the domain

• With functions, constants, and variables we can build terms that
represent specific elements of the domain

Unary functions
bff = {Ann ↦ Mary, Mary ↦ Ann, Peter ↦ Joe, Joe ↦ Rose,

Rose ↦ Peter, Bob ↦ Mia, Jane ↦ Ann, Mia ↦ Bob}

Ann

Mary

Peter

Joe

Rose
Bob

Mia

Jane

Rose = bff(bff(Peter))

Syntax
• Variables:

• Constants:

• Functions:

• Predicates:

• Logic connectives:

• Equality:

• Auxiliary symbols: parenthesis, dot

x, y, z, …

a, b, c, …

f, g, h, …

P, Q, R, …

⊤ , ⊥ , ¬, ∧ , ∨ , → , ↔ , ∀ (for all), ∃ (exists)

=

Syntax
ϕ, ψ ≐ P(t1, …, t|P|)

∣ t = u
∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)
∣ (∀x . ϕ)
∣ (∃x . ϕ)

x, y, z, … ∈ 𝒳
a, b, c, … ∈ 𝒞
f, g, h, … ∈ ℱ

P, Q, R, … ∈ 𝒫
𝒱 = 𝒞 ∪ ℱ ∪ 𝒫

t, u, … ∈ Term𝒱

ϕ, ψ, … ∈ Form𝒱

t, u ≐ x, y, z, …
∣ a, b, c, …
∣ f(t1, …, t|f|)

Examples

• Ann is the bff of Mary

• Ann is friend of everyone

• Friendship is symmetric

• Bffs are friends

• Everyone has a student friend

Ann = bff(Mary)

∀x . friend(Ann, x)

∀x . ∀y . friend(x, y) → friend(y, x)

∀x . friend(x, bff(x))

∀x . ∃y . Student(y) ∧ friend(x, y)

Functions vs predicates
• Functions and constants simplify the writing of formulas but are not

strictly necessary

• A function of arity can be represented by a predicate of arity with
additional constraints

• A constant is just a function of arity 0 and can also be represented by a
predicate of arity 1 with additional constraints

f n n + 1

a

∀x . ∃y . f(x, y)
∀x . ∀y . ∀z . f(x, y) ∧ f(x, z) → y = z

∃x . a(x)
∀x . ∀y . a(x) ∧ a(y) → x = y

Functions vs predicates

∀x . friend(x, bff(x)) ∀x . ∀y . bff(x, y) → friend(x, y)

∀x . friend(Ann, x)
∀x . Ann(x) → ∀y . friend(x, y)

Ann = bff(Mary) ∀x . ∀y . Ann(x) ∧ Mary(y) → bff(x, y)

∃x . Ann(x) ∧ ∀y . friend(x, y)

∃x . ∃y . Ann(x) ∧ Mary(y) ∧ bff(x, y)

Simplified syntax
ϕ, ψ ≐ P(x1, …, x|P|)

∣ x = y
∣ ⊤
∣ ⊥
∣ (¬ϕ)
∣ (ϕ ∧ ψ)
∣ (ϕ ∨ ψ)
∣ (ϕ → ψ)
∣ (ϕ ↔ ψ)
∣ (∀x . ϕ)
∣ (∃x . ϕ)

x, y, z, … ∈ 𝒳
P, Q, R, … ∈ 𝒫

𝒱 = 𝒫
ϕ, ψ, … ∈ Form𝒱

Semantics
• To determine the truth value of a formula we need a structure

- is a set with the domain of discourse

- is an interpretation for predicates, for each we have

• We also need an assignment with the value of the free variables

- A variable is free if it is not associated with a quantifier, otherwise it is bound

- A formula without free variables is closed

• The fact that holds under with is denoted by

ℳ = (D, I)

D

I P ∈ 𝒫 I(P) ⊆ D|P|

𝒜 : 𝒳 ↦ D

ϕ ℳ 𝒜 ℳ, 𝒜 ⊨ ϕ

Inductive semantics
ℳ, 𝒜 ⊨ ⊤
ℳ, 𝒜 ⊭ ⊥

ℳ, 𝒜 ⊨ P(x1, …, xn) iff (𝒜(x1), …, 𝒜(xn)) ∈ I(P)
ℳ, 𝒜 ⊨ x = y iff 𝒜(x) is equal to 𝒜(y)
ℳ, 𝒜 ⊨ ¬ϕ iff ℳ, 𝒜 ⊭ ϕ

ℳ, 𝒜 ⊨ ϕ ∧ ψ iff ℳ, 𝒜 ⊨ ϕ and ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ∨ ψ iff ℳ, 𝒜 ⊨ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ → ψ iff ℳ, 𝒜 ⊭ ϕ or ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ϕ ↔ ψ iff ℳ, 𝒜 ⊨ ϕ iff ℳ, 𝒜 ⊨ ψ
ℳ, 𝒜 ⊨ ∀x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for all a ∈ D
ℳ, 𝒜 ⊨ ∃x . ϕ iff ℳ, 𝒜[x ↦ a] ⊨ ϕ for some a ∈ D

Example

Ann

Mary

Bob

Jane Ann

Mary

Bob

Jane

∀x . ∀y . friend(x, y) → friend(y, x)

✓ ✗

Example

Ann

Mary

Bob

Jane Ann

Mary

Bob

Jane

✓✗

∀x . ∃y . Student(y) ∧ friend(x, y)

More terminology
• A formula is

- valid or a tautology iff it holds under all interpretations with all
assignments

- satisfiable iff it holds under some interpretation with some assignment

- unsatisfiable or a contradiction iff it does not hold under all
interpretations with all assignments

- refutable iff it does not hold under some interpretation with some
assignment

ϕ

Decidability
• The decision problem “Is satisfiable?” when is a first-order formula is

undecidable

- Solvers for FOL may not terminate or answer with an unknown

• There are two strategies to “recover” decidability

- Bound the domain of analysis up to a finite scope (effectively reducing
FOL to PL)

- Work on subsets of FOL (theories) that are decidable, e.g. linear
arithmetic

ϕ ϕ

🥱

Domain modelling

Domain modeling a la UML

Domain model analysis

• Are the requirements consistent?

• Any forgotten or redundant requirements?

• Do the requirements entail all the expected properties?

Entities

• The “is a” relationship denotes a specialization or extension

• Formally it can be seen as a subset relationship

• All entities in a diagram not related by “is a” are disjoint

- Top-level entities are disjoint

- Multiple extensions of the same entity are disjoint

Formalizing entities

• Each entity can be formalized by a unary predicate

• Constraints should be added to specify

- The subset relationship of extension signatures

- The disjointness of all other signatures

Formalizing entities

Object ⊆ D
File ⊆ D
Dir ⊆ D

Root ⊆ D
Entry ⊆ D

Name ⊆ D

Formalizing entities

∀x . ¬(Object(x) ∧ Entry(x))
∀x . ¬(Object(x) ∧ Name(x))
∀x . ¬(Name(x) ∧ Entry(x))

∀x . File(x) → Object(x)
∀x . Dir(x) → Object(x)
∀x . ¬(File(x) ∧ Dir(x))
∀x . Root(x) → Dir(x)

Formalizing associations

• Each association relationship can be formalized by a predicate

• Constraints should be added to specify

- The type of related entities

- The multiplicity restrictions at each end

Bounded quantifiers

∀x : A . ϕ ≡ ∀x . A(x) → ϕ
∃x : A . ϕ ≡ ∃x . A(x) ∧ ϕ

∀x : A, y : B . ϕ ≡ ∀x : A . ∀y : B . ϕ
∀x, y : A . ϕ ≡ ∀x : A, y : A . ϕ

∃x : A, y : B . ϕ ≡ ∃x : A . ∃y : B . ϕ
∃x, y : A . ϕ ≡ ∃x : A, y : A . ϕ

Formalizing associations

contains ⊆ D × D
refersTo ⊆ D × D

has ⊆ D × D

Syntactic sugar

∀x : A . ϕ ≡ ∀x . A(x) → ϕ
∃x : A . ϕ ≡ ∃x . A(x) ∧ ϕ

∀x : A, y : B . ϕ ≡ ∀x : A . ∀y : B . ϕ
∀x, y : A . ϕ ≡ ∀x : A, y : A . ϕ

∃x : A, y : B . ϕ ≡ ∃x : A . ∃y : B . ϕ
∃x, y : A . ϕ ≡ ∃x : A, y : A . ϕ

Formalizing associations
∀x, y . contains(x, y) → Dir(x) ∧ Entry(y)

∀x, y . refersTo(x, y) → Entry(x) ∧ Object(y)
∀x, y . has(x, y) → Entry(x) ∧ Name(y)

∀x : Entry . ∃y . has(x, y)
∀x, y, z . has(x, y) ∧ has(x, z) → y = z

∀x : Entry . ∃y . refersTo(x, y)
∀x, y, z . refersTo(x, y) ∧ refersTo(x, z) → y = z

∀x : Entry . ∃y . contains(y, x)
∀x, y, z . contains(y, x) ∧ contains(z, x) → y = z

Specifying requirements
• There is only one root

• There are no other objects except directories and files

• Different entries in the same directory must have different names

∃x . Root(x)
∀x, y : Root . x = y

∀x : Object . Dir(x) ∨ File(x)

∀x, y, z, w . contains(x, y) ∧ contains(x, z) ∧ has(y, w) ∧ has(z, w) → y = z

Specifying requirements
• All objects except the root are referred to in at least one entry (at most one

for the case of directories)

- All objects except the root are referred to in at least one entry

- The root is not referred in any entry

- All directories are referred to in at most one entry

∀x : Object . ¬Root(x) → ∃y . refersTo(y, x)

∀x : Dir . ∀y, z . refersTo(y, x) ∧ refersTo(z, x) → y = z

∀x : Entry, y : Root . ¬refersTo(x, y)

Domain model analysis
• Are the requirements consistent?

- Check if the specified requirements are SAT

• Any forgotten or redundant requirements?

- Inspect specific scenarios

• Do the requirements entail all the expected properties?

- Check the validity of expected properties

Let’s do it with Z3!

DEMO

Scenario depiction
Root

Entry1 Entry2

File Dir

Entry3

Limitations

• Very tedious to formalize entities and associations

• Scenarios are very difficult to understand

• Analysis can diverge

🤔

Alloy

