Behavioral design with Alloy

Alcino Cunha

Software concepts

BEN]

FTWA
Rk

DANIEL JAGKSON

Concepts

Apps are made of recurring concepts
Each concept is a self-contained unit of functionality with a clear purpose
Concepts work together to provide the app overall functionality

But can be understood independently of one another

Trash

Trash

Open

Empty Trash

v

Y

N

B o WM > 0V UYU O

Compose

Inbox

Snoozed

Important

Sent

Drafts 77
All Mail

Categories

Less

Starred

Chats

Scheduled

Spam 3

Trash

Open

Empty Trash

v

> > 9 OV U OO

Y

N

0

B © J

Compose

Inbox
Snoozed
Important
Sent
Drafts 77
All Mail
Categories
Less
Starred
Chats
Scheduled

Spam 3

Trash

>

22 Dropbox

Home

All files
Recents
Starred
Photos
Shared

File requests

» Deleted files

You c S ran also head over to https://g... Aug 5

Label as:
and Vi Q avens - arXiv preprint arXiv:22... Aug 4
Ne - 2 X
o [J [Imap]/Outbox Ce Bec
[J Apple Mail To Do
Su
[] Personal
[J Receipts
[(J work
(
[] Social
[J Updates
[Forums
Y% Add star
i Create new Default to full screen
Manage labels |l R
Plain text mode
| Print
Easily s Check spelling
| Dismiss
Smart Compose feedback

You ¢
Label as:
and Vi
Q
Ne
To [J [Imap]/Outbox
[J Apple Mail To Do
Su
[] Personal
[J Receipts
[(J work
(
[] Social
[J Updates
M Forums
Y% Add star
i Create new

Manage labels

Easily s

Dismiss

ran also head over to https://g...

avens - arXiv preprint arXiv:22...

Default to full screen

Label

Plain text mode

Print

Check spelling

Smart Compose feedback

Aug 5

Aug 4

- 2 X

Cc Bcce

Label

Edit 1 photo

Location
Ankobra beach
Keywords (i)
4
Beach X] No People X]
.

p
Outdoors X] [Sea X] [Sand X]
(.

p
Palm Tree X] [Sunset X] [Water X]

-

P
Twilight X] [Ghana XJ [Africa X]
-

Suggested keywords

-

-+ Verticalj [+ Sky] [+ Cloud - Sky]

-

s

<+ Scenics - Nature] [—i— Treej

-

-~

+ Naturej [-}- Beauty In Naturej

.
-

+ Photography]

-

and Vi

You c S ran also head over to https://g...

Label as:

Ne

o [J [Imap]/Outbox

[J Apple Mail To Do
Su

[J Personal

[J Receipts

[(J work

[J Social

[J Updates

[Forums

¢ Add star
Create new Default to full screen
Manage labels |l
Plain text mode
Print

Easily s Check spelling

Dismiss

avens - arXiv preprint arXiv:22...

Smart Compose feedback

Aug 5

Aug 4

- 2 X

Cc Bcce

Label

Edit 1 photo

Location

Ankobra beach

Keywords (i)

Beach X] [No People X]

Outdoors X] [Sea X] [Sand X]

Palm Tree X] [Sunset X] [Water X]

P
Twilight X] [Ghana X] [Africa X]
-

Suggested keywords

-~

-+ Verticalj [+ Skyj [+ Cloud - Sky]

-
-

<+ Scenics - Nature] [—i— Treej

-

s

+ Naturej [+ Beauty In Naturej

.
-

+ Photography]

-

This photo is in 1 album

Japan
377 items

Tags (?)

Japan Tokina AT-X 124

Add tags

Miyajima torii sunset

= o 0

Home Discover Upload Notifications

QB B -

\ one last postcard from miyajima
by Alcino Cunha >

Taken: Aug 17, 2008 Uploaded: almost 11 yrs ago
Miyajima, Japan [2008]

Pulse® Impressions(@ Fresh ®
47 .4 9.1K &

63 people liked this photo > «

Profile

= o s

Home Discover Upload Notifications

QB B -

\ one last postcard from miyajima

by Alcino Cunha >

Taken: Aug 17, 2008 Uploaded: almost 11 yrs ago
Miyajima, Japan [2008]

Pulse® Impressions(@ Fresh ®
47 .4 9.1K &

63 people liked this photo > «

Profile

flickr

Rosino

one last postcard from miyajima

Miyajima, Japan [2008]

thowe 62, Mike and 5 more people faved this

= o s

Home Discover Upload Notifications

QB B -

\ one last postcard from miyajima

by Alcino Cunha >

Taken: Aug 17, 2008 Uploaded: almost 11 yrs ago
Miyajima, Japan [2008]

Pulse® Impressions(@ Fresh ®
47 .4 9.1K &

63 people liked this photo > «

Profile

flickr

Rosino

one last postcard from miyajima

Miyajima, Japan [2008]

thowe 62, Mike and 5 more people faved this

& Despertar

Distance Elev Gain Time Achievements

30.01km 794m 1h18m Y5

Parque lago - Rotunda do Papa PR (4:25)

Start and end hidden

AN B

VICENTE

SAO w
Braga

SA0"JOSE

DE-SAQ Lamacaes
INOS LAZARO

QUINTA DA
CAPELA

350

Fraiao

I\
(0)
©

&> Only your followers can view this activity. It won't appear on segment leaderboards and may

not count toward some challenges.

@P} 11 kudos

Concept design

* |dentify a clear purpose
 Choose the appropriate state and actions to fulfill that purpose

 The focus is on ensuring correctness and reusability

App design

* |dentify the core concepts
 Compose them, maybe providing new functionality

 The focus is on exploration

Modeling Concepts

Trash

Trash

Open

Empty Trash

v

Y

N

B o WM > 0V UYU O

Compose

Inbox

Snoozed

Important

Sent

Drafts 77
All Mail

Categories

Less

Starred

Chats

Scheduled

Spam 3

Trash

Open

Empty Trash

v

> > 9 OV U OO

Y

N

0

B © J

Compose

Inbox
Snoozed
Important
Sent
Drafts 77
All Mail
Categories
Less
Starred
Chats
Scheduled

Spam 3

Trash

>

22 Dropbox

Home

All files
Recents
Starred
Photos
Shared

File requests

» Deleted files

Trash modeling a la UML

Trash modeling a la UML

Trash
ﬁ - iteD

Powered By Visual Paradigm Community E

\

/

Trash modeling a la UML

User

Trash

Create item

¥ Visual Paradigm Community Edition q

@

Empty trash

% [Iltem not accessible]
/

[ltem accessible]

[Item trashed])§
\

\4

[ltem not trashed]

@ove item to trasD

T

VA E _@.7.17 CommrorTtyToTton

Trash modeling a la Jackson

concept trash [Item]
purpose
to allow undoing of deletions
state
accessible, trashed : set Item
actions
create (x : Item)
when x not in accessible or trashed
add x to accessible
delete (x : Item)
when X in accessible but not trashed
move X from accessible to trashed
restore (X : Item)
when X in trashed
move x from trashed to accessible
empty ()
when some item in trashed
remove every 1tem from trashed
operational principle
after delete(x), can restore(x) and then x in accessible
after delete(x), can empty() and then X not in accessible or trashed

Concept modeling a la Jackson

* Name

- Optionally parametrized by types that can be specialized when composing
 Purpose

- A clear reason why you might want it

o State + Actions

- A description of the concept behavior using a transition system

* Operational principle

- Properties that show how the purpose is fulfilled by the actions

Transition systems

Transition systems

* A popular model to describe the behavior of a system
A model is often a synonym for a transition system
* There are many variants and related formalisms

- Labeled transition systems

- Kripke structures

- Finite state machines

- Hybrid and timed automata

States, transitions, and traces

o States

- A state is a possible valuation to the structures of the system

- Initial states describe how the system starts
* Transitions

- A transition is a possible evolution between states

- Transitions originate from actions of the system or the environment
* Traces

- A trace is a sequence of states, describing a possible execution

- Avalid trace in a transition system is a path starting in an initial state

Trash transition system

\
=)

===

Declarative modeling

* |t is possible to describe a transition system by specifying instead which
are Its valid traces

* This requires specifying a property whose validity is established in a trace
and not just in a single state

* The specification of properties about traces requires some sort of
temporal logic

Valid trash traces

Invalid trash traces

Specifying transition systems

Mutability

* In Alloy 6 mutable signatures and fields can be declared with keyword var
- Static field inside mutable signature yields a warning

- Static signature extending or subset of a mutable one also yields a
warning

Trash states

sig Item {}
var sig Accessible in Item {}
var sig Trashed in Item {}

Instances

When mutable structures are declared, instances are infinite traces
Analysis commands only return traces that can be represented finitely

- Traces that loop back at some point

Static signatures and fields are known as the configuration and have the
same value In all states

If there are mutable top-level signatures, univ (and iden) are also
mutable

Temporal logic

Alloy 6 also supports linear temporal logic
Temporal logic adds temporal operators to relational logic

They allow us to “quantify” the validity of a formula over the different states of
a trace

A formula without temporal operators is only required to hold in the initial
states

Alloy 6 has both future and past temporal operators

It also has the prime operator that denotes the value of a term in the next state

Always, eventually, and prime

always ¢ @ is true in all future states
eventually ¢ @ is true in some future state
R’ The value of R in the next state

Actions

* A set of transitions can be specified declaratively with an action
- A formula without temporal operators, but including primed and unprimed variables
- A condition without primed variables is a guard that specifies when is the action enabled

- A condition with a primed variable is an effect that specifies what are the possible
values for that variable after the action occurs

- If a variable does not change, a frame condition should be included stating that the next
value of the variable is the same

By combining actions with the always temporal operator we can specify a system behavior

* Actions were first introduced by Leslie Lamport in the Temporal Logic of Actions

Empty trash

Empty trash

pred empty {
some Trashed

no Trashed'

Accessible’ Accessible

Create item

Create item

pred create [1 : Item] {

1 not in Accessible + Trashed

Accessible’ Accessible + 1

Trashed' = Trashed

Delete item

Delete item

pred delete [1 : Item] {
1 1in Accessible

Accessible - 1

Accessible’
Trashed' = Trashed + 1

Restore item

Restore item

pred restore [1 : Item] {

1 1n Trashed

Accessible’ Accessible + 1

Trashed' = Trashed - 1

Trash behavior

Trash behavior

fact Behavior {

no Accessible
no Trashed

always {
(some i : Item | create[i] or delete[i] or restore[i])
or
empty

Validation

Run commands

e As usual, run commands can be used to validate the model

 The scope of a mutable signature defines the maximum number of
different atoms in the full trace, not a maximum per state

Trace visualization

* The visualizer depicts two consecutive states of the trace side-by-side
- By default mutable structures are depicted with dashed lines
* A representation of the infinite trace is shown above
- Different states have different numbers
- The loop back is explicitly depicted
- Clicking on a state focus on that (and the succeeding) state

- It is possible to move forwards and backwards in the trace with = and «

Trace visualization

Trace visualization

= IE

O O
Viz Txt

Table Tree

o

Theme Magic Layout

ltemO

lteml

(trash) Run Example

=
= Projection: none

New Config New Trace New Init New Fork I —

Evaluator

ltemO

| ltem1 |
| (this/Accessible) :

Trace visualization

O O (trash) Run Example

L= e @ & @

= g g g g g E Projection: none
Viz Txt Table Tree Theme Magic Layout Evaluator New Config New Trace NewlInit New Fork -

I
l ltem1 [: ltem1 |

ltemO |

ttemO | 1 his/Accessible) : | (this/Trashed) |

Trace visualization

O O (trash) Run Example

p==e @ h @ B E E @ BE

= H— ' ? g g g 3 Projection: none
Viz Txt Table Tree Theme Magic Layout Evaluator New Config New Trace NewlInit New Fork -

| ltem1 | ltemO ltem1

ltem0 | (this/Trashed) !

Simulation

It possible to perform “simulation” with the New instance buttons

- New config, returns a trace with a different configuration (a different
value to the immutable structures)

- New trace, returns any different trace with the same configuration
- New init, returns a trace with the same config, but a different initial state

- New fork, returns a trace with the same prefix, but a different next state

Simulation

Specifying scenarios

* A formula can be given in a run command to look for specific scenarios

 Keyword expect can be used to distinguish positive and negative
scenarios

Semi-colon

R/ y is valid after ¢

Some trash scenarios

run Scenariol {
some 1 : Item {
create[1]; delete[1]; restore[1]; delete[1]; empty

}
} expect 1

run Scenario2 {
some disj i,j : Item {
create[i]; delete[]]

}
} expect 0

run Scenario3 {
some 1 : Item {
create[1]; delete[1]; empty

}
} for 1 Item expect 1

Stuttering

A clock specification

pred clock spec { P
h =12 and m = 0 1 J 1

always { \\x(//
m’'=(m+1)3%60 and 9" 3

m=59 implies h’'=(h%12)+1 else h’'=h
) 72,5

Cecl n'est pas une montre?!

check clock spec

Executing "Check clock_spec”
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch

1..2 steps. 55 vars. 12 primary vars. 59 clauses. 3ms.
Counterexample found. Assertion is invalid. 3ms.

A clock specification

pred clock spec {
h = 12 and m = 0

always { 11 L% 1
m’'=(m+1)360 and \S,(//
m=59 implies h’=(h%12)+1 else h’'=h 7 - 3
or -
m’=m and h'’'=h 7 é 5

h

Another clock

check clock spec

Executing "Check clock_spec™
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch
1..10 steps. 151901 vars. 1875 primary vars. 413006 clauses. 1042ms.
No counterexample found. Assertion may be valid. 298ms.

Stuttering

o Stuttering can represent events by the environment or by other
components of the system (not yet modeled)

o Stuttering enables refinement
- adding detail or new components to a system
- namely, it enables concepts to be composed to build apps

* |In terminating systems, stuttering enables traces to be infinite

Trash stuttering

pred stutter {

Accessible’ Accessilible
Trashed' = Trashed

Trash behavior

fact Behavior {

no Accessible
no Trashed

always {
(some i : Item | create[i] or delete[i] or restore[i])
or
empty
or
stutter

Verification

Model checking

 Model checking is the process of automatically verifying if a temporal logic
specification holds in a finite transition system model of a system

- If the specification is false a counter-example is returned
- A finite transition system may have infinite non-looping traces
- But every invalid specification can be falsified with a looping trace

 Complete or unbounded model checking explores all traces of the transition
system

 Bounded model checking explores all traces up to a given maximum number of
transitions before looping back

Verification

 check commands can be used to verify temporal assertions

* The default verification mechanism is bounded model checking
- The default maximum number of transitions is 10
- This can be changed by setting a scope for steps

* Alloy 6 also supports unbounded model checking
- Activated by the special scope 1.. steps

- Requires model checkers nuXmv or NuSMV to be installed

Future temporal operators

always ¢ @ will always be true

eventually ¢ @ will eventually be true

after ¢ @ will be true in the next state

y until ¢ @ will eventually be true and y is true until then

¢ releases v Y can only stop being true after ¢

Future operators

always ¢

Future operators

Mixing operators

always (¢ implies always vy)

always (¢ implies eventually y)

¢ W ¢

always (¢ implies after vy)

¢ W

Mixing operators

eventually (always o)

¢ ¢

always (eventually ¢)

¢ ¢

Past temporal operators

historically ¢ ¢ was always true

once ¢ ¢ was once true
before ¢ ¢ was true in previous state
y since ¢ @ was once true and y was true since then

¢ triggered y Y was always true back to the point where ¢ was true

Past operators

always (y implies historically ¢)

¢
¢ ¢ ¢ v

always (y implies once @)

always (¢ implies before ¢)

¢ W ¢

Past operators

always (y implies € since @)

Safety properties

o Safety properties prevent some undesired behaviors from happening

- Easier to model check, since it suffices to search for a finite sequence
of steps that leads to a bad state

- It is irrelevant what happens afterwards, and any continuation leads to a
counter-example

- The archetypal safety property is an invariant specified as always ¢

Liveness properties

e [iveness properties force some desired behaviors to happen

- Harder to model check, since it is necessary to search for a complete
iInfinite trace where the desired behavior never happened

- Harder to specity, since they require fairness assumptions that prevent
the system from stuttering forever

- The archetypal liveness property is eventually ¢

Some operational principles

check invariant {

always no Accessilible & Trashed

}

check restore after delete {

all x : Item | always (restore[x] implies once delete[x])

}

check accessible after delete {

all x : Item | always ({
delete[x] implies after {

(restore[x] or create[x]) releases X not in Accessible

The key operational principles

pred can restore [x : Item] { x in Trashed }

check delete restore {

all x : Item | always ({
delete[x] implies after can restore[x]

(delete[x]; restore[x]) implies x in Accessible’

}
} for 4 Item, 20 steps

pred can empty { some Trashed }

check delete empty {

all x : Item | always {
delete[x] implies after can empty
delete[x] and after empty implies X not in (Trashed+Accessible) '’

}
} for 4 Item, 20 steps

Verification

8 commands were executed. The results are:

Instance found. Scenariol is consistent, as expected.
No instance found. Scenario2 may be inconsistent, as expected.

Instance found. Scenario3 is consistent, as expected.

#1:
#2:

#3:
#4 :
#5:
#6:
#7:
#8:

No
No
No
No
No

counterexample
counterexample
counterexample
counterexample
counterexample

found.
found.
found.
found.
found.

invariant may be valid.

restore after delete may be valid.
accessible after delete may be valid.
delete restore may be valid.

delete empty may be valid.

Another concept

You c S ran also head over to https://g... Aug 5

Label as:
and Vi Q avens - arXiv preprint arXiv:22... Aug 4
Ne - 2 X
o [J [Imap]/Outbox Ce Bec
[J Apple Mail To Do
Su
[] Personal
[J Receipts
[(J work
(
[] Social
[J Updates
[Forums
Y% Add star
i Create new Default to full screen
Manage labels |l R
Plain text mode
| Print
Easily s Check spelling
| Dismiss
Smart Compose feedback

You ¢
Label as:
and Vi
Q
Ne
To [J [Imap]/Outbox
[J Apple Mail To Do
Su
[] Personal
[J Receipts
[(J work
(
[] Social
[J Updates
M Forums
Y% Add star
i Create new

Manage labels

Easily s

Dismiss

ran also head over to https://g...

avens - arXiv preprint arXiv:22...

Default to full screen

Label

Plain text mode

Print

Check spelling

Smart Compose feedback

Aug 5

Aug 4

- 2 X

Cc Bcce

Label

Edit 1 photo

Location
Ankobra beach
Keywords (i)
4
Beach X] No People X]
.

p
Outdoors X] [Sea X] [Sand X]
(.

p
Palm Tree X] [Sunset X] [Water X]

-

P
Twilight X] [Ghana XJ [Africa X]
-

Suggested keywords

-

-+ Verticalj [+ Sky] [+ Cloud - Sky]

-

s

<+ Scenics - Nature] [—i— Treej

-

-~

+ Naturej [-}- Beauty In Naturej

.
-

+ Photography]

-

and Vi

You c S ran also head over to https://g...

Label as:

Ne

o [J [Imap]/Outbox

[J Apple Mail To Do
Su

[J Personal

[J Receipts

[(J work

[J Social

[J Updates

[Forums

¢ Add star
Create new Default to full screen
Manage labels |l
Plain text mode
Print

Easily s Check spelling

Dismiss

avens - arXiv preprint arXiv:22...

Smart Compose feedback

Aug 5

Aug 4

- 2 X

Cc Bcce

Label

Edit 1 photo

Location

Ankobra beach

Keywords (i)

Beach X] [No People X]

Outdoors X] [Sea X] [Sand X]

Palm Tree X] [Sunset X] [Water X]

P
Twilight X] [Ghana X] [Africa X]
-

Suggested keywords

-~

-+ Verticalj [+ Skyj [+ Cloud - Sky]

-
-

<+ Scenics - Nature] [—i— Treej

-

s

+ Naturej [+ Beauty In Naturej

.
-

+ Photography]

-

This photo is in 1 album

Japan
377 items

Tags (?)

Japan Tokina AT-X 124

Add tags

Miyajima torii sunset

Label modeling a la Jackson

concept label [Item]
purpose
organize 1tems into overlapping categories
state
labels : Item -> set Label
actions
affix (1 : Item, 1 : Label)
when 1 not in the labels of 1
add 1 to the labels of 1
detach (1 : Item, 1 : Label)
when 1 in the labels of 1
remove 1 from the labels of 1
clear (1 : Item)
when 1 has some labels
remove all labels of 1
operational principle

after affix(i,1), while no detach(i,1l) and no clear(i), 1 is 1in the labels of 1

The label In Alloy

sig Item {
var labels : set Label

}
sig Label {}

fact Behavior {

no labels

always {
(some i : Item, 1 : Label | affix[i,l] or detach[i,1l])
or
(some i : Item | clear[i])
or
stutter

Affix label with point-wise effect

pred affix [1 : Item, 1 : Label] {
1 not in i1.labels
l.labels' = 1i.labels + 1

all j : Item - i | j.labels' = j.labels
}

Affix label with point-free effect

pred affix [1 : Item, 1 : Label] {
1 not in 1i.labels

labels' = labels + 1->1

}

Detach label

pred detach [1 : Item, 1 : Label] {

1l in 1.labels

labels' = labels - 1->1

Clear item

pred clear [1 : Item] {
some 1.labels

labels' = labels - 1->Label

Label scenarios

run Scenariol {

some 1 : Item, disj 1,m : Label {
affix[i1,1]; affix[1i,m]; clear[1]

'
} expect 1

run Scenario2 {
some 1 : Item, 1 : Label {
affix[i1,1]; affix[i,1]

'
} expect O

Label operational principle

check affix find {

all i : Item, 1 : Label | always {

affix[1,1] implies after ((detach[i1,1l] or clear[1]) releases 1 in 1i.labels)

}
}

App design

Modularizing concepts

 Jo enable reuse and instantiation each concept should be in a
parametrized module

 The module can still be used on its own, as Alloy implicitly declares
parameter signatures

e Since a parameter signature cannot be extended with new fields, some
tricks might be necessary to declare them

Trash

module Trash [Item]

sigTtem—{}
var sig Accessible in Item {}

var sig Trashed in Item {}

module Label [Item]

ls + set Tabel

sig Aux 1in Item {
var labels : set Label
}
fact { Aux = Item }
sig Label {}

Specifying apps

Import the required concepts, instantiating parameter signatures as
needed

Compose the concepts

- Enforce interleaving, by requiring at most one concept not to stutter
- Synchronize actions as needed

Validate, validate, validate

Check some expected properties

A filesystem app

 Composed of trash and label
 Many options to explore
- When to allow affixing labels?
- When to delete labels?

- Whether to use special labels?

Free composition

open Trash[File] as trash
open Label[File] as label

sig File {}

fact Interleave {
always {
trash/stutter or
label/stutter

run Example {}

Filesystem v1

* Allow labelling only when accessible

e Clear labels when file is deleted

Filesystem v1

fact Synchronization {

all £ : File, 1 : Label | always (affix[f,1l] implies f in Accessible)

all £ : File | always (delete[f] and some f.labels implies after clear[f])

Filesystem v1

run Scenariol {
some f : File, 1 : Label {
create[f]; affix[f,1l]; delete[f]

'
} expect 1

run Scenario2 {
some f : File, 1 : Label {
create[f]; delete[f]; affix[f,1]

'
} expect O

Filesystem v1

Filesystem v2

* Allow labelling when accessible or trashed

 Clear labels when trash is emptied

Filesystem v2

fact Synchronization {

all £ : File, 1 : Label | always (affix[f,l] implies f in Accessible+Trashed)

always {
empty implies after {
(some f : File-Accessible | clear[f]) until no (File-Accessible).labels

}

Filesystem v2

run Scenariol {
some f : File, 1 : Label {
create[f]; affix[f,1l]; delete[f]

}
} expect 1

run Scenario2 {
some f : File, 1 : Label {
create[f]; delete[f]; affix[f,1]

'
} expect 1

Filesystem v2

run Scenario3 {
some f : File, 1 : Label {
create[f]; delete[f]; empty; affix[f,1]

}
} expect 0

run Scenariod {
some disj fl1,f2 : File, 1 : Label {
create[fl]; create[f2]; delete[fl]; affix[£f2,1]; delete[f2]; affix[fl,1l]; empty

}
} expect 1

run Scenariob5 {
some disj fl1,f2 : File, 1 : Label {
create[fl]; delete[fl]; affix[fl,1]; empty; create[f2]

}
} expect 0

Filesystem v2

Filesystem v3

Allow labelling when accessible or trashed
Clear labels when trash is emptied
Affix special label Trashed when file is deleted

Detach special label Trashed when file is restored

Filesystem v3

one sig Dirty extends Label {}
fact Synchronization {

all £ : File, 1 : Label | always (affix[f,l] implies f in Accessible+Trashed)

always {

empty implies after ((some f : File-Accessible | clear[f]) until no (File-Accessible).labels)

all £ : File | always (delete[f] and Dirty not in f.labels implies after affix[f,Dirty])

all £ : File | always (restore[f] and Dirty in f.labels implies after detach[f,Dirty])

Filesystem v3

“Software is built on abstractions. Pick the right ones, and programming
will flow naturally from design [...] Pick the wrong ones, and
programming will be a series of nasty surprises”

—Daniel Jackson

“A specification is an abstraction. |...| But | don’t know how to teach
you about abstraction. A good engineer knows how to abstract the
essence of a system and suppress the unimportant details when
specifying and designing it. The art of abstraction is learned only
through experience.”

—Leslie Lamport

“There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way Is to make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.”

—Jony Hoare

Epigram 31
“Simplicity does not precede complexity, but follows it.”

—Alan Perlis

always eventually some Alloy

