First-Order Theories \& SMT Solvers

Maria João Frade

HASLab - INESC TEC
Departamento de Informática, Universidade do Minho
2023/2024

Introduction

- When judging the validity of first-order formulas we are typically interested in a particular domain of discourse, which in addition to a specific underlying vocabulary includes also properties that one expects to hold.
- For instance, in formal methods involving the integers, one is not interested in showing that the formula

$$
\forall x, y . x<y \rightarrow x<y+y
$$

is true for all possible interpretations of the symbols $<$ and + , but only for those interpretations in which $<$ is the usual ordering over the integers and + is the addition function.

- We are not interested in validity in general but in validity with respect to some background theory - a logical theory that fixes the interpretations of certain predicates and function symbols.

First-Order Theories

Introduction

- Stated differently, we are often interested in moving away from pure logical validity (i.e. validity in all models) towards a more refined notion of validity restricted to a specific class of models.
- There are two ways for specifying such a class of models:
- To provide a set of axioms (sentences that are expected to hold in them).
- To pinpoint the models of interest.
- First-order theories provide a basis for the kind of reasoning just described.

Theories - basic concepts

Let \mathcal{V} be a vocabulary of a first-order language.

- A first-order theory \mathcal{T} is a set of \mathcal{V}-sentences that is closed under derivability (i.e., $\mathcal{T} \models \phi$ implies $\phi \in \mathcal{T}$).
- A \mathcal{T}-structure is a \mathcal{V}-structure that validates every formula of \mathcal{T}.
- A formula ϕ is \mathcal{T}-valid if every \mathcal{T}-structure validates ϕ.
- A formula ϕ is \mathcal{T}-satisfiable if some \mathcal{T}-structure validates ϕ.
- Two formulae ϕ and ψ are \mathcal{T}-equivalent if $\mathcal{T} \models \phi \leftrightarrow \psi$ (i.e, for every \mathcal{T}-structure $\mathcal{M}, \mathcal{M} \vDash \phi$ iff $\mathcal{M} \models \psi$).

Theories - basic concepts

Let \mathcal{T} be a first-order theory.

- \mathcal{T} is said to be a consistent theory if at least one \mathcal{T}-structure exists.
- \mathcal{T} is said to be a complete theory if, for every \mathcal{V}-sentence ϕ, either $\mathcal{T} \models \phi$ or $\mathcal{T}=\neg \phi$.
- \mathcal{T} is said to be a decidable theory if there exists a decision procedure for checking \mathcal{T}-validity.
- A subset $\mathcal{A} \subseteq \mathcal{T}$ is called an axiom set for the theory \mathcal{T}, when \mathcal{T} is the deductive closure of \mathcal{A}, i.e. $\phi \in \mathcal{T}$ iff $\mathcal{A} \models \phi$.
- A theory \mathcal{T} is finitely (resp. recursively) axiomatizable if it possesses a finite (resp. recursive) set of axioms.
- A fragment of a theory is a syntactically-restricted subset of formulae of the theory.

Theories - decidability problem

- The decidability criterion for \mathcal{T}-validity is crucial for mechanised reasoning in the theory \mathcal{T}.
- It may be necessary (or convenient) to restrict the class of formulas under consideration to a suitable fragment (i.e., syntactical constraint).
- The \mathcal{T}-validity problem in a fragment refers to the decision about whether or not $\phi \in \mathcal{T}$ when ϕ belongs to the fragment under consideration.
- A fragment of interest is the quantifier-free (QF) fragment.

Equality and uninterpreted functions \mathcal{T}_{E}

- The vocabulary of the theory of equality \mathcal{T}_{E} consists of
- equality (=), which is the only interpreted symbol (whose meaning is defined via the axioms of \mathcal{T}_{E});
- constant, function and predicate symbols, which are uninterpreted (except as they relate to $=$).
- Axioms:
- reflexivity: $\forall x . x=x$
- symmetry: $\forall x, y . x=y \rightarrow y=x$
- transitivity: $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
- congruence for functions: for every function $f \in \mathcal{T}$ with $\operatorname{ar}(f)=n$,

$$
\forall \bar{x}, \bar{y} \cdot\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

- congruence for predicates: for every predicate $P \in \mathcal{T}$ with $\operatorname{ar}(P)=n$, $\forall \bar{x}, \bar{y} .\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)$
- \mathcal{T}_{E}-validity is undecidable, but efficiently decidable for the QF fragment.

Linear integer arithmetic $\mathcal{T}_{\mathbb{Z}}$

- Vocabulary: $\mathcal{V}_{\mathbb{Z}}=\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,>,=\}$
- Each symbol is interpreted with its standard mathematical meaning in \mathbb{Z}.
- Note: ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions. For example, the intended meaning of $3 \cdot x$ is $x+x+x$, and of $-2 \cdot x$ is $-x-x$.

$\mathcal{T}_{\mathbb{Z}}$ and $\mathcal{T}_{\mathbb{N}}$ have the same expressiveness

For every formula of $\mathcal{T}_{\mathbb{Z}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{N}}$.
For every formula of $\mathcal{T}_{\mathbb{N}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{Z}}$.

- $\mathcal{T}_{\mathbb{Z}}$ is both complete and decidable via the rewriting of $\mathcal{T}_{\mathbb{Z}}$-formulae into $\mathcal{T}_{\mathbb{N}}$-formulae.
- One usually works with the theory of Linear Integer Arithmetic (LIA).
- Note that non-linear integer arithmetic is undecidable even for the quantifier free case.

Presburger arithmetic $\mathcal{T}_{\mathbb{N}}$

- The theory of Presburger arithmetic $\mathcal{T}_{\mathbb{N}}$ is the additive fragment of the theory of Peano.
- Vocabulary: $\mathcal{V}_{\mathbb{N}}=\{0,1,+,=\}$
- Axioms:
- axioms of \mathcal{T}_{E}
- $\forall x . \neg(x+1=0)$
- $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
- $\forall x \cdot x+0=x$
(plus successor)
- $\forall x, y \cdot x+(y+1)=(x+y)+1$
(pa of induction)

$$
\phi[0 / x] \wedge(\forall x . \phi \rightarrow \phi[x+1 / x]) \rightarrow \forall x . \phi
$$

- $\mathcal{T}_{\mathbb{N}}$ is both complete and decidable (Presburger, 1929), but it has double exponential complexity.

Maria João Frade (HASLab, DI-UM)

Linear rational arithmetic $\mathcal{T}_{\mathbb{Q}}$

- The full theory of rational numbers (with addition and multiplication) is undecidable.
- But the theory of linear arithmetic over rational numbers $\mathcal{T}_{\mathbb{Q}}$ is decidable, and actually more efficiently than the corresponding theory of integers.
- Vocabulary: $\mathcal{V}_{\mathbb{Q}}=\{0,1,+,-,=, \geq\}$
- Axioms: 10 axioms (see Manna's book)
- Rational coefficients can be expressed in $\mathcal{T}_{\mathbb{Q}}$.

The formula $\frac{5}{2} x+\frac{4}{3} y \leq 6$ can be written as the $\mathcal{T}_{\mathbb{Q}}$-formula

$$
36 \geq 15 x+8 y
$$

- $\mathcal{T}_{\mathbb{Q}}$ is decidable and its quantifier-free fragment is efficiently decidable.

Reals $\mathcal{T}_{\mathbb{R}}$

- Surprisingly, the theory of reals $\mathcal{T}_{\mathbb{R}}$ is decidable even in the presence of multiplication and quantifiers.
- Vocabulary: $\mathcal{V}_{\mathbb{R}}=\{0,1,+, \times,-,=, \geq\}$
- Axioms: 17 axioms (see Manna's book)

The inclusion of multiplication allows a formula like $\exists x . x^{2}=3$ to be expressed (x^{2} abbreviates $x \times x$). This formula should be $\mathcal{T}_{\mathbb{R}}$-valid, since the assignment $x \mapsto \sqrt{3}$ satisfies $x^{2}=3$

- $\mathcal{T}_{\mathbb{R}}$ is decidable (Tarski, 1949). However, it has a high time complexity (doubly exponential).

Arrays \mathcal{T}_{A} and $\mathcal{T}_{\mathrm{A}}^{=}$

- Arrays are modeled in logic as applicative data structures.
- Vocabulary: $V_{\mathrm{A}}=\{$ read, write,$=\}$
- Axioms:
- (reflexivity), (symmetry) and (transitivity) of \mathcal{T}_{E}
- $\forall a, i, j . i=j \rightarrow \operatorname{read}(a, i)=\operatorname{read}(a, j)$
- $\forall a, i, j, v . i=j \rightarrow \operatorname{read}(\operatorname{write}(a, i, v), j)=v$
- $\forall a, i, j, v . \neg(i=j) \rightarrow \operatorname{read}(w r i t e(a, i, v), j)=\operatorname{read}(a, j)$
- = is only defined for array elements.
- $\mathcal{T}_{\mathrm{A}}=$ is the theory \mathcal{T}_{A} plus an axiom (extensionality) to capture $=$ on arrays.
- $\forall a, b$. $(\forall i . \operatorname{read}(a, i)=\operatorname{read}(b, i)) \leftrightarrow a=b$
- Both \mathcal{T}_{A} and $\mathcal{T}_{\mathrm{A}}=$ are undecidable. But their quantifier-free fragments are decidable.
- Alternative fragments are often preferred that subsume the quantifier-free fragment (allowing restricted forms of index quantification).

Difference arithmetic

- Difference logic is a fragment (a sub-theory) of linear arithmetic.
- Atomic formulas have the form $x-y \leq c$, for variables x and y and constant c.
- Conjunctions of difference arithmetic inequalities can be checked very efficiently for satisfiability by searching for negative cycles in weighted directed graphs.
Graph representation: each variable corresponds to a node, and an inequality of the form $x-y \leq c$ corresponds to an edge from y to x with weight c.
- The quantifier-free satisfiability problem is solvable in $\mathcal{O}(|V||E|)$.

Other theories

- Fixed-size bit-vectors
- Model bit-level operations of machine words, including 2^{n}-modular operations (where n is the word size), shift operations, etc.
- Decision procedures for the theory of fixed-size bit vectors often rely on appropriate encodings in propositional logic.
- Algebraic data structures
- The theories describe data structures that are ubiquitous in programming like lists, stacks, binary trees, etc.
- These theories are built around the theory of equality with uninterpreted functions, and are normally efficiently decidable for the quantifier-free fragment.

Combining theories

- In practice, the most of the formulae we want to check need a combination of theories

Checking $\quad x+2=y \rightarrow f(\operatorname{read}(\operatorname{write}(a, x, 3), y-2))=f(y-x+1)$ involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

- Given theories \mathcal{T}_{1} and \mathcal{T}_{2} such that $\mathcal{V}_{1} \cap \mathcal{V}_{2}=\{=\}$, the combined theory $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ has vocabulary $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ and axioms $A_{1} \cup A_{2}$
[Nelson\&Oppen, 1979] showed that if
- satisfiability of the quantifier-free fragment of \mathcal{T}_{1} is decidable
- satisfiability of the quantifier-free fragment of \mathcal{T}_{2} is decidable, and
- certain technical requirements are met,
then the satisfiability in the quantifier-free fragment of $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is decidable.
- Most methods available are based on the Nelson-Oppen combination method.

Satisfiability Modulo Theories

- The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT problem for first-order logic, with the interpretation of symbols constrained by (a combination of) specific theories (i.e., it is the problem of determining, for a theory \mathcal{T} and given a formula ϕ, whether ϕ is \mathcal{T}-satisfiable).
- SMT solvers address this problem. They are the core engine of many tools for program analysis, program verification, test-cases generation, bounded model checking of software, modeling, planning and scheduling, ..

SMT solvers

SMT solvers

- SMT solvers use as building blocks a propositional SAT solver, and state-of-the-art theory solvers
- theories need not be finitely or even first-order axiomatizable
- specialized inference methods are used for each theory

- Equality + UF
- Linear Integer Arithmetic

Reals

- Bit-vectors
-

Lifting SAT technology to SMT

For a lot of theories one has (efficient) decision procedures for a limited kind of input problems: sets (or conjunctions) of literals.

- To deal with boolean combinations of literals there are two main approaches:
- Eager approach
* translate into an equisatisfiable propositional formula
* feed it to any SAT solver
- Lazy approach
\star abstract the input formula to a propositional one
* feed it to a (DPLL-based) SAT solver
\star use a theory decision procedure to refine the formula and guide the SAT solver

The SMT-LIB repository

- Catalog of theory declarations - semi-formal specification of theories of interest
- A theory defines a vocabulary of sorts and functions. The meaning of the theory symbols are specified in the theory declaration.
- Catalog of logic declarations - semi-formal specification of fragments of (combinations of) theories
- A logic consists of one or more theories, together with some restrictions on the kinds of expressions that may be used within that logic.
- Check the website http://smtlib.cs.uiowa.edu

SMT solvers

- SMT provers have undergone dramatic progress in efficiency and expressiveness. A key ingredient is the SMT-LIB ${ }^{1}$ is an international initiative aimed at facilitating research and development in SMT theories.

SMT-LIB

THE SATISFIABILITY MODULO THEORIES LIBRARY

- Its website is an online resource that proposes, as a standard, a unified notation and provides a collection of benchmarks for performance evaluation and comparison of tools, and many usefull information.
- Some SMT solvers: Z3, CVC4, Alt-Ergo,Yices 2, MathSAT, Boolector, ...
- Usually, SMT solvers accept input either in a proprietary format or in SMT-LIB format.

```
    \({ }^{1}\) http://smtlib.cs.uiowa.edu
Maria Joâo Frade (HASLab, D-UM)
```

SMT

MFES 2023/24 22/48

The SMT-LIB language

- Textual, command-based I/O format for SMT solvers.
- Two versions: SMT-LIB 1, SMT-LIB 2 (last version: 2.6)
- Intended mostly for machine processing.

All input to and output from a conforming solver is a sequence of one or more S-expressions

$$
\langle\mathrm{S}-\exp \rangle::=\langle\text { token }\rangle\left(\langle\mathrm{S}-\exp \rangle^{*}\right)
$$

- SMT-LIB language expresses logical statements in a many-sorted first-order logic. Each well-formed expression has a unique sort (type).
- Typical usage:
- Asserting a series of logical statements, in the context of a given logic.
- Checking their satisfiability in the logic.
- Exploring resulting models (if SAT) or proofs (if UNSAT)

Theorem provers / SAT checkers

$$
\phi \text { is valid iff } \quad \neg \phi \text { is unsatisfiable }
$$

It may happen that, for a given formula, a SMT solver returns a timeout, while another SMT solver returns a concrete answer.

Maria João Frade (HASLab, DI-UM)

SMT-LIB 2 example

```
(set-logic QF_UFLIA)
(set-option :produce-unsat-cores true)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-funz () Int)
(assert (! (distinct x y z) :named a1))
(assert (! (> (+ x y) (* 2 z)) :named a2))
(assert (! (>= x 0) :named a3))
(assert (! (>= y 0) :named a4))
(assert (! (>= z 0) :named a5))
(assert (! (>= z x) :named a6))
(assert (! (> xy) :named a7))
(assert (! (> y z) :named a8))
(check-sat)
(get-unsat-core)
```

unsat
(a7 a2 a6)

SMT-LIB 2 example

(set-logic QF_UFLIA)
(declare-fun $\times() \mathrm{Int}$)
(declare-fun y () Int)
(declare-fun $z() \operatorname{lnt})$
(assert (distinct x y z)
(assert (> (+xy) (*2z))
(assert (>=x0))
(assert (>=y 0))
(assert (>= z 0))
(check-sat)
(get-model)
(get-value (x y z))
sat
(model (define-fun z () Int 1)
(define-fun y () Int 0)
(define-fun x () Int 3))
$((x 3)(y 0)(z 1))$
Maria João Frade (HASLab, DI-UM)

SMT-LIB 2 example

Logical encoding of the C program:

$x=x+1 ;$
$a[i]=x+2 ;$
$y=a[i]$

- We use the logic QF_AUFLIA (quantifier-free linear formulas over the theory of integer arrays extended with free sort and function symbol).
- An access to array $a[i]$ is encoded by (select a i).
- An assigment a [i] = v is encoded by (store a i v). The result is a new array in everything equal to array a except in position i which now has the value v.
- Assignments such as $x=x+1$ are encoded by introducing variables (e.g. $x 0$ and x 1) which represent the value of x before and after the assignment. The logical encoding would be in this case (= x1 (+ x0 1)).

SMT-LIB 2 example

(set-logic QF_AUFLIA)	
;; Logical encoding of the C program:	
;;	$x=x+1 ;$
$; ;$	$a[i]=x+2 ;$
$; ;$	$y=a[i] ;$
(declare-const a0 (Array Int Int))	

(declare-const a0 (Array Int Int))
(declare-const a1 (Array Int Int))
(declare-const iO Int)
(declare-const x0 Int)
(declare-const x1 Int)
(declare-const y1 Int)
(assert (=x1 (+x01)))
(assert (= a1 (store a0 i0 $(+x 12))$))
(assert (= y1 (select a1 i0)))
;; Is it true that after the execution of the program $\mathbf{y}>\mathrm{x}$ holds?
(assert (not $(>y 1 \times 1))$)
(check-sat)
;; Yes!
unsat
Maria João Frade (HASLab, DI-UM)

pySMT library

- The pySMT ${ }^{2}$ library allows a Python program to communicate with several SMT solvers based on a common language.
- This makes it possible to code a problem independently of the SMT solver, and run the same problem with several SMT solvers.

[^0]Maria João Frade (HASLab, DI-UM)
SMT

SMT solvers APIs

- Several SAT solvers have APIs for different programming languages that allow an incremental use of the solver.
- For instance, Z3Py: the Z3 Python API.

> from z3 import *
s = Solver()
$x=\operatorname{Int}(' x$ ')
y $=\operatorname{Int}\left({ }^{\prime} y\right.$ ')
$z=\operatorname{Int}(' z ')$
s. add(Distinct($x, y, z)$)
s. $\operatorname{add}(x+y>2 * z)$
s.add ($x>=0, y>=0, z>=0$)
if s.check() == sat:
$\mathrm{m}=\mathrm{s}$.model()
print(m)
else:
print('There is no solution.')

Z3Py Sudoku example

See the Colab notebook with the Sudoku puzzle using the Z3 API for Python.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

SW bug catching using SAT/SMT technology

Main ideia:

Given a program and a claim use a SAT/SMT solver to find whether there exists an execution that violates the claim.

How does it work?

- Transform a program into a set of equations.
(1) Simplify control flow.
(2) Unwind all the loops
(3) Convert into Single Assignment form.
(9) Convert into equations
- Solve the equations with a SAT/SMT solver.
- Convert the SAT assignment (if any) into a counterexample.

SW bug catching using SAT/SMT technology

- Bounded Model Checking of SW explores this ideia.
- A successful example is the tool CBMC: a bounded model checker for C programs.
- CBMC demonstrates the violation of assertions in C programs, or proves safety of the assertions under a given bound.
- CBMC implements a bit-precise translation of an input C program, annotated with assertions and with loops unrolled to a given depth, into a formula. If the formula is satisfiable, then an execution leading to a violated assertion exists.
- CBMC is not able to prove correctness for programs with unbounded loops in general, but is very useful for bug catching.

Logical enconding of a branching program

The logical enconding of a branching program should be performed as follows:
(1) Convert the program into single-assignment (SA) form.
(2) Convert the SA program into conditional normal form (CNF).
(3) Convert each CNF statement into a logical formula.

Let us see each of these steps...

Single-assignment (SA) form

- A program is in single-assignment (SA) form if all its variables satisfies the following proprety:
- Once a variable has been used (i.e., read or assigned) it is not assigned again.
- To encode a (branching) program into a logical formula, one should first convert the program into a SA form in wich multiple indexed version of each variable are used (a new version for each assignment made)

$$
\begin{aligned}
& \text { original program } \\
& x=y+z \\
& \text { if }(x>y) \\
& \mathrm{x}=\mathrm{x}+10 \quad \longrightarrow \\
& \text { else } \quad \begin{array}{l}
y=x+5 ;
\end{array} \\
& \mathrm{z}=\mathrm{x}+\mathrm{y} \text {; } \\
& \text { single-assignment form } \\
& \mathrm{x}_{1}=\mathrm{y}_{0}+\mathrm{z}_{0} \text {; } \\
& \text { if }\left(x_{1}>y_{0}\right) \\
& \mathrm{x}_{2}=\mathrm{x}_{1}+10 \text {; } \\
& \text { else } \\
& \mathrm{y}_{1}=\mathrm{x}_{1}+5 \text {; } \\
& \mathrm{x}_{3}=\mathrm{x}_{1}>\mathrm{y}_{0} ? \mathrm{x}_{2}: \mathrm{x}_{1} \text {, } \\
& \mathrm{y}_{2}=\mathrm{x}_{1}>\mathrm{y}_{0} \text { ? } \mathrm{y}_{0}: \mathrm{y}_{1} \text {; } \\
& \mathrm{z}_{1}=\mathrm{x}_{3}+\mathrm{y}_{2} \text {; }
\end{aligned}
$$

Maria João Frade (HASLab, DI-UM)

Program model in SMT-LIB 2

[^1]
Conditional normal form

The second step for the logical enconding of the program is to convert the SA program into conditional normal form: a sequence of statements of the form (if b then S), where S is an atomic statement.

- The idea is that every atomic statement is guarded by the conjunction of the conditions in the execution path leading to it.

$$
\begin{aligned}
& \text { single-assignment form } \\
& \mathrm{x}_{1}=\mathrm{y}_{0}+\mathrm{z}_{0} \text {; } \\
& \text { if }\left(\mathrm{x}_{1}>\mathrm{y}_{0}\right) \\
& \mathrm{x}_{2}=\mathrm{x}_{1}+10 \\
& \text { else } \\
& y_{1}=x_{1}+5 ; \\
& \mathrm{x}_{3}=\mathrm{x}_{1}>\mathrm{y}_{0} ? \mathrm{x}_{2}: \mathrm{x}_{1} \\
& \mathrm{y}_{2}=\mathrm{x}_{1}>\mathrm{y}_{0} \text { ? } \mathrm{y}_{0}: \mathrm{y}_{1} \text {; } \\
& \mathrm{z}_{1}=\mathrm{x}_{3}+\mathrm{y}_{2} \text {; } \\
& \text { conditional normal form } \\
& \mathrm{x}_{1}=\mathrm{y}_{0}+\mathrm{z}_{0} \text {; } \\
& \text { if }\left(x_{1}>y_{0}\right) \quad x_{2}=x_{1}+10 \\
& \Longrightarrow \quad \text { if }\left(!\left(x_{1}>y_{0}\right)\right) y_{1}=x_{1}+5 \text {; } \\
& \mathrm{x}_{3}=\mathrm{x}_{1}>\mathrm{y}_{0} ? \mathrm{x}_{2}: \mathrm{x}_{1} \text {; } \\
& \mathrm{y}_{2}=\mathrm{x}_{1}>\mathrm{y}_{0} \text { ? } \mathrm{y}_{0}: \mathrm{y}_{1} \\
& \mathrm{z}_{1}=\mathrm{x}_{3}+\mathrm{y}_{2} \text {; }
\end{aligned}
$$

Checking properties of the program

Checking properties of the program

$$
\begin{aligned}
& \text { single-assignment form } \\
& \mathrm{x}_{1}=\mathrm{y}_{0}+\mathrm{z}_{0} ; \\
& \text { if }\left(\mathrm{x}_{1}>\mathrm{y}_{0}\right)\{ \\
& \quad \mathrm{x}_{2}=\mathrm{x}_{1}+10 ; \\
& \quad \text { assert } \mathrm{z}_{0}>0 ; \\
& \} \text { else } \\
& \quad \mathrm{y}_{1}=\mathrm{x}_{1}+5 ; \\
& \mathrm{x}_{3}=\mathrm{x}_{1}>\mathrm{y}_{0} ? \mathrm{x}_{2}: \mathrm{x}_{1} ; \\
& \mathrm{y}_{2}=\mathrm{x}_{1}>\mathrm{y}_{0} ? \mathrm{y}_{0}: \mathrm{y}_{1} ; \\
& \mathrm{z}_{1}=\mathrm{x}_{3}+\mathrm{y}_{2} ; \\
& \text { assert } \mathrm{x}_{3}==0 ;
\end{aligned}
$$

Checking properties of the program

The properties to be checked are: $\left(x_{1}>y_{0} \rightarrow z_{0}>0\right)$ and $\left(x_{3}=0\right)$.

Let Γ be the set of formulas of the logical encoding of the program and F be the property to be checked.

$$
\begin{aligned}
& \Gamma \models_{\mathcal{T}} F \quad \text { iff } \quad \begin{array}{l}
\text { no computation path of the program violates the } \\
\text { property. }
\end{array}
\end{aligned}
$$

- If $\Gamma \wedge \neg F$ is satisfiable, a counter-example can be shown.
- The \mathcal{T}-models of $\Gamma \wedge \neg F$ (if any) correspond to the execution paths of the program that lead to the assertion violation.

Enconding in SMT-LIB 2

Z3Py enconding

See the Colab notebook with the logical enconding of the program.

An example with nested ifs

$$
\begin{aligned}
& \text { conditional normal form } \\
& \begin{array}{l}
\text { if }\left(x_{0}>10 \& \& y_{0}<0\right) x_{2}=x_{1}-y_{0} ; \\
\text { if }\left(x_{0}>10 \& \&!\left(y_{0}<0\right)\right) x_{3}=x_{1}+y_{0} \text {; }
\end{array} \\
& \text { if }\left(\mathrm{x}_{0}>10\right) \mathrm{x}_{4}=\left(\mathrm{y}_{0}<0\right) ? \mathrm{x}_{2}: \mathrm{x}_{3} \text {; } \\
& \mathrm{x}_{5}=\mathrm{x}_{0}>10 ? \mathrm{x}_{4}: \mathrm{x}_{0} \text {; } \\
& \text { \} } \\
& r_{1}=x_{5}+x_{5} \text {; } \\
& \mathrm{x}_{5}=\mathrm{x}_{0}>10 ? \mathrm{x}_{4}: \mathrm{x}_{0} \\
& r_{1}=x_{5}+x_{5} \text {; }
\end{aligned}
$$

An example with nested ifs

Here is an example of the transformation of a program with nested if-commands, towards its logical enconding.

```
original program
if (x>10)
{
    x = x - 10;
        if (y<0) = 
        else
        x = x+y
}
r = x + x;
single-assignment form
if (\mp@subsup{x}{0}{}>10)
{
    x
    if (yo<0)
    x
    else
        x
        x
}
\mp@subsup{x}{5}{}}=\mp@subsup{x}{0}{}>10?\mp@subsup{\textrm{x}}{4}{}:\mp@subsup{\textrm{x}}{0}{
r
```


An example with nested ifs

$$
\begin{aligned}
& \text { conditional normal form } \\
& \text { if }\left(x_{0}>10\right) x_{1}=x_{0}-10 \\
& \text { if }\left(x_{0}>10 \& \& y_{0}<0\right) x_{2}=x_{1}-y_{0} \\
& \text { if }\left(\mathrm{x}_{0}>10 \& \&!\left(\mathrm{y}_{0}<0\right)\right) \mathrm{x}_{3}=\mathrm{x}_{1}+\mathrm{y}_{0} \text {; } \\
& \text { if }\left(\mathrm{x}_{0}>10\right) \mathrm{x}_{4}=\left(\mathrm{y}_{0}<0\right) ? \mathrm{x}_{2}: \mathrm{x}_{3} \text {; } \\
& \mathrm{x}_{5}=\mathrm{x}_{0}>10 ? \mathrm{x}_{4}: \mathrm{x}_{0} \\
& r_{1}=x_{5}+x_{5} \text {; } \\
& \text { logical constraints } \\
& x_{0}>10 \rightarrow x_{1}=x_{0}-10 \\
& x_{0}>10 \wedge y_{0}<0 \rightarrow x_{2}=x_{1}-y_{0} \\
& x_{0}>10 \wedge \neg\left(y_{0}<0\right) \rightarrow x_{3}=x_{1}+y_{0} \\
& x_{0}>10 \wedge y_{0}<0 \rightarrow x_{4}=x_{2} \\
& x_{0}>10 \wedge \neg\left(y_{0}<0\right) \rightarrow x_{4}=x_{3} \\
& x_{0}>10 \rightarrow x_{5}=x_{4} \\
& \neg\left(x_{0}>10\right) \rightarrow x_{5}=x_{0} \\
& r_{1}=x_{5}+x_{5}
\end{aligned}
$$

[^0]: ${ }^{2}$ www.pysmt.org

[^1]: (set-logic QF_LIA)
 (declare-fun x1 () Int)
 (declare-fun x2 () Int)
 (declare-fun x3 () Int)
 (declare-fun y0 () Int)
 (declare-fun y1 () Int)
 (declare-fun y2 () Int)
 (declare-fun z0 () Int)
 (declare-fun z1 () Int)
 (assert (= x1 (+ y0 z0)))
 (assert (=> (> x1 y0) (= x2 (+ x1 10))))
 (assert (=> (not (> x1 y0)) (= y1 (+ x1 5))))
 (assert (= x3 (ite ($>\mathrm{x} 1 \mathrm{y} 0$) x 2 x 1)))
 (assert (= y2 (ite (> x1 y0) y0 y1)))
 (assert (= z1 (+ x3 y2)))

