
First-Order Theories & SMT Solvers

Maria João Frade

HASLab - INESC TEC

Departamento de Informática, Universidade do Minho

2023/2024

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 1 / 48

First-Order Theories

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 2 / 48

Introduction

When judging the validity of first-order formulas we are typically interested
in a particular domain of discourse, which in addition to a specific underlying
vocabulary includes also properties that one expects to hold.

For instance, in formal methods involving the integers, one is not interested
in showing that the formula

8x, y. x < y ! x < y + y

is true for all possible interpretations of the symbols < and +, but only for
those interpretations in which < is the usual ordering over the integers and
+ is the addition function.

We are not interested in validity in general but in validity with respect to
some background theory – a logical theory that fixes the interpretations of
certain predicates and function symbols.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 3 / 48

Introduction

Stated di↵erently, we are often interested in moving away from pure logical
validity (i.e. validity in all models) towards a more refined notion of validity
restricted to a specific class of models.

There are two ways for specifying such a class of models:

I To provide a set of axioms (sentences that are expected to hold in
them).

I To pinpoint the models of interest.

First-order theories provide a basis for the kind of reasoning just described.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 4 / 48

Theories - basic concepts

Let V be a vocabulary of a first-order language.

A first-order theory T is a set of V-sentences that is closed under derivability
(i.e., T |= � implies � 2 T).

A T -structure is a V-structure that validates every formula of T .

A formula � is T -valid if every T -structure validates �.

A formula � is T -satisfiable if some T -structure validates �.

Two formulae � and are T -equivalent if T |= �$ (i.e, for every
T -structure M, M |= � i↵ M |=).

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 5 / 48

Theories - basic concepts

Let T be a first-order theory.

T is said to be a consistent theory if at least one T -structure exists.

T is said to be a complete theory if, for every V-sentence �, either T |= � or
T |= ¬�.

T is said to be a decidable theory if there exists a decision procedure for
checking T -validity.

A subset A ✓ T is called an axiom set for the theory T , when T is the
deductive closure of A, i.e. � 2 T i↵ A |= �.

A theory T is finitely (resp. recursively) axiomatizable if it possesses a finite
(resp. recursive) set of axioms.

A fragment of a theory is a syntactically-restricted subset of formulae of the
theory.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 6 / 48

Theories - some results

For a given V-structure M, the theory Th(M)= {� | M |= �, for all } is
complete.

I These semantically defined theories are useful when one is interested in
reasoning in some specific mathematical domain such as the natural
numbers, rational numbers, etc.

I Such theories may lack an axiomatisation, which seriously compromises
its use in purely deductive reasoning.

If a theory is complete and recursive axiomatizable, it can be shown to be
decidable.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 7 / 48

Theories - decidability problem

The decidability criterion for T -validity is crucial for mechanised reasoning in
the theory T .

It may be necessary (or convenient) to restrict the class of formulas under
consideration to a suitable fragment (i.e., syntactical constraint).

The T -validity problem in a fragment refers to the decision about whether
or not � 2 T when � belongs to the fragment under consideration.

A fragment of interest is the quantifier-free (QF) fragment.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 8 / 48

Equality and uninterpreted functions TE

The vocabulary of the theory of equality TE consists of

I equality (=), which is the only interpreted symbol (whose meaning is
defined via the axioms of TE);

I constant, function and predicate symbols, which are uninterpreted
(except as they relate to =).

Axioms:

I reflexivity: 8x. x = x
I symmetry: 8x, y. x = y ! y = x
I transitivity: 8x, y, z. x = y ^ y = z ! x = z
I congruence for functions: for every function f 2 T with ar(f) = n,

8x, y. (x1 = y1 ^ . . . ^ xn = yn) ! f(x1, . . . , xn) = f(y1, . . . , yn)

I congruence for predicates: for every predicate P 2 T with ar(P) = n,

8x, y. (x1 = y1 ^ . . . ^ xn = yn) ! (P (x1, . . . , xn) $ P (y1, . . . , yn))

TE-validity is undecidable, but e�ciently decidable for the QF fragment.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 9 / 48

Presburger arithmetic TN

The theory of Presburger arithmetic TN is the additive fragment of the
theory of Peano.

Vocabulary: VN = {0, 1,+,=}

Axioms:

I axioms of TE
I 8x. ¬(x+ 1 = 0) (zero)

I 8x, y. x+ 1 = y + 1 ! x = y (successor)

I 8x. x+ 0 = x (plus zero)

I 8x, y. x+ (y + 1) = (x+ y) + 1 (plus successor)

I for every formula � with FV(�) = {x} (axiom schema of induction)

�[0/x] ^ (8x. �! �[x+ 1/x]) ! 8x. �

TN is both complete and decidable (Presburger, 1929), but it has double
exponential complexity.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 10 / 48

Linear integer arithmetic TZ

Vocabulary: VZ = {. . . ,�2,�1, 0, 1, 2, . . . ,�3·,�2·, 2·, 3·, . . . ,+,�, >,=}

Each symbol is interpreted with its standard mathematical meaning in Z.
I Note: . . . ,�3·,�2·, 2·, 3·, . . . are unary functions. For example, the

intended meaning of 3 · x is x+ x+ x, and of �2 · x is �x� x.

TZ and TN have the same expressiveness

I For every formula of TZ there is an equisatisfiable formula of TN.

I For every formula of TN there is an equisatisfiable formula of TZ.

TZ is both complete and decidable via the rewriting of TZ-formulae into
TN-formulae.

One usually works with the theory of Linear Integer Arithmetic (LIA).

Note that non-linear integer arithmetic is undecidable even for the quantifier
free case.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 11 / 48

Linear rational arithmetic TQ

The full theory of rational numbers (with addition and multiplication) is
undecidable.

But the theory of linear arithmetic over rational numbers TQ is decidable,
and actually more e�ciently than the corresponding theory of integers.

Vocabulary: VQ = {0, 1,+,�,=,�}

Axioms: 10 axioms (see Manna’s book)

Rational coe�cients can be expressed in TQ.

The formula 5
2x+ 4

3y 6 can be written as the TQ-formula

36 � 15x+ 8y

TQ is decidable and its quantifier-free fragment is e�ciently decidable.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 12 / 48

Reals TR

Surprisingly, the theory of reals TR is decidable even in the presence of
multiplication and quantifiers.

Vocabulary: VR = {0, 1,+,⇥,�,=,�}

Axioms: 17 axioms (see Manna’s book)

The inclusion of multiplication allows a formula like 9x. x2 = 3 to be expressed
(x2 abbreviates x⇥ x). This formula should be TR-valid, since the assignment
x 7!

p
3 satisfies x2 = 3.

TR is decidable (Tarski, 1949). However, it has a high time complexity
(doubly exponential).

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 13 / 48

Di↵erence arithmetic

Di↵erence logic is a fragment (a sub-theory) of linear arithmetic.

Atomic formulas have the form x� y c, for variables x and y and
constant c.

Conjunctions of di↵erence arithmetic inequalities can be checked very
e�ciently for satisfiability by searching for negative cycles in weighted
directed graphs.

Graph representation: each variable corresponds to a node, and an inequality
of the form x� y c corresponds to an edge from y to x with weight c.

The quantifier-free satisfiability problem is solvable in O(|V ||E|).

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 14 / 48

Arrays TA and T
=
A

Arrays are modeled in logic as applicative data structures.

Vocabulary: VA = {read, write,=}

Axioms:

I (reflexivity), (symmetry) and (transitivity) of TE
I 8a, i, j. i = j ! read(a, i) = read(a, j)

I 8a, i, j, v. i = j ! read(write(a, i, v), j) = v

I 8a, i, j, v. ¬(i = j) ! read(write(a, i, v), j) = read(a, j)

= is only defined for array elements.

T
=
A

is the theory TA plus an axiom (extensionality) to capture = on arrays.

I 8a, b. (8i. read(a, i) = read(b, i)) $ a = b

Both TA and T
=
A

are undecidable. But their quantifier-free fragments are
decidable.

Alternative fragments are often preferred that subsume the quantifier-free
fragment (allowing restricted forms of index quantification).

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 15 / 48

Other theories

Fixed-size bit-vectors

I Model bit-level operations of machine words, including 2n-modular
operations (where n is the word size), shift operations, etc.

I Decision procedures for the theory of fixed-size bit vectors often rely on
appropriate encodings in propositional logic.

Algebraic data structures

I The theories describe data structures that are ubiquitous in
programming like lists, stacks, binary trees, etc.

I These theories are built around the theory of equality with
uninterpreted functions, and are normally e�ciently decidable for the
quantifier-free fragment.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 16 / 48

Combining theories

In practice, the most of the formulae we want to check need a combination
of theories.

Checking x+ 2 = y ! f(read(write(a, x, 3), y � 2)) = f(y � x+ 1)

involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

Given theories T1 and T2 such that V1 \ V2 = {=}, the combined theory

T1 [T2 has vocabulary V1 [V2 and axioms A1 [A2

[Nelson&Oppen, 1979] showed that if

I satisfiability of the quantifier-free fragment of T1 is decidable,
I satisfiability of the quantifier-free fragment of T2 is decidable, and
I certain technical requirements are met,

then the satisfiability in the quantifier-free fragment of T1 [T2 is decidable.

Most methods available are based on the Nelson-Oppen combination
method.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 17 / 48

SMT solvers

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 18 / 48

Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by (a combination of) specific theories (i.e., it is the problem of determining,
for a theory T and given a formula �, whether � is T -satisfiable).

SMT solvers address this problem. They are the core engine of many tools
for program analysis, program verification, test-cases generation, bounded
model checking of software, modeling, planning and scheduling, ...

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 19 / 48

SMT solvers

SMT solvers use as building blocks a propositional SAT solver, and
state-of-the-art theory solvers

I theories need not be finitely or even first-order axiomatizable
I specialized inference methods are used for each theory

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 20 / 48

Lifting SAT technology to SMT

For a lot of theories one has (e�cient) decision procedures for a limited kind of
input problems: sets (or conjunctions) of literals.

To deal with boolean combinations of literals there are two main
approaches:

I Eager approach

F translate into an equisatisfiable propositional formula
F feed it to any SAT solver

I Lazy approach

F abstract the input formula to a propositional one
F feed it to a (DPLL-based) SAT solver
F use a theory decision procedure to refine the formula and guide the

SAT solver

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 21 / 48

SMT solvers

SMT provers have undergone dramatic progress in e�ciency and
expressiveness. A key ingredient is the SMT-LIB1 is an international
initiative aimed at facilitating research and development in SMT theories.

Its website is an online resource that proposes, as a standard, a unified
notation and provides a collection of benchmarks for performance evaluation
and comparison of tools, and many usefull information.

Some SMT solvers: Z3, CVC4, Alt-Ergo,Yices 2, MathSAT, Boolector, ...

Usually, SMT solvers accept input either in a proprietary format or in
SMT-LIB format.

1http://smtlib.cs.uiowa.edu
Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 22 / 48

The SMT-LIB repository

Catalog of theory declarations - semi-formal specification of theories
of interest

I A theory defines a vocabulary of sorts and functions. The meaning of
the theory symbols are specified in the theory declaration.

Catalog of logic declarations - semi-formal specification of fragments
of (combinations of) theories

I A logic consists of one or more theories, together with some restrictions
on the kinds of expressions that may be used within that logic.

Check the website http://smtlib.cs.uiowa.edu

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 23 / 48

The SMT-LIB language

Textual, command-based I/O format for SMT solvers.

I Two versions: SMT-LIB 1, SMT-LIB 2 (last version: 2.6)
I Intended mostly for machine processing.

All input to and output from a conforming solver is a sequence of one or more
S-expressions

hS-expi ::= htokeni | (hS-expi⇤)

SMT-LIB language expresses logical statements in a many-sorted first-order
logic. Each well-formed expression has a unique sort (type).

Typical usage:

I Asserting a series of logical statements, in the context of a given logic.
I Checking their satisfiability in the logic.
I Exploring resulting models (if SAT) or proofs (if UNSAT)

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 24 / 48

Theorem provers / SAT checkers

� is valid i↵ ¬� is unsatisfiable

logical formula

timeout or
memoutSMT solver

unsat +
proof

sat +
model

It may happen that, for a given formula, a SMT solver returns a timeout,
while another SMT solver returns a concrete answer.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 25 / 48

SMT-LIB 2 example

(set-logic QF UFLIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (distinct x y z))
(assert (> (+ x y) (* 2 z)))
(assert (>= x 0))
(assert (>= y 0))
(assert (>= z 0))
(check-sat)
(get-model)
(get-value (x y z))

sat
(model (define-fun z () Int 1)

(define-fun y () Int 0)
(define-fun x () Int 3))

((x 3) (y 0) (z 1))

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 26 / 48

SMT-LIB 2 example

(set-logic QF UFLIA)
(set-option :produce-unsat-cores true)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (! (distinct x y z) :named a1))
(assert (! (> (+ x y) (* 2 z)) :named a2))
(assert (! (>= x 0) :named a3))
(assert (! (>= y 0) :named a4))
(assert (! (>= z 0) :named a5))
(assert (! (>= z x) :named a6))
(assert (! (> x y) :named a7))
(assert (! (> y z) :named a8))
(check-sat)
(get-unsat-core)

unsat
(a7 a2 a6)

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 27 / 48

SMT-LIB 2 example

Logical encoding of the C program:

x = x + 1;

a[i] = x + 2;

y = a[i];

We use the logic QF AUFLIA (quantifier-free linear formulas over the theory of
integer arrays extended with free sort and function symbol).

An access to array a[i] is encoded by (select a i).

An assigment a[i] = v is encoded by (store a i v). The result is a new array
in everything equal to array a except in position i which now has the value v.

Assignments such as x = x+1 are encoded by introducing variables (e.g. x0 and
x1) which represent the value of x before and after the assignment. The logical
encoding would be in this case (= x1 (+ x0 1)).

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 28 / 48

SMT-LIB 2 example

(set-logic QF AUFLIA)
;; Logical encoding of the C program:
;; x = x + 1;
;; a[i] = x + 2;
;; y = a[i];
(declare-const a0 (Array Int Int))
(declare-const a1 (Array Int Int))
(declare-const i0 Int)
(declare-const x0 Int)
(declare-const x1 Int)
(declare-const y1 Int)

(assert (= x1 (+ x0 1)))
(assert (= a1 (store a0 i0 (+ x1 2))))
(assert (= y1 (select a1 i0)))
;; Is it true that after the execution of the program y>x holds?

(assert (not (> y1 x1)))
(check-sat) ;; Yes!

unsat

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 29 / 48

SMT solvers APIs

Several SAT solvers have APIs for di↵erent programming languages that
allow an incremental use of the solver.

For instance, Z3Py: the Z3 Python API.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 30 / 48

pySMT library

The pySMT2 library allows a Python program to communicate with several
SMT solvers based on a common language.

This makes it possible to code a problem independently of the SMT solver,
and run the same problem with several SMT solvers.

2www.pysmt.org
Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 31 / 48

Z3Py Sudoku example

See the Colab notebook with the Sudoku puzzle using the Z3 API for
Python.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 32 / 48

SW bug catching using SAT/SMT technology

Main ideia:

Given a program and a claim use a SAT/SMT solver to find whether there exists
an execution that violates the claim.

How does it work?

Transform a program into a set of equations.

1 Simplify control flow.
2 Unwind all the loops.
3 Convert into Single Assignment form.
4 Convert into equations.

Solve the equations with a SAT/SMT solver.

Convert the SAT assignment (if any) into a counterexample.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 33 / 48

SW bug catching using SAT/SMT technology

Bounded Model Checking of SW explores this ideia.

A successful example is the tool CBMC: a bounded model checker for C
programs.

I CBMC demonstrates the violation of assertions in C programs, or
proves safety of the assertions under a given bound.

I CBMC implements a bit-precise translation of an input C program,
annotated with assertions and with loops unrolled to a given depth,
into a formula. If the formula is satisfiable, then an execution leading
to a violated assertion exists.

I CBMC is not able to prove correctness for programs with unbounded
loops in general, but is very useful for bug catching.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 34 / 48

CBMC: a bounded model checker for C and C++ programs

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 35 / 48

Logical enconding of a branching program

The logical enconding of a branching program should be performed as
follows:

1 Convert the program into single-assignment (SA) form.

2 Convert the SA program into conditional normal form (CNF).

3 Convert each CNF statement into a logical formula.

Let us see each of these steps...

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 36 / 48

Single-assignment (SA) form

A program is in single-assignment (SA) form if all its variables satisfies the
following proprety:

I Once a variable has been used (i.e., read or assigned) it is not assigned

again.

To encode a (branching) program into a logical formula, one should first
convert the program into a SA form in wich multiple indexed version of each
variable are used (a new version for each assignment made).

original program
x = y+ z;
if (x > y)

x = x+ 10
else

y = x+ 5;
z = x+ y;

=)

single-assignment form
x1 = y0 + z0;
if (x1 > y0)

x2 = x1 + 10;
else

y1 = x1 + 5;
x3 = x1 > y0 ? x2 : x1;
y2 = x1 > y0 ? y0 : y1;
z1 = x3 + y2;

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 37 / 48

Conditional normal form

The second step for the logical enconding of the program is to convert the SA
program into conditional normal form: a sequence of statements of the form
(if b then S), where S is an atomic statement.

The idea is that every atomic statement is guarded by the conjunction of the
conditions in the execution path leading to it.

single-assignment form
x1 = y0 + z0;
if (x1 > y0)

x2 = x1 + 10;
else

y1 = x1 + 5;
x3 = x1 > y0 ? x2 : x1;
y2 = x1 > y0 ? y0 : y1;
z1 = x3 + y2;

=)

conditional normal form
x1 = y0 + z0;
if (x1 > y0) x2 = x1 + 10;
if (!(x1 > y0)) y1 = x1 + 5;
x3 = x1 > y0 ? x2 : x1;
y2 = x1 > y0 ? y0 : y1;
z1 = x3 + y2;

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 38 / 48

Program model in SMT-LIB 2

(set-logic QF LIA)
(declare-fun x1 () Int)
(declare-fun x2 () Int)
(declare-fun x3 () Int)
(declare-fun y0 () Int)
(declare-fun y1 () Int)
(declare-fun y2 () Int)
(declare-fun z0 () Int)
(declare-fun z1 () Int)

(assert (= x1 (+ y0 z0)))
(assert (=> (> x1 y0) (= x2 (+ x1 10))))
(assert (=> (not (> x1 y0)) (= y1 (+ x1 5))))
(assert (= x3 (ite (> x1 y0) x2 x1)))
(assert (= y2 (ite (> x1 y0) y0 y1)))
(assert (= z1 (+ x3 y2)))

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 39 / 48

Checking properties of the program

original program
x = y+ z;
if (x > y) {

x = x+ 10;
assert z > 0;

} else
y = x+ 5;

z = x+ y;
assert x == 0

=)

single-assignment form
x1 = y0 + z0;
if (x1 > y0) {

x2 = x1 + 10;
assert z0 > 0;

} else
y1 = x1 + 5;

x3 = x1 > y0 ? x2 : x1;
y2 = x1 > y0 ? y0 : y1;
z1 = x3 + y2;
assert x3 == 0;

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 40 / 48

Checking properties of the program

single-assignment form
x1 = y0 + z0;
if (x1 > y0) {

x2 = x1 + 10;
assert z0 > 0;

} else
y1 = x1 + 5;

x3 = x1 > y0 ? x2 : x1;
y2 = x1 > y0 ? y0 : y1;
z1 = x3 + y2;
assert x3 == 0;

=)

conditional normal form
x1 = y0 + z0;
if (x1 > y0) x2 = x1 + 10;
if (x1 > y0) assert z0 > 0;
if (!(x1 > y0)) y1 = x1 + 5;
x3 = x1 > y0 ? x2 : x1;
y2 = x1 > y0 ? y0 : y1;
z1 = x3 + y2;
assert x3 == 0;

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 41 / 48

Checking properties of the program

The properties to be checked are: (x1 > y0 ! z0 > 0) and (x3 = 0).

Let � be the set of formulas of the logical encoding of the program and F
be the property to be checked.

� |=T F i↵ no computation path of the program violates the
property.

If � ^ ¬F is satisfiable, a counter-example can be shown.

The T -models of � ^ ¬F (if any) correspond to the execution paths
of the program that lead to the assertion violation.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 42 / 48

Enconding in SMT-LIB 2

(set-logic QF LIA)
...
(assert (= x1 (+ y0 z0)))
(assert (=> (> x1 y0) (= x2 (+ x1 10))))
(assert (=> (not (> x1 y0)) (= y1 (+ x1 5))))
(assert (= x3 (ite (> x1 y0) x2 x1)))
(assert (= y2 (ite (> x1 y0) y0 y1)))
(assert (= z1 (+ x3 y2)))
(push)
(assert (not (=> (> x1 y0) (> z0 0))))
(check-sat)
(pop)
(push)
(assert (not (= x3 0)))
(check-sat)
(get-model)

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 43 / 48

Enconding in SMT-LIB 2

unsat Therefore (x1 > y0 ! z0 > 0) is valid.

sat Therefore (x3 = 0) doen’t hold.

(Here is a conter-example:

(define-fun y2 () Int

4)

(define-fun z0 () Int

0)

(define-fun x2 () Int

10)

(define-fun y1 () Int

4)

(define-fun x1 () Int

(- 1))

(define-fun x3 () Int

(- 1))

(define-fun y0 () Int

(- 1))

(define-fun z1 () Int

3)

)

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 44 / 48

Z3Py enconding

See the Colab notebook with the logical enconding of the program.

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 45 / 48

An example with nested ifs

Here is an example of the transformation of a program with nested if-commands,
towards its logical enconding.

original program
if (x > 10)
{

x = x� 10;
if (y < 0)
x = x� y;

else
x = x+ y;

}

r = x+ x;

=)

single-assignment form
if (x0 > 10)
{

x1 = x0 � 10;
if (y0 < 0)
x2 = x1 � y0;

else
x3 = x1 + y0;

x4 = y0 < 0 ? x2 : x3;
}

x5 = x0 > 10 ? x4 : x0;
r1 = x5 + x5;

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 46 / 48

An example with nested ifs

single-assignment form
if (x0 > 10)
{

x1 = x0 � 10;
if (y0 < 0)
x2 = x1 � y0;

else
x3 = x1 + y0;

x4 = y0 < 0 ? x2 : x3;
}

x5 = x0 > 10 ? x4 : x0;
r1 = x5 + x5;

=)

conditional normal form

if (x0 > 10) x1 = x0 � 10;
if (x0 > 10 && y0 < 0) x2 = x1 � y0;
if (x0 > 10 && !(y0 < 0)) x3 = x1 + y0;
if (x0 > 10) x4 = (y0 < 0) ? x2 : x3;
x5 = x0 > 10 ? x4 : x0;
r1 = x5 + x5;

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 47 / 48

An example with nested ifs

conditional normal form
if (x0 > 10) x1 = x0 � 10;
if (x0 > 10 && y0 < 0) x2 = x1 � y0;
if (x0 > 10 && !(y0 < 0)) x3 = x1 + y0;
if (x0 > 10) x4 = (y0 < 0) ? x2 : x3;
x5 = x0 > 10 ? x4 : x0;
r1 = x5 + x5;

=)

logical constraints
x0 > 10 ! x1 = x0 � 10
x0 > 10 ^ y0 < 0 ! x2 = x1 � y0
x0 > 10 ^ ¬(y0 < 0) ! x3 = x1 + y0
x0 > 10 ^ y0 < 0 ! x4 = x2

x0 > 10 ^ ¬(y0 < 0) ! x4 = x3

x0 > 10 ! x5 = x4

¬(x0 > 10) ! x5 = x0

r1 = x5 + x5

Maria João Frade (HASLab, DI-UM) SMT MFES 2023/24 48 / 48

