
First-Order Logic

Maria João Frade

HASLab - INESC TEC
Departamento de Informática, Universidade do Minho

2023/2024

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 1 / 40

Roadmap

Review of First-Order Logic

Many-sorted First-Order Logic

Modeling with First-Order Logic

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 2 / 40

(Classical) First-Order Logic

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 3 / 40

Introduction

First-order logic (FOL) is a richer language than propositional logic. Its lexicon

contains not only the symbols ^, _, ¬, and ! (and parentheses) from

propositional logic, but also the symbols 9 and 8 for “there exists” and “for all”

that range over a domain (universe) of discourse, along with various symbols to

represent variables, constants, functions, and relations.

There are two sorts of things involved in a first-order logic formula:

terms, which denote the objects that we are talking about;

formulas, which denote truth values.

Examples:

“Not all birds can fly.”
“Every mother is older than her children.”
“John and Peter have the same maternal grandmother.”

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 4 / 40

Syntax

The alphabet of a first-order language is organised into the following
categories.

Variables: x, y, z, . . . 2 X (arbitrary elements of an underlying domain)

Constants: a, b, c, . . . 2 C (specific elements of an underlying domain)

Functions: f, g, h, . . . 2 F (every function f has a fixed arity, ar(f))

Predicates: P,Q,R, . . . 2 P (every predicate P has a fixed arity, ar(P))

Logical connectives: >, ?, ^, _, ¬, !, 8 (for all), 9 (there exists)

Auxiliary symbols: “.”, “(“ and “)”.

We assume that all these sets are disjoint. C, F and P are the non-logical
symbols of the language. These three sets constitute the vocabulary
V = C [F [P.
(Alternatively, one could see constants as 0-ary functions.)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 5 / 40

Syntax

Terms

The set of terms of a first-order language over a vocabulary V is given by
the following abstract syntax

TermV 3 t ::= x | c | f(t1, . . . , tar(f))

Formulas

The set FormV , of formulas of FOL, is given by the abstract syntax

FormV 3 �, ::= P (t1, . . . , tar(P)) | ? | > | (¬�) | (� ^) | (� _)
| (�!) | (8x.�) | (9x.�)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 6 / 40

Syntax

Convention

We adopt some syntactical conventions to lighten the presentation of
formulas:

Outermost parenthesis are usually dropped.

In absence of parentheses, we adopt the following convention about
precedence. Ranging from the highest precedence to the lowest, we
have respectively: ¬, ^, _ and !. Finally we have that ! binds
more tightly than 8 and 9.
All binary connectives are right-associative.

Nested quantifications such as 8x.8y.� are abbreviated to 8x, y.�.
8x.� denotes the nested quantification 8x1, . . . , xn.�.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 7 / 40

Modeling with FOL

“Not all birds can fly.”

We can code this sentence assuming the two unary predicates B and F
expressing

B(x) – x is a bird
F (x) – x can fly

The declarative sentence “Not all birds can fly” can now be coded as

¬(8x.B(x) ! F (x))

or, alternatively, as
9x.B(x) ^ ¬F (x)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 8 / 40

Modeling with FOL

“Every mother is older than her children.”
“John and Peter have the same maternal grandmother.”

Using constants symbols J and P for John and Peter, and predicates =, mother
and older expressing that

x = y – x and y are equal (the same)
mother(x, y) – x is mother of y
older(x, y) – x is older than y

these sentences could be expressed by

8x.8y.mother(x, y) ! older(x, y)

8x, y, u, v.mother(x, y) ^mother(y, J) ^mother(u, v) ^mother(v,P) ! x = u

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 9 / 40

Modeling with FOL

“Every mother is older than her children.”
“John and Peter have the same maternal grandmother.”

A di↵erent and more elegant encoding is to represent y’mother in a more
direct way, by using a function instead of a relation. We write m(y) to
mean y’mother. This way the two sentences above have simpler
encondings.

8x. older(m(x), x)

m(m(J)) = m(m(P))

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 10 / 40

Modeling with FOL

Assume further the following predicates and constant symbols

flower(x) – x is a flower likes(x, y) – x likes y
sport(x) – x is a sport brother(x, y) – x is brother of y
A – Anne

“Anne likes John’s brother.” 9x. brother(x, J) ^ likes(A, x)

“John likes all sports.” 8x. sports(x) ! likes(J , x)

“John’s mother likes flowers.” 8x.flower(x) ! likes(m(J), x)

“John’s mother does not like some sports.” 9y. sport(y) ^ ¬likes(m(J), y)

“Peter only likes sports.” 8x. likes(P , x) ! sports(x)

“Anne has two children.”

9x1, x2.mother(A, x1) ^mother(A, x2) ^ x1 6= x2 ^
8z.mother(A, z) ! z = x1 _ z = x2

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 11 / 40

Free and bound variables

The free variables of a formula � are those variables occurring in � that are
not quantified. FV(�) denotes the set of free variables occurring in �.

The bound variables of a formula � are those variables occurring in � that
do have quantifiers. BV(�) denote the set of bound variables occurring in �.

Note that variables can have both free and bound occurrences within the same
formula. Let � be 9x.R(x, y) ^ 8y. P (y, x), then

FV(�) = {y} and BV(�) = {x, y}.

A formula � is closed (or a sentence) if it does not contain any free variables.

If FV(�) = {x1, . . . , xn}, then
I its universal closure is 8x1. . . . 8xn.�
I its existential closure is 9x1. . . . 9xn.�

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 12 / 40

Substitution

Substitution

We define u[t/x] to be the term obtained by replacing each
occurrence of variable x in u with t.

We define �[t/x] to be the formula obtained by replacing each free
occurrence of variable x in � with t.

Care must be taken, because substitutions can give rise to

undesired e↵ects!

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 13 / 40

Substitution

Let us illustrate the problem...

Let � be 9x. likes(x, y) ^ 8y. older(y, x), and t be the term m(x).

Now let us perform the substitution �[t/y]

(9x. likes(x, y) ^ 8y. older(y, x))[(m(x)/y] = 9x. likes(x,m(x)) ^ 8y. older(y, x)

which is wrong!

I The meaning of the formula has completly changed.
I The free variable x in m(x) was captured inadvertently by the 9x.

This can be fixed if we change the name of the bounded varible in 9x, by
renaming it to a fresh variable.

(9z. likes(z, y) ^ 8y. older(y, z))[(m(x)/y] = 9z. likes(z,m(x)) ^ 8y. older(y, z)

which is OK!

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 14 / 40

Substitution

Given a term t, a variable x and a formula �, we say that t is free for x in
� if no free x in � occurs in the scope of 8z or 9z for any variable z
occurring in t.

From now on we will assume that all substitutions satisfy this condition.
That is when performing the �[t/x] we are always assuming that t is free
for x in �.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 15 / 40

Semantics

V-structure
Let V be a vocabulary. A V-structure M is a pair M = (D, I) where D is a
nonempty set called the interpretation domain, and I is an interpretation function
that assigns constants, functions and predicates over D to the symbols of V as
follows:

for each constant symbol c 2 C, the interpretation of c is a constant
I(c) 2 D;

for each f 2 F , the interpretation of f is a function I(f) : Dar(f) ! D;

for each P 2 P, the interpretation of P is a function I(P) : Dar(P) ! {0, 1}.
In particular, 0-ary predicate symbols are interpreted as truth values.

V-structures are also called models for V.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 16 / 40

Semantics

Assignment

An assignment for a domain D is a function ↵ : X !D.

We denote by ↵[x 7! a] the assignment which maps x to a and any other
variable y to ↵(y).

Given a V-structure M = (D, I) and given an assignment ↵ : X !D, we
define an interpretation function for terms, ↵M : TermV !D, as follows:

↵M(x) = ↵(x)
↵M(c) = I(c)
↵M(f(t1, . . . , tn)) = I(f)(↵M(t1), . . . ,↵M(tn))

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 17 / 40

Semantics

Satisfaction relation

Given a V-structure M = (D, I) and given an assignment ↵ : X !D, we
define the satisfaction relation M,↵ |= � for each � 2 FormV as follows:

M,↵ |= >
M,↵ 6|= ?
M,↵ |= P (t1, . . . , tn) i↵ I(P)(↵M(t1), . . . ,↵M(tn)) = 1
M,↵ |= ¬� i↵ M,↵ 6|= �
M,↵ |= � ^ i↵ M,↵ |= � and M,↵ |=
M,↵ |= � _ i↵ M,↵ |= � or M,↵ |=
M,↵ |= �! i↵ M,↵ 6|= � or M,↵ |=
M,↵ |= 8x.� i↵ M,↵[x 7! a] |= � for all a 2 D
M,↵ |= 9x.� i↵ M,↵[x 7! a] |= � for some a 2 D

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 18 / 40

Validity and satisfiability

When M,↵ |= �, we say that M satisfies � with ↵.

We write M |= � i↵ M,↵ |= � holds for every assignment ↵.

A formula � is

valid i↵ M,↵ |= � holds for all structure M and assignments ↵.
A valid formula is called a tautology. We write |= �.

satisfiable i↵ there is some structure M and some assigment ↵
such that M,↵ |= � holds.

unsatisfiable i↵ it is not satisfiable.
An unsatisfiable formula is called a contradiction.

refutable i↵ it is not valid.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 19 / 40

Consequence and equivalence

Given a set of formulas �, a model M and an assignment ↵, M is said to satisfy
� with ↵, denoted by M,↵ |= �, if M,↵ |= � for every � 2 �.

� entails � (or that � is a logical consequence of �), denoted by � |= �, i↵ for all
structures M and assignments ↵, whenever M,↵ |= � holds, then M,↵ |= �
holds as well.

� is logically equivalent to , denoted by � ⌘ , i↵ {�} |= and { } |= �.

Deduction theorem

�,� |= i↵ � |= �!

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 20 / 40

Consistency

The set � is consistent or satisfiable i↵ there is a model M and an
assigment ↵ such that M,↵ |= � holds for all � 2 �.

We say that � is inconsistent i↵ it is not consistent and denote this by
� |= ?.

Proposition

{�,¬�} |= ?
If � |= ? and � ✓ �0, then �0 |= ?.

� |= � i↵ �,¬� |= ?

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 21 / 40

Substitution

Formula is a subformula of formula � if it occurs syntactically
within �.

Formula is a strict subformula of � if is a subformula of � and
 6= �

Substitution theorem

Suppose � ⌘ . Let ✓ be a formula that contains � as a subformula. Let
✓0 be the formula obtained by safe replacing (i.e., avoiding the capture of
free variables of �) some occurrence of � in ✓ with . Then ✓ ⌘ ✓0.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 22 / 40

Some equivalences

Renaming of bound variables

If y is free for x in � and y 62 FV(�), then the following equivalences hold.

8x.� ⌘ 8y.�[y/x]
9x.� ⌘ 9y.�[y/x]

The following equivalences hold in first-order logic.

8x.� ^ ⌘ (8x.�) ^ (8x.) 9x.� _ ⌘ (9x.�) _ (9x.)
8x.� ⌘ (8x.�) ^ �[t/x] 9x.� ⌘ (9x.�) _ �[t/x]

¬8x.� ⌘ 9x.¬� ¬9x.� ⌘ 8x.¬�

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 23 / 40

Some equivalences

If x does not occur free in , then the following equivalences hold.

(8x.�) ^ ⌘ 8x.� ^ ^ (8x.�) ⌘ 8x. ^ �
(8x.�) _ ⌘ 8x.� _ _ (8x.�) ⌘ 8x. _ �
(9x.�) ^ ⌘ 9x.� ^ ^ (9x.�) ⌘ 9x. ^ �
(9x.�) _ ⌘ 9x.� _ _ (9x.�) ⌘ 9x. _ �

The applicability of these equivalences can always be assured by
appropriate renaming of bound variables.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 24 / 40

Decidability

Given formulas � and as input, we may ask:

Decision problems

Validity problem: “Is � valid ?”
Satisfiability problem: “Is � satisfiable ?”
Consequence problem: “Is a consequence of � ?”
Equivalence problem: “Are � and equivalent ?”

These are, in some sense, variations of the same problem.

� is valid i↵ ¬� is unsatisfiable
� |= i↵ ¬(�!) is unsatisfiable
� ⌘ i↵ � |= and |= �
� is satisfiable i↵ ¬� is not valid

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 25 / 40

Decidability

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.

A decision problem is decidable if it has a solution.

A decision problem is undecidable if it is not decidable.

Theorem (Church & Turing)

The decision problem of validity in first-order logic is undecidable: no
program exists which, given any �, decides whether |= �.

The decision problem of satisfiability in first-order logic is undecidable:
no program exists which, given any �, decides whether � is satisfiable.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 26 / 40

Semi-decidability

However, there is a procedure that halts and says “yes” if � is valid.

A decision problem is semi-decidable if exists a procedure that, given an
input,

halts and answers “yes” i↵ “yes” is the correct answer,

halts and answers “no” if “no” is the correct answer, or

does not halt if “no” is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the
correct answer is “yes”.

The decision problem of validity in first-order logic is semi-decidable.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 27 / 40

Modeling with FOL

Use the predicates

admires(x, y) : x admires y Professor(x) : x is a professor
attended(x, y) : x attended y Student(x) : x is a student

Lecture(x) : x is a lecture

and the constant Mary to translate the following into FOL:

Mary admires every professor.

8x.Professor(x) ! admires(Mary, x)

Some professor admires Mary.

9x.Professor(x) ^ admires(x,Mary)

Mary admires herself.

admires(Mary,Mary)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 28 / 40

Modeling with FOL

Use the predicates

admires(x, y) : x admires y Professor(x) : x is a professor
attended(x, y) : x attended y Student(x) : x is a student

Lecture(x) : x is a lecture

and the constant Mary to translate the following into FOL:

No student attended every lecture.

¬(9x. Student(x) ^ (8y. Lecture(y) ! attended(x, y)))

No lecture was attended by every student.

¬(9x. Lecture(x) ^ (8y. Student(y) ! attended(y, x)))

No lecture was attended by no student.

¬(9l. Lecture(l) ^ 8s. Student(s) ! ¬attended(s, l))
or equivalently

8l. Lecture(l) ! 9s. Student(s) ^ attended(s, l)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 29 / 40

FOL with equality

There are di↵erent conventions for dealing with equality in first-order logic.

We have followed the approach of considering equality predicate (=) as a
non-logical symbol, treated in the same way as any other predicate.
We are working with what are usually known as “first-order languages
without equality”.

An alternative approach, usually called “first-order logic with equality”,
considers equality as a logical symbol with a fixed interpretation.

In this approach the equality symbol (=) is interpreted as the equality
relation in the domain of interpretation. So we have, for a structure
M = (D, I) and an assignment ↵ : X !D, that

M,↵ |= t1 = t2 i↵ ↵M(t1) and ↵M(t2) are the same element of D

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 30 / 40

FOL with equality

To understand the significant di↵erence between having equality with the status
of any other predicate, or with a fixed interpretation as in first-order logic with
equality, consider the formulas

9x1, x2.8y. y = x1 _ y = x2

With a fixed interpretation of equality, the validity of this formula implies
that the cardinality of the interpretation domain is at most two – the
quantifiers can actually be used to fix the cardinality of the domain, which is
not otherwise possible in first-order logic.

9x1, x2.¬(x1 = x2)
The validity of this formula implies that there exist at least two distinct
elements in the domain, thus its cardinality must be at least two.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 31 / 40

Modeling in FOL with equality

To formalize a problem in FOL, first of all, we have to identify

I the domain of discourse (What are the entities we are dealing with?)
I properties of the domain of discourse
I basic relationships between entities (How entities relate to each other?)
I properties of the relations

Based on this analysis

I We start by establish the logical language that we are going to use
(i.e., the vocabulary of the language).

I We write the set of logical formulas that describe the problem.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 32 / 40

Modeling in FOL with equality

Graph coloring

Can one assign one of K colors to each of the vertices of graph
G = (V,E) such that adjacent vertices are assigned di↵erent colors?

The domain of discourse has vertices and colors, which are di↵erent
sorts of entities.

So, we need a unary predicate for each entity (these predicates will
act as the ”type”of the entity, in a domain that is untyped):

Vertex(-) Color(-)

There are edges between vertices, and each vertex is painted with a
color. So, we need two binary predicates

edge(-,-) painted(-,-)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 33 / 40

Modeling in FOL with equality

Predicates:

Vertex(-) Color(-)
edge(-,-) painted(-,-)

Partitioning the universe of discourse with the types of the entities.

8x. Vertex(x) $ ¬Color(x)

Alternative: any element of the universe
I at most is of one of these “types” 8x. Vertex(x) ! ¬Color(x)
I must be of one of these “types” 8x. Vertex(x) _ Color(x)

Typing relations

8x, y. edge(x, y) ! Vertex(x) ^ Vertex(y)

8x, y. painted(x, y) ! Vertex(x) ^ Color(y)

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 34 / 40

Modeling in FOL with equality

Each vertex is assigned exactly one color.

I At least one color to each vertex:

8x. Vertex(x) ! 9y. painted(x, y)
I At most one color to each vertex:

8x, y, z. painted(x, y) ^ painted(x, z) ! y = z

Adjacent vertices must have di↵erent colors:

8x, y, a, b. edge(x, y) ^ painted(x, a) ^ painted(y, b) ! a 6= b

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 35 / 40

Many-sorted FOL

A natural variant of first-order logic that can be considered is the one that
results from allowing di↵erent domains of elements to coexist in the
framework. This allows distinct “sorts” or types of objects to be
distinguished at the syntactical level, constraining how operations and
predicates interact with these di↵erent sorts.

Having full support for di↵erent sorts of objects in the language allows for
cleaner and more natural encodings of whatever we are interested in
modeling and reasoning about.

By adding to the formalism of FOL the notion of sort, we obtain a flexible
and convenient logic called many-sorted first-order logic, which has the same
properties as FOL.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 36 / 40

Many-sorted FOL

A many-sorted vocabulary (signature) is composed of a set of sorts, a set of
function symbols, and a set of predicate symbols.

I Each function symbol f has associated with a type of the form
S1 ⇥ . . .⇥ Sar(f)!S where S1, . . . , Sar(f), S are sorts.

I Each predicate symbol P has associated with it a type of the form
S1 ⇥ . . .⇥ Sar(P).

I Each variable is associated with a sort.

The formation of terms and formulas is done only accordingly to the typing
policy, i.e., respecting the “sorts”.

The domain of discourse of any structure of a many-sorted vocabulary is
fragmented into di↵erent subsets, one for every sort.

The notions of assignment and structure for a many-sorted vocabulary, and
the interpretation of terms and formulas are defined in the expected way.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 37 / 40

Modeling in many-sorted FOL with equality

Graph coloring

Can one assign one of K colors to each of the vertices of graph
G = (V,E) such that adjacent vertices are assigned di↵erent colors?

In a many-sorted FOL, to codify this problem we need

two types: Vertex and Color

two predicates:
edge : Vertex⇥ Vertex
painted : Vertex⇥ Color

At least one color to each vertex:

8x :Vertex.9y :Color. painted(x, y) (we can drop the types)

At most one color to each vertex:

8x, y, z. painted(x, y) ^ painted(x, z) ! y = z

Adjacent vertices must have di↵erent colors:

8x, y, a, b. edge(x, y) ^ painted(x, a) ^ painted(y, b) ! a 6= b

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 38 / 40

SMT solvers

When judging the validity/satisfiability of first-order formulas we are
typically interested in a particular domain of discourse, which in addition to
a specific underlying vocabulary includes also properties that one expects to
hold. We work with respect to some background theory.

The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by (a combination of) specific theories.

SMT solvers are tools that aim to answer the SMT problem.

I The underlying logic of SMT solvers is many-sorted first-order logic
with equality.

I SMT solvers are the core engine of many tools for analyzing and
verifying software, planning, etc.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 39 / 40

SMT solvers

SMT solvers in their implementation exploit propositional SAT technology.
(We will see more about this topic later.)

An SMT solver can also be used simply as a SAT solver. In this case one just
use the Core theory, with the sort Bool and the basic Boolean operators.

There are many di↵erent SMT solvers: Alt-Ergo, CVC4, CVC5, MathSAT 5,
Yices 2, Z3, ...

When using an SMT solver as a SAT solver, we do not need to convert the
Boolean formulas to CNF. The tool does that internally.

See the Colab Notebook with examples of using the Z3 API for Python with
propositional logic.

Maria João Frade (HASLab, DI-UM) FOL MFES 2023/24 40 / 40

