Propositional Logic \& SAT Solvers

Maria João Frade

HASLab - INESC TEC
Departamento de Informática, Universidade do Minho

$$
2023 / 2024
$$

Introduction

- For us to be able to use an automated tool (to test or verify a property, or to analyze the behavior of a system), we first have to formally represent the system and its properties in the syntactic conventions that the tool understands and can process. This task is called formal modeling
- The difficulty of the modeling task naturally varies; and, most typically, there are several ways of doing it.

What is a (formal) logic?

A formal logic consists of

- A logical language in which (well-formed) sentences are expressed. It consists of
- logical symbols whose interpretations are fixed
- non-logical symbols whose interpretations vary
- A semantics that defines the intended interpretation of the symbols and expressions of the logical language.
- A proof system that is a framework of rules for deriving valid judgments.

What is SAT?

- The Boolean satisfiability (SAT) problem:
- Find an assignment to the propositional variables of the formula such that the formula evaluates to TRUE, or prove that no such assignment exists.
- SAT is an NP-complete decision problem.
- SAT was the first problem to be shown NP-complete.
- There are no known polynomial time algorithms for SAT

Logic and computer science

- Logic and computer science share a symbiotic relationship.
- Logic provides language and methods for the study of theoretical computer science.
- Computers provide a concrete setting for the implementation of logic.
- Moreover, logic can be used to model the situations we encounter as computer science professionals, in such a way that we can reason about them formally.
- Logic is a fundamental part of computer science.
- Program analysis: static analysis, software verification, test case generation, program understanding, ..
- Artificial intelligence: constraint satisfaction, automated game playing planning, ..
- Hardware verification: correctness of circuits, ATPG, ..
- Programming Languages: logic programming, type systems, programming language theory, ...

What is SAT?

- Usually SAT solvers deal with formulas in conjunctive normal form (CNF)
- literal: propositional variable or its negation. $A, \neg A, B, \neg B, C, \neg C$
- clause: disjuntion of literals. $(A \vee \neg B \vee C)$
- conjunctive normal form: conjuction of clauses

$$
(A \vee \neg B \vee C) \wedge(B \vee \neg A) \wedge \neg C
$$

- SAT is a success story of computer science
- Modern SAT solvers can check formulas with hundreds of thousands variables and millions of clauses in a reasonable amount of time.
- A huge number of practical applications.

Why should we care?

- No matter what your research area or interest is, SAT solving is likely to be relevant.
- Very good toolkit because many difficult problems can be reduced deciding satisfiabilty of formulas in logic.
 Maximum SatisfiabilityConfiguration Termination Ansulysis

Satisfiability Modulo Theoriesp Equinalenecinecring Resource Constrained Scheduling
Quantified Boolean Formulas
Software Model Checking Constraint Programming FPGA Routing
Haplotyping Model FindingllardWare Model Checking
Planning Logic Synthesis Desigin Debugging Power Stimation Circuit Delay Computation Eemonne Rearamgenem

Pseudio-Boolean Formulas

Propositional logic

- The language of propositional logic is based on propositions, or declarative sentences which one can, in principle, argue as being "true" or "false".
- Propositional symbols are the atomic formulas of the language. More complex sentences are constructed using logical connectives.
- In classical propositional logic (PL) each sentence is either true or false.

(Classical) Propositional Logic

Syntax

The alphabet of the propositional language is organised into the following categories.

- Propositional variables: $P, Q, R, \ldots \in \mathcal{V}_{\text {Prop }}$ (a countably infinite set)
- Logical connectives: \perp (false) $, \top($ true $), \neg(n o t), \wedge($ and $), \vee(o r), \rightarrow$ (implies), \leftrightarrow (equivalent)
- Auxiliary symbols: "(" and ")".

The set Form of formulas of propositional logic is given by the abstract syntax
Form $\ni A, B::=P|\perp| \top|(\neg A)|(A \wedge B)|(A \vee B)|(A \rightarrow B) \mid(A \leftrightarrow B)$ We let A, B, C, F, G, H, \ldots range over Form.

Outermost parenthesis are usually dropped. In absence of parentheses, we adopt the following convention about precedence. Ranging from the highest precedence to the lowest, we have respectively: $\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow. All binary connectives are right-associative.

Maria João Frade (HASLab, DI-UM)
PL \& SAT
MFES 2023/24 $12 / 47$

Semantics

The meaning of PL is given by the truth values true and false, where true \neq false. We will represent true by 1 and false by 0 .

An assignment is a function $\mathcal{A}: \mathcal{V}_{\text {prop }} \rightarrow\{0,1\}$, that assigns to every propositional variable a truth value.
An assignment \mathcal{A} naturally extends to all formulas, $\mathcal{A}:$ Form $\rightarrow\{0,1\}$.
The truth value of a formula is computed using truth tables:

F	A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$	\perp	\top
$\mathcal{A}_{1}(F)$	0	1	1	0	1	1	0	0	1
$\mathcal{A}_{2}(F)$	0	0	1	0	0	1	1	0	1
$\mathcal{A}_{3}(F)$	1	1	0	1	1	1	1	0	1
$\mathcal{A}_{4}(F)$	1	0	0	0	1	0	0	0	1

This way the meaning of each connective is established.

Maria João Frade (HASLab, DI-UM)

Validity, satisfiability, and contradiction

Proposition

F is valid iff $\neg F$ is unsatisfiable

Semantics

Let \mathcal{A} be an assignment and let F be a formula
If $\mathcal{A}(F)=1$, then we say F holds under assignment \mathcal{A}, or \mathcal{A} models F.
We write $\mathcal{A} \models F$ iff $\mathcal{A}(F)=1$, and $\mathcal{A} \not \vDash F$ iff $\mathcal{A}(F)=0$.

An alternative (inductive) definition of $\mathcal{A} \models F$ is

$$
\begin{array}{lll}
\mathcal{A} \models \top & & \\
\mathcal{A} \not \models \perp & & \\
\mathcal{A} \models P & \text { iff } & \mathcal{A}(P)=1 \\
\mathcal{A} \models \neg A & \text { iff } & \mathcal{A} \not \models A \\
\mathcal{A} \models A \wedge B & \text { iff } & \mathcal{A} \models A \text { and } \mathcal{A} \models B \\
\mathcal{A} \models A \vee B & \text { iff } & \mathcal{A} \models A \text { or } \mathcal{A} \models B \\
\mathcal{A} \models A \rightarrow B & \text { iff } & \mathcal{A} \not \models A \text { or } \mathcal{A} \models B \\
\mathcal{A} \models A \leftrightarrow B & \text { iff } & \mathcal{A} \models A \text { iff } \mathcal{A} \models B
\end{array}
$$

Validity, satisfiability, and contradiction

Classify the following formulas:

- $A \rightarrow B$ is satisfiable and refutable
- $P \vee \neg P$ is valid.
- $A \wedge \neg A$ is a contradiction.
- $B \vee(A \rightarrow \neg B)$ is valid.
- $B \wedge(A \vee \neg B)$ is satisfiable and refutable.
- $A \rightarrow \neg A \vee B$ is satisfiable and refutable.
- $(A \wedge(A \rightarrow B)) \rightarrow B$ is valid

Consequence and equivalence

- $F \models G$ iff for every assignment \mathcal{A}, if $\mathcal{A} \models F$ then $\mathcal{A} \models G$. We say G is a consequence of F.
- $F \equiv G$ iff $F \models G$ and $G \models F$. We say F and G are equivalent.
- Let $\Gamma=\left\{F_{1}, F_{2}, F_{3}, \ldots\right\}$ be a set of formulas.
$\mathcal{A} \models \Gamma$ iff $\mathcal{A} \models F_{i}$ for each formula F_{i} in Γ. We say \mathcal{A} models Γ.
$\Gamma \models G$ iff $\mathcal{A} \models \Gamma$ implies $\mathcal{A} \models G$ for every assignment \mathcal{A}. We say G is a consequence of Γ.

```
Proposition
- \(F \models G \quad\) iff \(\quad \vDash F \rightarrow G\)
- \(\Gamma \models G\) and \(\Gamma\) finite iff \(\models \bigwedge \Gamma \rightarrow G\)
```


Maria Joăo Frade (HASLab, DIUM)

PL \& SAT

Consistency

Let $\Gamma=\left\{F_{1}, F_{2}, F_{3}, \ldots\right\}$ be a set of formulas.

- Γ is consistent or satisfiable iff there is an assignment that models Γ.
- We say that Γ is inconsistent or unsatisfiable iff it is not consistent and denote this by $\Gamma \models \perp$.

Proposition

- $\{F, \neg F\} \vDash \perp$
- If $\Gamma \models \perp$ and $\Gamma \subseteq \Gamma^{\prime}$, then $\Gamma^{\prime} \models \perp$.
- $\Gamma \models F \quad$ iff $\quad \Gamma, \neg F \models \perp$

Some basic equivalences

$A \vee A$	$\equiv A$	$A \wedge \neg A$	$\equiv \perp$
$A \wedge A$	$\equiv A$	$A \vee \neg A$	$\equiv \top$
$A \vee B$	$\equiv B \vee A$	$A \wedge \top$	$\equiv A$
$A \wedge B$	$\equiv B \wedge A$	$A \vee \top$	$\equiv \top$
$A \wedge(A \vee B)$	$\equiv A$	$A \wedge \perp$	$\equiv \perp$
$A \wedge(B \vee C)$	$\equiv(A \wedge B) \vee(A \wedge C)$	$A \vee \perp$	$\equiv A$
$A \vee(B \wedge C)$	$\equiv(A \vee B) \wedge(A \vee C)$	$\neg \neg A$	$\equiv A$
$\neg(A \vee B)$	$\equiv \neg A \wedge \neg B$	$A \rightarrow B$	$\equiv \neg A \vee B$
$\neg(A \wedge B)$	$\equiv \neg A \vee \neg B$		
$A \leftrightarrow B$	$\equiv(A \rightarrow B) \wedge(B \rightarrow A)$		

Maria João Frade (HASLab, DI-UM)

Substitution

- Formula G is a subformula of formula F if it occurs syntactically within F.
- Formula G is a strict subformula of F if G is a subformula of F and $G \neq F$

Substitution theorem

Suppose $F \equiv G$. Let H be a formula that contains F as a subformula. Let H^{\prime} be the formula obtained by replacing some occurrence of F in H with G. Then $H \equiv H^{\prime}$.

Decidability

Given formulas F and G as input, we may ask:

Decision problems

Validity problem:

Satisfiability problem:
Consequence problem:
Equivalence problem:
"Is F valid ?"
"Is F satisfiable ?"
"Is G a consequence of F ?"
"Are F and G equivalent ?"

All these problems are decidable!

Maria João Frade (HASLab, DI-UM)

Complexity

- Computing a truth table for a formula is exponential-time in order to the number of propositional variables.
- There are several techniques and algorithms for SAT solving that perform better in average.
- There are no known polynomial time algorithms for SAT.
- If it exists, then $\mathbf{P}=\mathbf{N P}$, because the SAT problem for PL is NP-complete (it was the first one to be shown NP-complete).

Cook's theorem (1971)

SAT is NP-complete.

- Conjecture: Any algorithm that solves SAT is exponential in the number of variables, in the worst-case.

Decidability

Any algorithm that works for one of these problems also works for all of these problems!

$$
\begin{array}{lll}
F \text { is satisfiable } & \text { iff } & \neg F \text { is not valid } \\
F \models G & \text { iff } & \neg(F \rightarrow G) \text { is not satisfiable } \\
F \equiv G & \text { iff } & F \models G \text { and } G \models F \\
F \text { is valid } & \text { iff } & F \equiv \top
\end{array}
$$

Truth-table method

For the satisfiability problem, we first compute a truth table for F and then check to see if its truth value is ever one.

This algorithm certainly works, but is very inefficient.
It's exponential-time! $\mathcal{O}\left(2^{n}\right)$
If F has n atomic formulas, then the truth table for F has 2^{n} rows.

```
Maria João Frade (HASLab, DI-UM) PL & SAT
```


An example

The unicorn puzzle

- If the unicorn is mythical, then it is immortal.
- If the unicorn is not mythical, then it is a mortal mammal.
- If the unicorn is either immortal or a mammal, then it is horned.
- The unicorn is magical if it is horned.
- Questions:

Is the unicorn magical?
Is it horned?
Is it mythical?
Is it possible for the unicorn to be simultaneously mythical and immortal?

An example

- Consider the following propositional variables:
- M - the unicorn is mythical
- I - the unicorn is immortal
- A - the unicorn is mammal
- H - the unicorn is horned
- G - the unicorn is magical
- If the unicorn is mythical, then it is immortal.

$$
M \rightarrow I
$$

- If the unicorn is not mythical, then it is a mortal mammal.

$$
\neg M \rightarrow(\neg I \wedge A)
$$

- If the unicorn is either immortal or a mammal, then it is horned.

$$
(I \vee A) \rightarrow H
$$

- The unicorn is magical if it is horned

$$
H \rightarrow G
$$

SAT solvers

DPLL framework

- The ideia is to incrementally construct an assignment compatible with a CNF, propagating the implications of the decisions made that are easy to detect and simplifying the clauses.
- A CNF is satisfied by an assignment if all its clauses are satisfied. And a clause is satisfied if at least one of its literals is satisfied.
- When a literal is true, the formula can be simplified by removing the clauses where the literal occurs and removing the opposite literal from the remaning clauses.

$$
\begin{aligned}
- & (\neg A \vee \neg B) \wedge A \wedge(\neg B \vee A) \wedge(\neg A \vee C \vee B) \\
& (\neg A \vee \neg B) \wedge \text { choose } \mathcal{A}(A)=1 \\
& \neg B \wedge(C \vee B)
\end{aligned}
$$

- Unit propagation is the iterated application of the unit clause rule (assign true to a literal that is isolated in a clause) and subsequent simplification of the formula.

DPLL framework: heuristics \& optimizations

Many different techniques are applied to achieve efficiency in DPLL-based SAT solvers.

- Decision heuristic: a very important feature in SAT solving is the strategy by which the literals are chosen.
- Look-ahead: exploit information about the remaining search space.
- unit propagation
- pure literal rule
- Look-back: exploit information about search which has already taken place.
- clause learning (new clauses are learnt from conflicts that prune the search space)
- non-chronological backtracking (a.k.a. backjumping)
- Other techniques
- preprocessing (detection of subsumed clauses, simplification, ...)
- (random) restart (restarting the solver when it seams to be is a hopeless branch of the search tree)
- The algorithm starts with an empty assignment and performs unit propagation, updating the assignment accordingly and simplifying the formula.
- If the formula becomes empty, that means that the formula is SAT.
- If the formula contains an empty clause, that indicates a contradiction (a conflict).
- If no conclusion is attained, a decision about an unassigned variable is made, propagating the implications of this decision.
- In case a conflict is detected, the algorithm backtracks to the previous decision point and tries a different assignment for the last decision variable.
- DPLL is a complete algorithm for SAT. Unsatisfiability of the complete formula can only be detected after exhaustive search.

Conflict-Driven Clause Learning (CDCL) solvers

- Conflict-Driven Clause Learning (CDCL) solvers
- DPLL framework.
- New clauses are learnt from conflicts.
- Structure of conflicts exploited (using implication graphs).
- Backtracking can be non-chronological.
- Efficient data structures (compact and reduced maintenance overhead).
- Backtrack search is periodically restarted.
- Can deal with hundreds of thousand variables and tens of million clauses.
- The most successful modern SAT solvers use this technology.
- The satisfiability library SAT Live! ${ }^{1}$ is an online resource that proposes, as a standard, a unified notation and a collection of benchmarks for performance evaluation and comparison of tools.

DIMACS CNF format

- DIMACS CNF format is a standard format for CNF used by most SAT solvers.
- Plain text file with following structure:
c <comments>
p cnf <num.of variables> <num.of clauses>
<clause> 0
<clause> 0
- Every number 1, 2, . . . corresponds to a variable (variable names have to be mapped to numbers).
- A negative number denote the negation of the corresponding variable.
- Every clause is a list of numbers, separated by spaces. (One or more lines per clause)

Minisat demo

DIMACS CNF format

Example

$$
A_{1} \wedge\left(A_{1} \vee P\right) \wedge\left(\neg A_{1} \vee \neg P \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)
$$

- We have 3 variables and 4 clauses.
- Let $A_{1}=1, A_{2}=2$ and $P=3$.
- CNF file:
p cnf 34
10
130
$\begin{array}{llll}-1 & -3 & 0\end{array}$
$1-20$

SAT solver API

- Several SAT solvers have API's for different programming languages that allow an incremental use of the solver.
- For instance, PySAT ${ }^{2}$ is a Python toolkit which provides a simple and unified interface to a number of state-of-art SAT solvers, enabling to prototype with SAT oracles in Python while exploiting incrementally the power of the original low-level implementations of modern SAT solvers.

```
from pysat.solvers import Minisat2
s = Minisat22()
s.add clause([-1, 2])
s.add_clause([-1, -2, 3])
if s.solve():
    print("SAT")
    print(s.get_model())
else:
    print("UNSAT")
```


Looking for $A_{1} \wedge\left(A_{1} \vee P\right) \wedge\left(\neg A_{1} \vee \neg P \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)$ models

```
from pysat.solvers import Minisat2
= Minisat22() # cria o solver
s.add_clause([1]) # acrescenta cláusulas
.add clause([1, 3]
s.add clause([-1, -3, 2])
s.add_clause([1, -2])
if s.solve(): # testa a satisfatibilidade
    print("SAT")
    print(s.get_model()) # imprime o modelo
else:
    print("UNSAT")
SAT
[1, -2, -3]
```

- The model found by the solver indicates that $A_{1} \wedge \neg A_{2} \wedge \neg P$ is true.
- Is there other possible models? To check that we must add the clause that corresponds to the negation of the above formula and check again

$$
\neg\left(A_{1} \wedge \neg A_{2} \wedge \neg P\right) \equiv \neg A_{1} \vee A_{2} \vee P
$$

Modeling with PL

s.add_clause([1])
s.add_clause([1, 3])
s.add_clause($[-1,-3,2]$)
s.add_clause ($[1,-2]$)
if s.solve():
print("SAT")
print("Modelos:"
$\mathrm{m}=\mathrm{s}$. get_model()
print (m)
s.add_clause([-l for l in m])
while s.solve():
$\mathrm{m}=\mathrm{s} . \mathrm{get}$ _
rint (m)
else:
print("UNSAT")

> SAT Modelos: $[1,-2,-3]$ $[1,2,-3]$ $[1,2,3]$

Example: Placement of guests

Placement of guests

We have three chairs in a row and we need to place Anne, Susan and Peter.

- Anne does not want to sit next to Peter.
- Anne does not want to sit in the left chair.
- Susan does not want to sit to the left of Peter.

Can we satisfy these constrains? How can we sit the guests?

- Denote: Anne $=1$, Susan $=2$, Peter $=3$

$$
\text { left chair }=1, \text { middle chair }=2, \text { right chair }=3
$$

- Introduce a propositional variable $x_{i j}$ for each pair (person i, place j)
- $x_{i j}$ is true iff person i is sited in place $j ; x_{i j}$ is false otherwise

Example: Placement of guests

- Anne does not want to sit next to Peter.

$$
\left(\left(x_{11} \vee x_{13}\right) \rightarrow \neg x_{32}\right) \wedge\left(x_{12} \rightarrow\left(\neg x_{31} \wedge \neg x_{33}\right)\right)
$$

- Anne does not want to sit in the left chair.

$$
\neg x_{11}
$$

- Susan does not want to sit to the left of Peter

$$
\left(x_{33} \rightarrow \neg x_{22}\right) \wedge\left(x_{32} \rightarrow \neg x_{21}\right)
$$

- Are these constraints enough to model the problem?
- Can you point out an unexpected trivial solution?

Example: Placement of guests

- No more than one person per chair.

Note that

$x_{1 c} \rightarrow \neg x_{2 c} \wedge \neg x_{3 c} \equiv \neg x_{1 c} \vee\left(\neg x_{2 c} \wedge \neg x_{3 c}\right) \equiv\left(\neg x_{1 c} \vee \neg x_{2 c}\right) \wedge\left(\neg x_{1 c} \vee \neg x_{3 c}\right)$ $x_{2 c} \rightarrow \neg x_{1 c} \wedge \neg x_{3 c} \equiv \neg x_{2 c} \vee\left(\neg x_{1 c} \wedge \neg x_{3 c}\right) \equiv\left(\neg x_{2 c} \vee \neg x_{1 c}\right) \wedge\left(\neg x_{2 c} \vee \neg x_{3 c}\right)$ $x_{3 c} \rightarrow \neg x_{1 c} \wedge \neg x_{2 c} \equiv \neg x_{3 c} \vee\left(\neg x_{1 c} \wedge \neg x_{2 c}\right) \equiv\left(\neg x_{3 c} \vee \neg x_{1 c}\right) \wedge\left(\neg x_{3 c} \vee \neg x_{2 c}\right)$
Since \vee and \wedge are commutative and idempotent, we can remove the green clauses:

$$
\bigwedge_{c=1}^{3}\left(\neg x_{1 c} \vee \neg x_{2 c}\right) \wedge\left(\neg x_{1 c} \vee \neg x_{3 c}\right) \wedge\left(\neg x_{2 c} \vee \neg x_{1 c}\right)
$$

Using compact notation

$$
\bigwedge_{c=1}^{3} \bigwedge_{a=1}^{2} \bigwedge_{b=a+1}^{3}\left(\neg x_{a c} \vee \neg x_{b c}\right)
$$

Example: Placement of guests

There are two constrains that are implict in the problem.

- Everyone must be seated in a chair.

$$
\left(x_{11} \vee x_{12} \vee x_{13}\right) \wedge\left(x_{21} \vee x_{22} \vee x_{23}\right) \wedge\left(x_{31} \vee x_{32} \vee x_{33}\right)
$$

Using a compact notation:

$$
\bigwedge_{i=1}^{3} \bigvee_{j=1}^{3} x_{i j}
$$

- No more than one person per chair.

For each chair $c=1,2,3$,

$$
\left(x_{1 c} \rightarrow \neg x_{2 c} \wedge \neg x_{3 c}\right) \wedge\left(x_{2 c} \rightarrow \neg x_{1 c} \wedge \neg x_{3 c}\right) \wedge\left(x_{3 c} \rightarrow \neg x_{1 c} \wedge \neg x_{2 c}\right)
$$

This is correct, but there is some redundancy here...

Maria João Frade (HASLab, DI-UM)

PL \& SAT
MFES 2023/24 42/47

Example: Placement of guests

- The compact notation used is perhaps a bit more difficult to read, but is quit close to programming.
- For instance, using PySAT we can use 3 nested cicles to codify the formula

$$
\bigwedge_{c=1}^{3} \bigwedge_{a}^{2} \bigwedge_{h=1}^{3}\left(\neg x_{a c} \vee \neg x_{b c}\right)
$$

- See the Colab Notebook with an implementation of this example.

Example: Graph coloring

Graph coloring

Can one assign one of K colors to each of the vertices of graph $G=(V, E)$ such that adjacent vertices are assigned different colors?

- Create $|V| \times K$ variables:

$$
x_{i j} \text { is true iff vertex } i \text { is assigned color } j
$$

- For each edge (u, v), require different assigned colors to u and v :

$$
\text { for each } 1 \leq j \leq K, \quad\left(x_{u j} \rightarrow \neg x_{v j}\right)
$$

- ..

Example: Graph coloring

Summing up:

- Adjacent vertices must have different colors.

$$
\bigwedge_{(u, v) \in E} \bigwedge_{j=1}^{K}\left(\neg x_{u, j} \vee \neg x_{v j}\right)
$$

- At least one color to each vertex.

$$
\bigwedge_{i=1}^{|V|} \bigvee_{j=1}^{K} x_{i j}
$$

- At most one color to each vertex.

$$
\bigwedge_{i=1}^{|V|} \bigwedge_{a=1}^{K-1} \bigwedge_{b=a+1}^{K}\left(\neg x_{i a} \vee \neg x_{i b}\right)
$$

- See the Colab Notebook with an implementation of this problem.

Example: Graph coloring

- Each vertex is assigned exactly one color.
- At least one color to each vertex:

$$
\text { for each } 1 \leq i \leq|V|, \quad \bigvee_{j=1}^{K} x_{i j}
$$

- At most one color to each vertex:

$$
\text { for each } 1 \leq i \leq|V|, \quad \bigwedge_{a=1}^{K}\left(x_{i a} \rightarrow \bigwedge_{b=1, b \neq a}^{K} \neg x_{i b}\right)
$$

since \vee and \wedge are commutative and idempotent, a better encoding is

$$
\text { for each } 1 \leq i \leq|V|, \quad \bigwedge_{a=1}^{K-1}\left(x_{i a} \rightarrow \bigwedge_{b=a+1}^{K} \neg x_{i b}\right)
$$

or equivalently,

$$
\text { for each } 1 \leq i \leq|V|, \quad \bigwedge_{a=1}^{K-1} \bigwedge_{b=a+1}^{K}\left(\neg x_{i a} \vee \neg x_{i b}\right)
$$

