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Introduction
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Formal modeling

For us to be able to use an automated tool (to test or verify a property, or
to analyze the behavior of a system), we first have to formally represent the
system and its properties in the syntactic conventions that the tool
understands and can process. This task is called formal modeling.

The di�culty of the modeling task naturally varies; and, most typically,
there are several ways of doing it.
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What is a (formal) logic?

A formal logic consists of

A logical language in which (well-formed) sentences are expressed. It
consists of

I logical symbols whose interpretations are fixed
I non-logical symbols whose interpretations vary

A semantics that defines the intended interpretation of the symbols
and expressions of the logical language.

A proof system that is a framework of rules for deriving valid
judgments.

Maria João Frade (HASLab, DI-UM) PL & SAT MFES 2023/24 5 / 47

Logic and computer science

Logic and computer science share a symbiotic relationship.
I Logic provides language and methods for the study of theoretical

computer science.
I Computers provide a concrete setting for the implementation of logic.
I Moreover, logic can be used to model the situations we encounter as

computer science professionals, in such a way that we can reason about
them formally.

Logic is a fundamental part of computer science.
I Program analysis: static analysis, software verification, test case

generation, program understanding, ...
I Artificial intelligence: constraint satisfaction, automated game playing,

planning, ...
I Hardware verification: correctness of circuits, ATPG, ...
I Programming Languages: logic programming, type systems,

programming language theory, ...
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What is SAT?

The Boolean satisfiability (SAT) problem:
I Find an assignment to the propositional variables of the formula such

that the formula evaluates to TRUE, or prove that no such assignment
exists.

SAT is an NP-complete decision problem.
I SAT was the first problem to be shown NP-complete.
I There are no known polynomial time algorithms for SAT.
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What is SAT?

Usually SAT solvers deal with formulas in conjunctive normal form
(CNF)

I literal: propositional variable or its negation. A, ¬A, B, ¬B, C, ¬C
I clause: disjuntion of literals. (A _ ¬B _ C)
I conjunctive normal form: conjuction of clauses.

(A _ ¬B _ C) ^ (B _ ¬A) ^ ¬C

SAT is a success story of computer science
I Modern SAT solvers can check formulas with hundreds of thousands

variables and millions of clauses in a reasonable amount of time.
I A huge number of practical applications.
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Why should we care?

No matter what your research area or interest is, SAT solving is likely
to be relevant.

Very good toolkit because many di�cult problems can be reduced
deciding satisfiabilty of formulas in logic.
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(Classical) Propositional Logic
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Propositional logic

The language of propositional logic is based on propositions, or
declarative sentences which one can, in principle, argue as being
“true” or “false”.

Propositional symbols are the atomic formulas of the language. More
complex sentences are constructed using logical connectives.

In classical propositional logic (PL) each sentence is either true or
false.
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Syntax

The alphabet of the propositional language is organised into the following
categories.

Propositional variables: P,Q,R, . . . 2 VProp (a countably infinite set)

Logical connectives: ? (false) ,> (true), ¬ (not), ^ (and), _ (or), !
(implies), $ (equivalent)

Auxiliary symbols: “(“ and “)”.

The set Form of formulas of propositional logic is given by the abstract syntax

Form 3 A,B ::= P | ? | > | (¬A) | (A ^B) | (A _B) | (A ! B) | (A $ B)

We let A,B,C, F,G,H, . . . range over Form.

Outermost parenthesis are usually dropped. In absence of parentheses, we adopt
the following convention about precedence. Ranging from the highest precedence
to the lowest, we have respectively: ¬, ^, _, ! and $. All binary connectives
are right-associative.
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Semantics

The meaning of PL is given by the truth values true and false, where
true 6= false. We will represent true by 1 and false by 0.

An assignment is a function A : VProp!{0, 1}, that assigns to every
propositional variable a truth value.
An assignment A naturally extends to all formulas, A : Form!{0, 1}.
The truth value of a formula is computed using truth tables:

F A B ¬A A ^B A _B A ! B A $ B ? >

A1(F ) 0 1 1 0 1 1 0 0 1
A2(F ) 0 0 1 0 0 1 1 0 1
A3(F ) 1 1 0 1 1 1 1 0 1
A4(F ) 1 0 0 0 1 0 0 0 1

This way the meaning of each connective is established.
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Semantics

Let A be an assignment and let F be a formula.
If A(F ) = 1, then we say F holds under assignment A, or A models F .

We write A |= F i↵ A(F ) = 1, and A 6|= F i↵ A(F ) = 0.

An alternative (inductive) definition of A |= F is

A |= >

A 6|= ?

A |= P i↵ A(P ) = 1
A |= ¬A i↵ A 6|= A

A |= A ^B i↵ A |= A and A |= B

A |= A _B i↵ A |= A or A |= B

A |= A ! B i↵ A 6|= A or A |= B

A |= A $ B i↵ A |= A i↵ A |= B
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Validity, satisfiability, and contradiction

A formula F is

valid i↵ it holds under every assignment. We write |= F .
A valid formula is called a tautology.

satisfiable i↵ it holds under some assignment.

unsatisfiable i↵ it holds under no assignment.
An unsatisfiable formula is called a contradiction.

refutable i↵ it is not valid.

Proposition

F is valid i↵ ¬F is unsatisfiable
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Validity, satisfiability, and contradiction

Classify the following formulas:

A ! B is satisfiable and refutable.

P _ ¬P is valid.

A ^ ¬A is a contradiction.

B _ (A ! ¬B) is valid.

B ^ (A _ ¬B) is satisfiable and refutable.

A ! ¬A _B is satisfiable and refutable.

(A ^ (A ! B)) ! B is valid.
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Consequence and equivalence

F |= G i↵ for every assignment A, if A |= F then A |= G. We say
G is a consequence of F .

F ⌘ G i↵ F |= G and G |= F . We say F and G are equivalent.

Let � = {F1, F2, F3, . . . } be a set of formulas.

A |= � i↵ A |= Fi for each formula Fi in �. We say A models �.

� |= G i↵ A |= � implies A |= G for every assignment A. We say
G is a consequence of �.

Proposition

F |= G i↵ |= F ! G

� |= G and � finite i↵ |=
!

� ! G
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Some basic equivalences

A _A ⌘ A

A ^A ⌘ A

A _B ⌘ B _A

A ^B ⌘ B ^A

A ^ (A _B) ⌘ A

A ^ (B _ C) ⌘ (A ^B) _ (A ^ C)
A _ (B ^ C) ⌘ (A _B) ^ (A _ C)

¬(A _B) ⌘ ¬A ^ ¬B

¬(A ^B) ⌘ ¬A _ ¬B

A $ B ⌘ (A ! B) ^ (B ! A)

A ^ ¬A ⌘ ?

A _ ¬A ⌘ >

A ^ > ⌘ A

A _ > ⌘ >

A ^ ? ⌘ ?

A _ ? ⌘ A

¬¬A ⌘ A

A ! B ⌘ ¬A _B
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Consistency

Let � = {F1, F2, F3, . . . } be a set of formulas.

� is consistent or satisfiable i↵ there is an assignment that models �.

We say that � is inconsistent or unsatisfiable i↵ it is not consistent
and denote this by � |= ?.

Proposition

{F,¬F} |= ?

If � |= ? and � ✓ �!, then �!
|= ?.

� |= F i↵ �,¬F |= ?
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Substitution

Formula G is a subformula of formula F if it occurs syntactically
within F .

Formula G is a strict subformula of F if G is a subformula of F and
G 6= F

Substitution theorem
Suppose F ⌘ G. Let H be a formula that contains F as a subformula.
Let H ! be the formula obtained by replacing some occurrence of F in H

with G. Then H ⌘ H
!.
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Decidability

Given formulas F and G as input, we may ask:

Decision problems

Validity problem: “Is F valid ?”
Satisfiability problem: “Is F satisfiable ?”
Consequence problem: “Is G a consequence of F ?”
Equivalence problem: “Are F and G equivalent ?”

All these problems are decidable!
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Decidability

Any algorithm that works for one of these problems also works for all of
these problems!

F is satisfiable i↵ ¬F is not valid
F |= G i↵ ¬(F ! G) is not satisfiable
F ⌘ G i↵ F |= G and G |= F

F is valid i↵ F ⌘ >

Truth-table method
For the satisfiability problem, we first compute a truth table for F and
then check to see if its truth value is ever one.

This algorithm certainly works, but is very ine�cient.
It’s exponential-time! O(2n)

If F has n atomic formulas, then the truth table for F has 2n rows.
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Complexity

Computing a truth table for a formula is exponential-time in order to
the number of propositional variables.

There are several techniques and algorithms for SAT solving that
perform better in average.

There are no known polynomial time algorithms for SAT.
I If it exists, then P = NP, because the SAT problem for PL is

NP-complete (it was the first one to be shown NP-complete).

Cook’s theorem (1971)

SAT is NP-complete.

Conjecture: Any algorithm that solves SAT is exponential in the
number of variables, in the worst-case.
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An example

The unicorn puzzle

If the unicorn is mythical, then it is immortal.

If the unicorn is not mythical, then it is a mortal mammal.

If the unicorn is either immortal or a mammal, then it is horned.

The unicorn is magical if it is horned.

Questions:
I Is the unicorn magical?
I Is it horned?
I Is it mythical?
I Is it possible for the unicorn to be simultaneously mythical and

immortal?

Maria João Frade (HASLab, DI-UM) PL & SAT MFES 2023/24 24 / 47



An example

Consider the following propositional variables:
I M - the unicorn is mythical
I I - the unicorn is immortal
I A - the unicorn is mammal
I H - the unicorn is horned
I G - the unicorn is magical

If the unicorn is mythical, then it is immortal.
M ! I

If the unicorn is not mythical, then it is a mortal mammal.
¬M ! (¬I ^A)

If the unicorn is either immortal or a mammal, then it is horned.
(I _A) ! H

The unicorn is magical if it is horned.
H ! G
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An example

Let � be {M ! I,¬M ! (¬I ^A), (I _A) ! H,H ! G }

If the puzzle is consistent, � should be satisfiable.

Questions:

Is the unicorn magical? � |= G ?

Is it horned? � |= H ?

Is it mythical? � |= M ?

Recall that: � |= F i↵ �,¬F UNSAT

Is it possible for a unicorn to be simultaneously mythical and
immortal? Is �,M ^ ¬I SAT?
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SAT solvers
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SAT solving algorithms

There are several techniques and algorithms for SAT solving.

Usually SAT solvers receive as input a formula in a specific syntatical
format.

SAT solvers deal with formulas in conjunctive normal form (CNF)
I literal: propositional variable or its negation. A, ¬A, B, ¬B, C, ¬C
I clause: disjuntion of literals. (A _ ¬B _ C)
I conjunctive normal form: conjuction of clauses.

(A _ ¬B _ C) ^ (B _ ¬A) ^ ¬C

So, one has first to transform the input formula to this specific format
preserving satisfiability.

Most current state-of-the-art SAT solvers are based on the
Davis-Putnam-Logemann-Loveland (DPLL) framework.
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DPLL framework

The ideia is to incrementally construct an assignment compatible with a
CNF, propagating the implications of the decisions made that are easy to
detect and simplifying the clauses.

A CNF is satisfied by an assignment if all its clauses are satisfied. And a
clause is satisfied if at least one of its literals is satisfied.

When a literal is true, the formula can be simplified by removing the clauses
where the literal occurs and removing the opposite literal from the remaning
clauses.

I (¬A _ ¬B) ^A ^ (¬B _A) ^ (¬A _ C _B) choose A(A) = 1
(¬A _ ¬B) ^A ^ (¬B _A) ^ (¬A _ C _B) simplification
¬B ^ (C _B)

Unit propagation is the iterated application of the unit clause rule (assign
true to a literal that is isolated in a clause) and subsequent simplification of
the formula.
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DPLL algorithm

The algorithm starts with an empty assignment and performs unit
propagation, updating the assignment accordingly and simplifying the
formula.

I If the formula becomes empty, that means that the formula is SAT.
I If the formula contains an empty clause, that indicates a contradiction

(a conflict).
I If no conclusion is attained, a decision about an unassigned variable is

made, propagating the implications of this decision.

In case a conflict is detected, the algorithm backtracks to the previous
decision point and tries a di↵erent assignment for the last decision variable.

DPLL is a complete algorithm for SAT. Unsatisfiability of the complete
formula can only be detected after exhaustive search.
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DPLL framework: heuristics & optimizations

Many di↵erent techniques are applied to achieve e�ciency in DPLL-based SAT
solvers.

Decision heuristic: a very important feature in SAT solving is the strategy by
which the literals are chosen.

Look-ahead: exploit information about the remaining search space.

I unit propagation
I pure literal rule

Look-back: exploit information about search which has already taken place.

I clause learning (new clauses are learnt from conflicts that prune the
search space)

I non-chronological backtracking (a.k.a. backjumping)

Other techniques:

I preprocessing (detection of subsumed clauses, simplification, ...)
I (random) restart (restarting the solver when it seams to be is a

hopeless branch of the search tree)
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Conflict-Driven Clause Learning (CDCL) solvers

Conflict-Driven Clause Learning (CDCL) solvers

I DPLL framework.
I New clauses are learnt from conflicts.
I Structure of conflicts exploited (using implication graphs).
I Backtracking can be non-chronological.
I E�cient data structures (compact and reduced maintenance overhead).
I Backtrack search is periodically restarted.
I Can deal with hundreds of thousand variables and tens of million

clauses.

The most successful modern SAT solvers use this technology.

The satisfiability library SAT Live!1 is an online resource that proposes, as
a standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.

1http://www.satlive.org
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DIMACS CNF format

DIMACS CNF format is a standard format for CNF used by most
SAT solvers.

Plain text file with following structure:

c <comments>
...
p cnf <num.of variables > <num.of clauses >

<clause > 0
<clause > 0
...
I Every number 1, 2, . . . corresponds to a variable (variable names have

to be mapped to numbers).
I A negative number denote the negation of the corresponding variable.
I Every clause is a list of numbers, separated by spaces. (One or more

lines per clause).
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DIMACS CNF format

Example

A1 ^ (A1 _ P ) ^ (¬A1 _ ¬P _A2) ^ (A1 _ ¬A2)

We have 3 variables and 4 clauses.

Let A1 = 1, A2 = 2 and P = 3.

CNF file:
p cnf 3 4
1 0
1 3 0
-1 -3 2 0
1 -2 0
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Minisat demo
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SAT solver API

Several SAT solvers have API’s for di↵erent programming languages that
allow an incremental use of the solver.

For instance, PySAT2 is a Python toolkit which provides a simple and
unified interface to a number of state-of-art SAT solvers, enabling to
prototype with SAT oracles in Python while exploiting incrementally the
power of the original low-level implementations of modern SAT solvers.

2https://pysathq.github.io
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Looking for A1 ^ (A1 _ P ) ^ (¬A1 _ ¬P _A2) ^ (A1 _ ¬A2) models

The model found by the solver indicates that A1 ^ ¬A2 ^ ¬P is true.

Is there other possible models? To check that we must add the clause that
corresponds to the negation of the above formula and check again.

¬(A1 ^ ¬A2 ^ ¬P ) ⌘ ¬A1 _A2 _ P
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Looking for A1 ^ (A1 _ P ) ^ (¬A1 _ ¬P _A2) ^ (A1 _ ¬A2) models
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Modeling with PL
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Example: Placement of guests

Placement of guests
We have three chairs in a row and we need to place Anne, Susan and Peter.

Anne does not want to sit next to Peter.

Anne does not want to sit in the left chair.

Susan does not want to sit to the left of Peter.

Can we satisfy these constrains? How can we sit the guests?

Denote: Anne = 1, Susan = 2, Peter = 3
left chair = 1, middle chair = 2, right chair = 3

Introduce a propositional variable xij for each pair (person i, place j)

xij is true i↵ person i is sited in place j; xij is false otherwise
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Example: Placement of guests

Anne does not want to sit next to Peter.

((x11 _ x13) ! ¬x32) ^ (x12 ! (¬x31 ^ ¬x33))

Anne does not want to sit in the left chair.

¬x11

Susan does not want to sit to the left of Peter.

(x33 ! ¬x22) ^ (x32 ! ¬x21)

Are these constraints enough to model the problem?

Can you point out an unexpected trivial solution?
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Example: Placement of guests

There are two constrains that are implict in the problem.

Everyone must be seated in a chair.

(x11 _ x12 _ x13) ^ (x21 _ x22 _ x23) ^ (x31 _ x32 _ x33)

Using a compact notation:
3"

i =1

3#

j =1

xij

No more than one person per chair.

For each chair c = 1, 2, 3,

(x1c ! ¬x2c ^ ¬x3c) ^ (x2c ! ¬x1c ^ ¬x3c) ^ (x3c ! ¬x1c ^ ¬x2c)

This is correct, but there is some redundancy here...
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Example: Placement of guests

No more than one person per chair.

Note that

x1c ! Âx2c " Âx3c # Âx1c $ (Âx2c " Âx3c) # (Âx1c $ Âx2c) " (Âx1c $ Âx3c)
x2c ! Âx1c " Âx3c # Âx2c $ (Âx1c " Âx3c) # (Âx2c $ Âx1c) " (Âx2c $ Âx3c)
x3c ! Âx1c " Âx2c # Âx3c $ (Âx1c " Âx2c) # (Âx3c $ Âx1c) " (Âx3c $ Âx2c)

Since _ and ^ are commutative and idempotent, we can remove the green
clauses:

3"

c=1

(¬x1c _ ¬x2c) ^ (¬x1c _ ¬x3c) ^ (¬x2c _ ¬x1c)

Using compact notation

3"

c=1

2"

a=1

3"

b= a+1

(¬xac _ ¬xbc)
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Example: Placement of guests

The compact notation used is perhaps a bit more di�cult to read, but is
quit close to programming.

For instance, using PySAT we can use 3 nested cicles to codify the formula

3"

c=1

2"

a=1

3"

b= a+1

(¬xac _ ¬xbc)

See the Colab Notebook with an implementation of this example.
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Example: Graph coloring

Graph coloring

Can one assign one of K colors to each of the vertices of graph
G = (V,E) such that adjacent vertices are assigned di↵erent colors?

Create |V |⇥K variables:

xij is true i↵ vertex i is assigned color j

For each edge (u, v), require di↵erent assigned colors to u and v:

for each 1  j  K, (xuj ! ¬xvj )

...
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Example: Graph coloring

Each vertex is assigned exactly one color.

I At least one color to each vertex:

for each 1  i  |V |,

K#

j =1

xij

I At most one color to each vertex:

for each 1  i  |V |,

K"

a=1

(xia !

K"

b=1 ,b!= a

¬xib )

since _ and ^ are commutative and idempotent, a better encoding is

for each 1  i  |V |,

K " 1"

a=1

(xia !

K"

b= a+1

¬xib )

or equivalently,

for each 1  i  |V |,

K " 1"

a=1

K"

b= a+1

(¬xia _ ¬xib )
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Example: Graph coloring

Summing up:

Adjacent vertices must have di↵erent colors.

"

(u,v )# E

K"

j =1

(¬xu,j _ ¬xvj )

At least one color to each vertex.

|V |"

i =1

K#

j =1

xij

At most one color to each vertex.

|V |"

i =1

K " 1"

a=1

K"

b= a+1

(¬xia _ ¬xib )

See the Colab Notebook with an implementation of this problem.
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