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Software structures
• Data structures


• Database schemas


• Architectures


• Network topologies


• Ontologies


• Domain models



Structural design

• Understand entities and their relationships


• Elicit requirements


• Explore design alternatives



Domain modeling a la UML



Domain modeling a la UML

• How to validate the model?


• Any forgotten or redundant constraints?


• What exactly mean the constraints?


• Do the constraints entail all the expected properties?



–Leslie Lamport

“A specification is an abstraction. It describes some aspects of the 
system and ignores others. [...] But I don’t know how to teach you 

about abstraction. A good engineer knows how to abstract the 
essence of a system and suppress the unimportant details when 
specifying and designing it. The art of abstraction is learned only 

through experience.” 



–Daniel Jackson

“The core of software development, therefore, is the design of 
abstractions. An abstraction is [...] an idea reduced to its essential form.”





Software design with Alloy

• Alloy is a formal modeling language


• Can be used to declare structures and specify constraints


• Models can be automatically analyzed


• Tailored for abstraction



Domain modeling with Alloy

?



Signatures and fields



Entities = Signatures

sig Object {}
sig Entry {}
sig Name {}



“Is a” = Extension

sig Dir  extends Object {}
sig File extends Object {}
sig Root extends Dir {}



Signatures

• Signatures are sets


• Inhabited by atoms from a finite universe of discourse 


• Top-level signatures are disjoint


• An extension signature is a subset of the parent signature


• Sibling extension signatures are disjoint



Relationships = Fields

sig Dir extends Object {
entries : set Entry

}
sig Entry {
object : set Object,
name   : set Name

}



Fields

• Fields are relations 


• Inhabited by sets of tuples of atoms from the universe


• Fields are subsets of the Cartesian product of the source and target type 
signatures


• All tuples in a field have the same arity



Multiplicity constraints



Facts
• Facts specify assumptions


fact { φ }

• Facts can be named


fact Name { φ }


• A single fact can have several constraints, one per line


fact { 
  φ 
  
}

ψ



Multiplicity constraints

• In a multiplicity constraint the default multiplicity is set 

• The target multiplicity can alternatively be specified in the declaration


• In field declarations the default target multiplicity is one

Alloy UML
set 0..*
lone 0..1
some 1..*
one 1

fact {  in   ->   }R A m m B



Multiplicity constraints
sig Dir extends Object {
entries : set Entry

}
sig Entry {
object : set Object,
name   : set Name

}
fact Multiplicities {
entries in Dir   one -> set Entry
object  in Entry set -> one Object
name    in Entry set -> one Name

}



Multiplicity constraints
sig Dir extends Object {
entries : set Entry

}
sig Entry {
object : one Object,
name   : one Name

}
fact {
entries in Dir one -> set Entry

}



Multiplicity constraints
sig Dir extends Object {
entries : set Entry

}
sig Entry {
object : Object,
name   : Name

}
fact {
entries in Dir one -> Entry

}



Bestiary
R in A set  -> some B      // R is entire
R in A set  -> lone B      // R is simple
R in A some -> set  B      // R is surjective
R in A lone -> set  B      // R is injective

R in A lone -> some B      // R is a representation
R in A some -> lone B      // R is an abstraction

R in A set  -> one  B      // R is a function
R in A lone -> one  B      // R is an injection
R in A some -> one  B      // R is a surjection

R in A one  -> one  B      // R is a bijection



Analysis



Commands
• Alloy has two types of analysis commands:


- run { φ } asks for an example that satisfies φ

- check { φ } asks for a counter-example that refutes assertion φ

• Likewise facts, commands can be named and can have several 
constraints, one per line


• In the visualizer it possible to ask for more examples or counter-examples 
by pressing New



Instances
• Both examples and counter-examples are instances of the model


• An instance is a valuation to all the signatures and fields


• An instance must satisfy the declarations and all the facts


• In an instance “everything is a relation”


- Signatures are unary relations (sets of unary tuples)


- Constants are singleton unary relations (sets with a one unary tuple)



Scopes

• To ensure decidability commands have a scope


• The scope imposes a limit on the size of the (finite) universe the Analyzer 
will exhaustively explore


• The default scope imposes a limit of 3 atoms per top-level signature


• for can be used to specify a different scope for top-level signatures


• but can be used to specify different scopes for specific signatures



The small scope hypothesis
• If run { φ } returns an instance then φ is consistent, else φ MAY be 

inconsistent 

- Could be consistent with a bigger scope! 

• If check { φ } returns an instance then φ is invalid, else φ MAY be valid 

- Could be invalid with a bigger scope!!!


• Anecdotical evidence suggests that most invalid assertions (or consistent 
predicates) can be refuted (or witnessed) with a small scope



A simple command

run {} for 4 but 3 Name



Instances as graphs



Instances as relations

Object  = {(Object),(Root0),(Root1),(File)}

Dir     = {(Root0),(Root1)}

File    = {(File)}

Root    = {(Root0),(Root1)}

Entry   = {(Entry0),(Entry1),(Entry2),(Entry3)}

Name    = {(Name)}

entries = {(Root1,Entry1),(Root1,Entry2),(Root1,Entry3),(Root1,Entry0)}

object  = {(Entry1,File),(Entry2,File),(Entry0,File),(Entry3,Root0)}

name    = {(Entry0,Name),(Entry1,Name),(Entry2,Name),(Entry3,Name)}



Instances as tables
Object
Object
File
Root0
Root1

Dir

Root0

Root1

Root

Root0

Root1

File

File

Name

Name

entries
Root1 Entry1
Root1 Entry2
Root1 Entry3
Root1 Entry0

object
Entry0 File
Entry1 File
Entry2 File
Entry3 Root0

name
Entry0 Name
Entry1 Name
Entry2 Name
Entry3 Name

Entry
Entry0
Entry1
Entry2
Entry3



Atoms
• The universe of discourse contains atoms 

• Atoms are uninterpreted (no semantics)


• Named automatically according to the respective signatures


• Two instances are isomorphic (or symmetric) if they are equal modulo 
renaming


• The analysis implements a symmetry breaking mechanism to avoid 
returning isomorphic instances



The constraints

• There are no other objects except 
directories and files


• All objects except the root are contained in 
at least one entry (at most one for the case 
of directories)


• There is only one root


• Different entries in a directory must have 
different names



Abstract signatures
• All atoms in an abstract signature belong to one of its extensions


• The extensions partition the parent signature

abstract sig Object {}
sig Dir extends Object {

entries : set Entry
}
sig File extends Object {}



Signature multiplicities

• Multiplicities can also be used in signature declarations


• In particular, a one sig denotes a constant

one sig Root extends Dir {}



Themes

• The visualizer theme can be customised


• Customization can ease the understanding and help validate the model


• It is possible to customize colors, shapes, visibility, …



Theme customization

DEMO



Theme customization



Relational logic



The constraints in FOL
fact {

  // All objects except the root are contained in at least one entry

  

  

  // All directories are contained in at most one entry

  

  // Different entries in a directory must have different names

  

}

∀o ⋅ Object(o) ∧ o ≠ Root → ∃e ⋅ object(e, d)
∀e . ¬object(e,Root)

∀d, e1, e2 ⋅ Dir(d) ∧ object(e1, d) ∧ object(e2, d) → e1 = e2

∀d, n, e1, e2 ⋅ entries(d, e1) ∧ entries(d, e2) ∧ name(e1, n) ∧ name(e2, n) → e1 = e2



The constraints in FOL
fact {

  // All objects except the root are contained in at least one entry

  

  

  // All directories are contained in at most one entry

  

  // Different entries in a directory must have different names

  

}

∀o ⋅ (o) ∈ Object ∧ o ≠ Root → ∃e ⋅ (e, d) ∈ object

∀e . (e,Root) ∉ object

∀d, e1, e2 ⋅ (d) ∈ Dir ∧ (e1, d) ∈ object ∧ (e2, d) ∈ object → e1 = e2

∀d, n, e1, e2 ⋅ (d, e1) ∈ entries ∧ (d, e2) ∈ entries ∧ (e1, n) ∈ name ∧ (e2, n) ∈ name → e1 = e2



Logical operators

not                     
 and                   
 or                    
 implies               
 implies  else        
 iff                   

ϕ ¬ϕ
ϕ ψ ϕ ∧ ψ
ϕ ψ ϕ ∨ ψ
ϕ ψ ϕ → ψ
ϕ ψ θ (ϕ ∧ ψ) ∨ (¬ϕ ∧ θ)
ϕ ψ ϕ ↔ ψ



Logical operators

!                       
 &&                    
 ||                    
 =>                    
 =>  else             
 <=>                   

ϕ ¬ϕ
ϕ ψ ϕ ∧ ψ
ϕ ψ ϕ ∨ ψ
ϕ ψ ϕ → ψ
ϕ ψ θ (ϕ ∧ ψ) ∨ (¬ϕ ∧ θ)
ϕ ψ ϕ ↔ ψ



Quantifiers

all   : univ |         
all   :  |            all  : univ |  in  => 
some  : univ |         
some  :  |            some  : univ |  in  && 

x ϕ ∀x ⋅ ϕ
x A ϕ x x A ϕ
x ϕ ∃x ⋅ ϕ
x A ϕ x x A ϕ



Atomic formulas

 =                         
 !=                        

 -> ->  in              
 -> ->  not in          

x y x = y
x y x ≠ y

x1 ⋯ xn R (x1, …, xn) ∈ R
x1 ⋯ xn R (x1, …, xn) ∉ R



The constraints in Alloy

fact {

// All objects except the root are contained in at least one entry

all o : univ | o in Object and o != Root implies some e : univ | e->o in object

all o : univ | o->Root not in object

// All directories are contained in at most one entry

all d,e1,e2 : univ | d in Dir and e1->d in object and e2->d in object implies e1 = e2

// Different entries in a directory must have different names

all d,n,e1,e2 : univ | d->e1 in entries and d->e2 in entries and e1->n in name and e2->n in name implies e1 = e2

}



😱



Relational logic

• Relational logic extends FOL with:


- Derived atomic formulas, namely cardinality checks


- Derived operators to combine predicates (relations) into more complex 
predicates


- Transitive and reflexive closures, which cannot be expressed in FOL



Atomic formulas

// Subset
 in                            
 not in       

// Set equality
 =                
 !=           

R S R ⊆ S ∀x1, …, xn ⋅ (x1, …, xn) ∈ R → (x1, …, xn) ∈ S
R S R ⊈ S

R S R = S R ⊆ S ∧ S ⊆ R
R S R ≠ S



Atomic formulas

// Cardinality checks
some                
no                  
lone          
one           

R |R | > 0 ∃x1, …, xn ⋅ (x1, …, xn) ∈ R
R |R | = 0 ∀x1, …, xn ⋅ (x1, …, xn) ∉ R
R |R | < 2
R |R | = 1



Set operators

// Union
               

// Intersection
         

// Difference
          

R + S R ∪ S (x1, …, xn) ∈ (R + S) ↔ (x1, …, xn) ∈ R ∨ (x1, …, xn) ∈ S

R & S R ∩ S (x1, …, xn) ∈ (R & S) ↔ (x1, …, xn) ∈ R ∧ (x1, …, xn) ∈ S

R - S R∖S (x1, …, xn) ∈ (R - S) ↔ (x1, …, xn) ∈ R ∧ (x1, …, xn) ∉ S



Relational constants

// Universe
univ           

// Empty set
none           

// Identity
iden           

⊤ ∀x ⋅ (x) ∈ univ

∅ ∀x ⋅ (x) ∉ none

𝗂𝖽 ∀x1, x2 ⋅ (x1, x2) ∈ iden ↔ x1 = x2



Relational operators
// Cartesian product

    

// Transpose or converse  
~          

// Range restriction
       

// Domain restriction
       

R -> S R × S (x1, …, xn, y1, …, ym) ∈ (R -> S) ↔ (x1, …, xn) ∈ R ∧ (y1, …, ym) ∈ S

R R∘ (x1, x2) ∈ (~R) ↔ (x2, x1) ∈ R

R :> A (x1, …, xn) ∈ (R :> A) ↔ (x1, …, xn) ∈ R ∧ (xn) ∈ A

A <: R (x1, …, xn) ∈ (A <: R) ↔ (x1, …, xn) ∈ R ∧ (x1) ∈ A



Inclusion vs subset

all x : Dir | x in Object

all x : univ | x in Dir implies x in Object

∀x . (x) ∈ Dir → (x) ∈ Object

∀x . {(x)} ⊆ Dir → {(x)} ⊆ Object



Inclusion vs subset

all x : Entry | some y : Name | x->y in name

∀x . (x) ∈ Entry → ∃y . (y) ∈ Name ∧ (x, y) ∈ name

∀x . {(x)} ⊆ Entry → ∃y . {(y)} ⊆ Name ∧ {(x)} × {(y)} ⊆ name

∀x . {(x)} ⊆ Entry → ∃y . {(y)} ⊆ Name ∧ {(x, y)} ⊆ name



Composition

 

R . S

S ∘ R

(x1, …, xn−1, y2, …, ym) ∈ (R . S)
↔

∃z ⋅ (x1, …, xn−1, z) ∈ R ∧ (z, y2, …, ym) ∈ S



Composition
entries

Root Entry0
Root Entry2
Dir Entry1
Dir Entry3

name
Entry0 Name0
Entry1 Name1
Entry2 Name1
Entry3 Name1

entries . name

Root Name0

Root Name1

Dir Name1



Composition

Root

File

Dir

Entry0

Entry1

Entry2

Entry3

Name0

Name1

Name2



Composition
entries

Root Entry0
Root Entry2
Dir Entry1
Dir Entry3

entries . Entry

Root

Dir

Entry
Entry0
Entry1
Entry2
Entry3



Composition

entries
Root Entry0
Root Entry2
Dir Entry1
Dir Entry3

Root . entries

Entry0

Entry2

Root
Root



From FOL to RL

// All objects except the root are contained in at least one entry 

all o : univ | o->Root not in object

all o : univ | o not in object.Root

no object.Root



From FOL to RL
// All objects except the root are contained in at least one entry 

all o : univ | o in Object and o != Root implies some e : univ | e->o in object

all o : univ | o in Object and o != Root implies some e : univ | e in object.o

all o : univ | o in Object and o != Root implies some object.o

all o : univ | o in Object and o not in Root implies some object.o

all o : univ | o in Object-Root implies some object.o

all o : Object-Root | some object.o



From FOL to RL

// All directories are contained in at most one entry

all d,e1,e2 : univ | d in Dir and e1->d in object and e2->d in object implies e1 = e2

all d : univ | d in Dir implies all e1,e2 : univ | e1->d in object and e2->d in object implies e1 = e2

all d : Dir | all e1,e2 : univ | e1->d in object and e2->d in object implies e1 = e2

all d : Dir | all e1,e2 : univ | e1 in object.d and e2 in object.d implies e1 = e2

all d : Dir | lone object.d



From FOL to RL

// Different entries in a directory must have different names

all d,n,e1,e2 : univ | d->e1 in entries and d->e2 in entries and e1->n in name and e2->n in name implies e1 = e2

all d,n,e1,e2 : univ | e1 in d.entries and e2 in d.entries and e1 in name.n and e2 in name.n implies e1 = e2

all d,n,e1,e2 : univ | e1 in d.entries and e1 in name.n and e2 in d.entries and e2 in name.n implies e1 = e2

all d,n,e1,e2 : univ | e1 in (d.entries & name.n) and e2 in (d.entries & name.n) implies e1 = e2

all d,n : univ | lone (d.entries & name.n)

all d : Dir, n : Name | lone (d.entries & name.n)



The constraints in Alloy
fact {
// All objects except the root are contained in at least one entry
all o : Object - Root | some object.o
no object.Root

// All directories are contained in at most one entry
all d : Dir | lone object.d

// Different entries in a directory must have different names
all d : Dir, n : Name | lone (d.entries & name.n)

}



😀



A question of style

// First order style
all x,y : Entry, n : Name | x->n in name and y->n in name implies x=y

// Relational or navigational style
all n : Name | lone name.n

// Point-free style
name.~name in iden



Verification



Some instances



Assertions
• Assertions are named constraints to be checked

assert NoPartitions {
// All objects are reachable from the root
???

}

check NoPartitions



Reachable objects
Root.entries.objectRoot.entries.object.entries.objectRoot.entries.object.entries.object.entries.object



Closures

// Transitive closure
^  =  + .  + . .  + . . .  + 

// Reflexive transitive closure
*  = ^  + iden

R R R R R R R R R R R …

R R



The desired assertion

assert NoPartitions {
// All objects are reachable from the root
Object in Root.*(entries.object)

}

check NoPartitions



A counter-example



The missing constraint
fact {
// All objects except the root are contained in at least one entry
all o : Object - Root | some object.o
no object.Root

// All directories are contained in at most one entry
all d : Dir | lone object.d

// Different entries in a directory must have different names
all d : Dir, n : Name | lone (d.entries & name.n)

  // A directory cannot be contained in itself
  all d : Dir | d not in d.entries.object
}



Another counter-example



The missing constraint
fact {
// All objects except the root are contained in at least one entry
all o : Object - Root | some object.o
no object.Root

// All directories are contained in at most one entry
all d : Dir | lone object.d

// Different entries in a directory must have different names
all d : Dir, n : Name | lone (d.entries & name.n)

  // A directory cannot be contained in itself
  all d : Dir | d not in d.^(entries.object)
}





🧐



Increasing confidence
• Increase the scope of check commands


check NoPartitions for 6

• Use run commands to check consistency


• Verify that specific scenarios are possible


run { 
// An empty file system
Object = Root 

}



🥳


