Mastering Alloy

Alcino Cunha

Subset signatures

Subset signatures

An arbitrary subset of a signature can be declared with keyword in
instead of extends

Subset signatures are not necessarily disjoint

A sighature can be declared as a subset of more than one signature
Subset signatures cannot be extended

Subset signatures can be used to simulate multiple-inheritance

Atoms belonging to subset signatures are labelled in the visualizer

File-system

abstract sig Object {}
sig Dir extends Object {
entries : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {
object : one Object,
name : one Name

}
sig Name {}

Subset example

sig Trash in Object+Entry {}
fact {

Root not in Trash

all o : Object-Root | o in Trash iff object.o in Trash

all d : Dir & Trash | d.entries in Trash

Visualizing subsets

O O (filesystem) Run run$1 for 4 but 3 Name

— = “ﬂ g Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

.}
ll

Entry3 Entry0
name: NameO name: Namel

Entryl Entry2

name: Namel name: NameO

File

Subset example

abstract sig Shape {
color : one Color

}
sig Rectangle, Trapezoid extends Shape {}

abstract sig Color {}
one si1g Green, Red, Yellow extends Color {}

Subset example

abstract sig Shape {}
sig Rectangle, Trapezoid extends Shape {}

sig Green, Red, Yellow in Shape {}

fact {
Shape

Greent+Red+Yellow
no Green & Red

no Red & Yellow

no Green & Yellow

Visualizing subsets

(shapes) Run example

@,
A A= A= = | =2 == = 1=
O O (shapes) Run example
A= A= — [—a— e ‘
- — = E '%-] E Projection: none

Viz Txt Table Tree @ Theme Magic Layout Evaluator New

Rectangle / TrapezoidO\ / Trapezoidl\

N-ary relations

N-ary relationships a la UML

0..
Name Object
P contents / \

Dir File

&

Ternary relation example

abstract sig Object {}

sig Dir extends Object {
contents : Name -> lone Object

}

sig File extends Object {}

one sig Root extends Dir {}

sig Name {}

Composition

Root NameO Dir

/; Root Namel File
Root Dir NameO File
Dir Namel File

Root . contents

Name(Dir

Namel File

Ternary relation example

fact {
all o : Object - Root | some contents.o
no contents.Root

all d : Dir | lone contents.d

all d : Dir | d not in d."(22?)

Comprehension

{ x,:A{,....x A | ¢ }

{ x:2A,....,x:A | &} Obpsennsy)

Al(yl) A ... /\An(yn) A ¢[x1 N y]? °°°9xn < yn]

Ternary relation example

fact {
all o : Object - Root | some contents.o
no contents.Root

all d : Dir | lone contents.d

all d : Dir | d not in d."({d : Dir, o : Object | some d.contents.o})

Visualizing N-ary relations

O) (filesystem) Run run$1 for 4 but 3 Name

B= coe = Projection: none

Viz Txt Table Tree Theme Magic Layout Evaluator New

| |
ea)
)

"
[
i

|||.

File

Overloading

Overloading

* Fields in disjoint sighatures can be overloaded (have the same name)

 Ambiguity errors may occur

Overloading example

abstract sig Object {}

sig Dir extends Object {
contents : set Entry

}

sig File extends Object {}

one sig Root extends Dir {}

sig Entry {
contents : one Object,
name : one Name

}
sig Name {}

Overloading example

fact {
all o : Object - Root | some contents.o
no contents.Root
all d : Dir | lone contents.d

all d : Dir, n : Name | lone (d.contents & name.n)

all d : Dir | d not in d."(contents.contents)

Ambiguity errors

run { some contents }

A type error has occurred:

This name 1s ambiguous due to multiple matches:
field this/Dir <: contents

field this/Entry <: contents

Resolving ambiguities

run { some d : Dir | some d.contents }
run { some contents & Dir->Entry }

run { some Dir <: contents }

Predicates and functions

Predicates

Predicates are parametrized reusable constraints

- Can also be derived propositions (without arguments)

- Parameters can be arbitrary relations

Only hold when invoked in a fact, command, or other predicates
Recursive definitions are not allowed

Run commands can directly ask for an instance satisfying a predicate

- Atoms instantiating the parameters are shown in the visualizer

Predicate example

pred i1isreachable [d : Dir, o : Object] {
O i1n d. " (entries.object)

}

fact {

all d : Dir | not isreachable[d,d]

Running a predicate

O © (filesystem) Run isreachable for 4

@ Projection: none

e Magic Layout Evaluator New

==
Il
.
Il
-
|

Root
($isreachable_d)

Entry2
name: NameO

Dir
($isreachable_o)

Entry0 Entryl
name: Namel name: NameO

run l1sreachable for 4

File

Higher-order predicate example

pred acyclic [r : univ -> univ] {
no “r & iden

}

fact {

acyclic[entries.object]

}

Functions

 Functions are parametrized reusable expressions
- Parameters can be arbitrary relations

* Functions without parameters can be used to define derived relations
- These show up In the visualizer

e Recursive definitions are not allowed

Function example

fun descendants [d : Dir] : set Object {
d.” (entries.object)

}

fact {

all d : Dir | d not in descendants[d]

Derived relation example

sig Dir extends Object {
contents : Name -> lone Object

}

fun children : Dir -> Object {
{ d : Dir, o : Object | some d.contents.o }

}

fact {

all d : Dir | d not in d.”"children

Visualizing derived relations

O (filesystem) Run run$1 for 4 but 3 Name

= o59) @ o3l Projection: none

Txt Table Tree Theme Magic Layout Evaluator New

N

Root

LS
.
|||-—

/ Dirl \
/ Dir0 \

File

Modules

A model can be split into modules
A module name is declared in the first line with keyword module
A module can be imported with an open statement

A module name must match the path of the corresponding file

To disambiguate a call to an entity, the module name can be prepended
An alias to a module name can be given with the as keyword in an open statement

A module can be parametrised by one or more signatures

Module example

module relation

pred acyclic [r : univ -> univ] {
no "r & iden

}

Module example

open relation
fact {

acyclic[entries.object]

Parametrized module example

module graph[node]

pred complete[adj : node -> node] {
all n : node | n.adj = node-n

}

Parametrized module example

open graph[Person]

sig Person {
friend : set Person

}

fact { complete[friend] }

We are all friends

O O (friends) Run example for exactly 4 Person

A= A= — [— [—a—
H= E Iﬁ E Projection: none

Txt Table Tree Theme Magic Layout Evaluator New

Person0O

Predefined modules

util/relation

util/ternary

util/graph[A]

util/natural

util/boolean

util/ordering[A]

Useful functions and predicates for binary relations

Useful functions and predicates for ternary relations

Useful functions and predicates for graphs with nodes from signature A

Natural numbers, including some arithmetic operations

Boolean type, including common logical connectives

Imposes a total order on signature A

util/ordering

Imposes a total order on the parameter signature

For efficiency reasons the scope on that signature becomes exact
Visualiser attempts to name atoms according to the order

Many useful functions and relations, including

- next and prev binary relations

- first and last singleton sets

- 1t, 1te, gt, and gte comparison predicates

util/ordering example

open util/ordering[Date]

sig Date {}

sig Entry {
object : one Object,

name : one Name,
date : one Date
}
fact {
all e : object.Dir, c : e.object.entries | lt[e.date, c.date]

util/ordering vizualisation

O O (filesystem) Run run$1 for 4 but 3 Name

A= A= N
= — — @ Projection: none

Txt Table Tree Theme Magic Layout Evaluator New

Entry3
date: Datel
name: Name?2

Entry0 Entryl Entry2
date: Date3 date: Date2 date: Date2
name: Name?2 name: Namel name: NameO

File

Type system

File-system

abstract sig Object {}

sig Dir extends Object {
contents : set Entry

}

sig File extends Object {}

one sig Root extends Dir {}

sig Entry {
contents : one Object,
name : one Name

}
sig Name {}

Arity error

run { some name & File }

A type error has occurred:

& can be used only between 2 expressions of the same arity.
Left type = {this/Entry->this/Name}

Right type = {this/File}

Ambiguity error

run { some contents }

A type error has occurred:

This name 1is ambiguous due to multiple matches:
field this/Dir <: contents

field this/Entry <: contents

Irrelevance warning

run { some Dir.name }

Warning #1

The join operation here always yields an empty set.
Left type = {this/Dir}

Right type = {this/Entry->this/Name}

Type system

 The main goal of Alloy’s type system is to detect irrelevant expressions
 An expression is irrelevant if it can be replaced by none
 The same type system can be used to resolve overloading

- An overloaded name is treated as the union of all respective relations

- Only one of the overloaded relations must be relevant

Types

* The type of an expression is a set of tuples of atomic types
- An atomic type is a signature that is not further extended
* For non abstract signatures we need a reminder type

- The reminder contains all atoms not contained in one of the extensions

- The reminder type of signature A is denoted as $A
 The type of an expression is an upper-bound on its value

- If the type of an expression is empty, the expression is irrelevant

Type Iinference

* Type inference is guided by the abstract syntax and works in two phases
- A bottom-up phase computes the bounding types
- A top-down phase refines these and computes the relevance types

* Unlike bounding types, relevance types depend on the context

- The same expression in different formulas may have different types

Bounding type inference

 The bounding type of a signature or field is inferred from the respective
declarations

* The bounding type of an expression is computed using the same
relational operator applied to the bounding types of sub-expressions

- This Is possible because types are also relations

Bounding type inference

Dir.name

{(Root), (SDir)}}{(Entry,Name)}

name

{(Root), ($Dir)} {(Entry,Name) }

Dir

Bounding type inference

(Root.content) .name

{ (Name) }

name

{(Entry)} { (Entry,Name) }

{ (Root,Entry{ (RéduL)y} Entry), (Entry,File), (Entry,Root), (Entry, $SDir)}

contents contents

{ (Root, Ent{rENLEID i Ent(ENtry,Root), (Entry, $Dir) }

Relevance type inference

* The relevance type of the top expression is equal to its bounding type

* The relevance type of a sub-expression is computed by determining
which tuples effectively contributed to the parent expression type

Relevance type inference

(Root.content) .name

{ (Name) }

name

{(Entry)} { (Entry,Name) }

{(Root,Entry{ (RéduLYy} Entry) { (RonbtyEELtg) } (Entry,Root), (Entry,$Dir)}

contents contents

{ (Root ,{ERGGER BN Jent, (ENt ry }Root) , (Entry, $Dir) }

Relational model finding

Architecture

Kodkod

* A Kodkod problem consists of
- A universe of atoms %

- A set of relation declarations of shape r :, r; 1y,

> ais the arity of r

> 17 Is the lower-bound of r, tuples that MUST be present in r

> 1y Is the upper-bound of r, tuples that MAY be present in r

- A relational logic formula ¢

Kodkod

e Kodkod is a relational model finder

* |t finds a valuation (a model) for the relations such that
- @ is true in that model

- the valuation of each relation r complies with the partial-knowledge
declared in the bounds

Alloy = Kodkod

* Alloy assertions to be checked are negated and conjoined with the facts in the Kodkod formula

- An assertion is valid if its negation is unsatisfiable

* Alloy fields and atomic signatures are declared in the Kodkod problem
- Non-atomic signatures are aliased to a disjunction of atomic ones

* Appropriate bounds are inferred from scopes

- Upper-bounds can be shared between related atomic signatures
» Further constraints must be added to ensure a sound structural semantics

- Kodod atom names are meaningless
> When building an Alloy instance from a Kodkod instance atoms are renamed

Alloy example

abstract sig Object {}

sig Dir extends Object {
entries : set Entry

}

sig File extends Object {}

one sig Root extends Dir {}

sig Entry {}

run { some entries.Entry } for 3 but 2 Entry

Kodkod translation

{A,B,C,D,E}

sDir 1 {} {(A),(B)}
File ‘1 {} {(A)I(B)}
Root) {(C)} {(C)}

Entry ;4 {} {(D),(E)}
entries : {} {(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)}

no File & $Dir

all x : $Dir+Root | x.entries in Entry
entries.univ in S$Dir+Root

some entries.Entry

Kodkod <= SAT

e Arelation r of arity a can be represented by a matrix of boolean variables
of size | % |*

T if(4;,....U;)€er
r[ilaﬂ'aia] — - o If (%il,...,%ia) EFU\}"L

1 otherwise

Kodkod <= SAT

entries =

Kodkod <= SAT

* Relational operators are implemented by matrix operations (in the boolean

semirin
g) Multiplication

+ Addition
& Hadamard product

 Atomic formulas originate propositional formulas

in Conjunction of point-wise implication
some Disjunction

Kodkod <= SAT

some entries.Entry

1 1L L ryp rag
1 1 L rgp 1rpg 1
some | | 1 1 rop Tep -+
2 2 eD
1 1 1 1 1 e

(rapAep)V (rygAeg)
(rgpAep)V (rgp A eg)

SOME | (repAep) V (rep Aeg)

(rA,D Aep)V (’”A,E Aeg)V (’”B,D Aep)V (’”B,E Aeg)V (’”c,D Aep)V (l”c,E A er)

Quantifiers

e Since the universe is finite quantifiers can be handled by expansion

all x : Entry | some entries.x

some entries.{(D)} and some entries.{(E)}
» Unfortunately this yields no withesses to existential quantifiers

some X : Entry | some entries.x

some entries.{(D)} or some entries.{(E)}

Skolemization

o Skolemization replaces existentially quantified variables by free variables
- Free variables are implicitly existentially quantified
- (Generates smaller but equisatisfiable formulas
- Skolemized variables are withesses that can be shown in the visualizer

some X : Entry | some entries.x

>x 4 {} {(D),(E)}

one SX and some entries.SX

Symmetry breaking

 Kodkod performs several optimizations to decrease SAT complexity
 The most significant is symmetry breaking
- Since atoms are uninterpreted isomorphic instances are equivalent

- To avoid returning isomorphic instances a symmetry breaking formula is
conjoined to the problem formula

- For efficiency reasons the technique is not complete
* Besides increasing efficiency symmetry breaking is also useful for validation

- Otherwise the user would be overwhelmed with isomorphic instances

