Mastering Alloy

Alcino Cunha

Subset signatures

Subset signatures

- An arbitrary subset of a signature can be declared with keyword in instead of extends
- Subset signatures are not necessarily disjoint
- A signature can be declared as a subset of more than one signature
- Subset signatures cannot be extended
- Subset signatures can be used to simulate multiple-inheritance
- Atoms belonging to subset signatures are labelled in the visualizer

File-system

```
abstract sig Object {}
sig Dir extends Object {
    entries : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {
    object : one Object,
    name : one Name
}
sig Name {}
```


Subset example

```
sig Trash in Object+Entry {}
fact {
    // The root cannot be trashed
    Root not in Trash
    // All other objects are trashed iff all entries
    // that point to them are trashed
    all o : Object-Root | o in Trash iff object.o in Trash
    // If a directory is trashed all its entries are trashed
    all d : Dir & Trash | d.entries in Trash
}
```


Visualizing subsets

Subset example

```
abstract sig Shape {
    color : one Color
}
sig Rectangle, Trapezoid extends Shape {}
abstract sig Color {}
one sig Green, Red, Yellow extends Color {}
```


Subset example

```
abstract sig Shape {}
sig Rectangle, Trapezoid extends Shape {}
sig Green, Red, Yellow in Shape {}
fact {
    Shape = Green+Red+Yellow
    no Green & Red
    no Red & Yellow
    no Green & Yellow
}
```


Visualizing subsets

N -ary relations

N-ary relationships a la UML

Ternary relation example

```
abstract sig Object {}
sig Dir extends Object {
    contents : Name -> lone Object
}
sig File extends Object {}
one sig Root extends Dir {}
sig Name {}
```


Composition

	contents		
Root	Root	Name0	Dir
Root	Root Dir Dir	Name1	File
	Name1	File	

```
Root . contents
Name0 Dir
Name1 File
```


Ternary relation example

```
fact {
    // All objects except the root are contained in at least one directory
    all o : Object - Root | some contents.o
    no contents.Root
    // All directories are contained in at most one directory
    all d : Dir | lone contents.d
    // A directory cannot be contained in itself
    all d : Dir | d not in d.^(???)
}
```


Comprehension

$$
\left.\begin{array}{c}
\left\{x_{1}: A_{1}, \ldots, x_{n}: A_{n} \mid \phi\right\} \\
\left\{x_{1}: A_{1}, \ldots, x_{n}: A_{n} \mid \phi\right\}\left(y_{1}, \ldots, y_{n}\right) \\
\leftrightarrow \\
A_{1}\left(y_{1}\right) \wedge \ldots \wedge A_{n}\left(y_{n}\right)
\end{array}\right) \phi\left[x_{1} \leftarrow y_{1}, \ldots, x_{n} \leftarrow y_{n}\right] .
$$

Ternary relation example

```
fact {
    // All objects except the root are contained in at least one directory
    all o : Object - Root | some contents.o
    no contents.Root
    // All directories are contained in at most one directory
    all d : Dir | lone contents.d
    // A directory cannot be contained in itself
    all d : Dir | d not in d.^({d : Dir, o : Object | some d.contents.o})
}
```


Visualizing N -ary relations

Overloading

Overloading

- Fields in disjoint signatures can be overloaded (have the same name)
- Ambiguity errors may occur

Overloading example

```
abstract sig Object {}
sig Dir extends Object {
    contents : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {
    contents : one Object,
    name : one Name
}
sig Name {}
```


Overloading example

```
fact {
    // All objects except the root are contained in at least one entry
    all o : Object - Root | some contents.o
    no contents.Root
    // All directories are contained in at most one entry
    all d : Dir | lone contents.d
    // Different entries in a directory must have different names
    all d : Dir, n : Name | lone (d.contents & name.n)
    // A directory cannot be contained in itself
    all d : Dir | d not in d.^(contents.contents)
}
```


Ambiguity errors

```
run { some contents }
```

A type error has occurred: This name is ambiguous due to multiple matches: field this/Dir <: contents field this/Entry <: contents

Resolving ambiguities

```
run { some d : Dir | some d.contents }
run { some contents & Dir->Entry }
    run { some Dir <: contents }
```

Predicates and functions

Predicates

- Predicates are parametrized reusable constraints
- Can also be derived propositions (without arguments)
- Parameters can be arbitrary relations
- Only hold when invoked in a fact, command, or other predicates
- Recursive definitions are not allowed
- Run commands can directly ask for an instance satisfying a predicate
- Atoms instantiating the parameters are shown in the visualizer

Predicate example

```
pred isreachable [d : Dir, o : Object] {
    o in d.^(entries.object)
}
fact {
    // A directory cannot be contained in itself
    all d : Dir | not isreachable[d,d]
}
```


Running a predicate

run isreachable for 4

Higher-order predicate example

```
pred acyclic [r : univ -> univ] {
    no ^r & iden
}
fact {
    // A directory cannot be contained in itself
    acyclic[entries.object]
}
```


Functions

- Functions are parametrized reusable expressions
- Parameters can be arbitrary relations
- Functions without parameters can be used to define derived relations
- These show up in the visualizer
- Recursive definitions are not allowed

Function example

```
fun descendants [d : Dir] : set Object {
    d.^(entries.object)
}
fact {
    // A directory cannot be contained in itself
    all d : Dir | d not in descendants[d]
}
```


Derived relation example

```
sig Dir extends Object {
    contents : Name -> lone Object
}
fun children : Dir -> Object {
    { d : Dir, o : Object | some d.contents.o }
}
fact {
    // A directory cannot be contained in itself
    all d : Dir | d not in d.^children
}
```


Visualizing derived relations

Modules

Modules

- A model can be split into modules
- A module name is declared in the first line with keyword module
- A module can be imported with an open statement
- A module name must match the path of the corresponding file
- To disambiguate a call to an entity, the module name can be prepended
- An alias to a module name can be given with the as keyword in an open statement
- A module can be parametrised by one or more signatures

Module example

module relation

```
pred acyclic [r : univ -> univ] {
    no ^r & iden
}
```


Module example

open relation

```
fact {
    // A directory cannot be contained in itself
    acyclic[entries.object]
}
```


Parametrized module example

```
module graph[node]
pred complete[adj : node -> node] {
    all n : node | n.adj = node-n
}
```


Parametrized module example

```
open graph[Person]
sig Person
    friend : set Person
}
fact { complete[friend] }
```


We are all friends

Predefined modules

```
util/relation
```

util/ternary
util/graph[A]
util/natural
util/boolean
util/ordering[A]

Useful functions and predicates for binary relations

Useful functions and predicates for ternary relations

Useful functions and predicates for graphs with nodes from signature A

Natural numbers, including some arithmetic operations

Boolean type, including common logical connectives

Imposes a total order on signature A

util/ordering

- Imposes a total order on the parameter signature
- For efficiency reasons the scope on that signature becomes exact
- Visualiser attempts to name atoms according to the order
- Many useful functions and relations, including
- next and prev binary relations
- first and last singleton sets
- lt, lte, gt, and gte comparison predicates

util/ordering example

```
open util/ordering[Date]
sig Date {}
sig Entry {
    object : one Object,
    name : one Name,
    date : one Date
}
fact {
    // Entries inside a directory must have been created later
    all e : object.Dir, c : e.object.entries | lt[e.date, c.date]
}
```

util/ordering vizualisation

Type system

File-system

```
abstract sig Object {}
sig Dir extends Object {
    contents : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {
    contents : one Object,
    name : one Name
}
sig Name {}
```


Arity error

```
run { some name & File }
```

A type error has occurred:
\& can be used only between 2 expressions of the same arity. Left type $=$ \{this/Entry->this/Name $\}$
Right type $=\{$ this/File $\}$

Ambiguity error

run \{ some contents \}

A type error has occurred:
This name is ambiguous due to multiple matches:
field this/Dir <: contents
field this/Entry <: contents

Irrelevance warning

```
run { some Dir.name }
```

```
Warning #1
The join operation here always yields an empty set.
Left type = {this/Dir}
Right type = {this/Entry->this/Name}
```


Type system

- The main goal of Alloy's type system is to detect irrelevant expressions
- An expression is irrelevant if it can be replaced by none
- The same type system can be used to resolve overloading
- An overloaded name is treated as the union of all respective relations
- Only one of the overloaded relations must be relevant

Types

- The type of an expression is a set of tuples of atomic types
- An atomic type is a signature that is not further extended
- For non abstract signatures we need a reminder type
- The reminder contains all atoms not contained in one of the extensions
- The reminder type of signature A is denoted as $\$ A$
- The type of an expression is an upper-bound on its value
- If the type of an expression is empty, the expression is irrelevant

Type inference

- Type inference is guided by the abstract syntax and works in two phases
- A bottom-up phase computes the bounding types
- A top-down phase refines these and computes the relevance types
- Unlike bounding types, relevance types depend on the context
- The same expression in different formulas may have different types

Bounding type inference

- The bounding type of a signature or field is inferred from the respective declarations
- The bounding type of an expression is computed using the same relational operator applied to the bounding types of sub-expressions
- This is possible because types are also relations

Bounding type inference

Dir.name

Bounding type inference

(Root.content). name

Relevance type inference

- The relevance type of the top expression is equal to its bounding type
- The relevance type of a sub-expression is computed by determining which tuples effectively contributed to the parent expression type

Relevance type inference

(Root.content). name

Relational model finding

Architecture

Kodkod

- A Kodkod problem consists of
- A universe of atoms \mathscr{U}
- A set of relation declarations of shape $r:{ }_{a} r_{L} r_{U}$
- a is the arity of r
- r_{L} is the lower-bound of r, tuples that MUST be present in r
- r_{U} is the upper-bound of r, tuples that MAY be present in r
- A relational logic formula ϕ

Kodkod

- Kodkod is a relational model finder
- It finds a valuation (a model) for the relations such that
- ϕ is true in that model
- the valuation of each relation r complies with the partial-knowledge declared in the bounds

Alloy \rightleftarrows Kodkod

- Alloy assertions to be checked are negated and conjoined with the facts in the Kodkod formula
- An assertion is valid if its negation is unsatisfiable
- Alloy fields and atomic signatures are declared in the Kodkod problem
- Non-atomic signatures are aliased to a disjunction of atomic ones
- Appropriate bounds are inferred from scopes
- Upper-bounds can be shared between related atomic signatures
- Further constraints must be added to ensure a sound structural semantics
- Kodod atom names are meaningless
- When building an Alloy instance from a Kodkod instance atoms are renamed

Alloy example

```
abstract sig Object {}
sig Dir extends Object {
    entries : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {}
run { some entries.Entry } for 3 but 2 Entry
```


Kodkod translation

```
{A,B,C,D,E}
$Dir : : { {} {(A),(B)}
File : : { { { (A),(B)}
Root }\mp@subsup{:}{1}{}{(C)}{(C)
Entry : [1 {} {(D),(E)}
entries :2 {} {(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)}
no File & $Dir
all x : $Dir+Root | x.entries in Entry
entries.univ in $Dir+Root
some entries.Entry
```


Kodkod \rightleftarrows SAT

- A relation r of arity a can be represented by a matrix of boolean variables of size $|\mathscr{U}|^{a}$

$$
r\left[i_{1}, \ldots, i_{a}\right]= \begin{cases}\mathrm{T} & \text { if }\left(\mathscr{U}_{i_{1}}, \ldots, \mathscr{U}_{i_{a}}\right) \in r_{L} \\ r_{i_{1}, \ldots, i_{a}} & \text { if }\left(\mathscr{U}_{i_{1}}, \ldots, \mathscr{U}_{i_{a}}\right) \in r_{U} \backslash r_{L} \\ \perp & \text { otherwise }\end{cases}
$$

Kodkod \rightleftarrows SAT

$$
\begin{gathered}
\text { \$Dir }=\left[\begin{array}{c}
d_{A} \\
d_{B} \\
\perp \\
\perp \\
\perp
\end{array}\right] \text { File }=\left[\begin{array}{c}
f_{A} \\
f_{B} \\
\perp \\
\perp \\
\perp
\end{array}\right] \quad \text { Root }=\left[\begin{array}{c}
\perp \\
\perp \\
\top \\
\perp \\
\perp
\end{array}\right] \text { Entry }=\left[\begin{array}{c}
\perp \\
\perp \\
\perp \\
e_{D} \\
e_{E}
\end{array}\right] \\
\text { entries }=\left[\begin{array}{ccccc}
\perp & \perp & \perp & r_{A, D} & r_{A, E} \\
\perp & \perp & \perp & r_{B, D} & r_{B, E} \\
\perp & \perp & \perp & r_{C, D} & r_{C, E} \\
\perp & \perp & \perp & \perp & \perp \\
\perp & \perp & \perp & \perp & \perp
\end{array}\right]
\end{gathered}
$$

Kodkod \rightleftarrows SAT

- Relational operators are implemented by matrix operations (in the boolean semiring)

- Atomic formulas originate propositional formulas
in Conjunction of point-wise implication
some Disjunction

Kodkod \rightleftarrows SAT

$$
\left(r_{A, D} \wedge e_{D}\right) \vee\left(r_{A, E} \wedge e_{E}\right) \vee\left(r_{B, D} \wedge e_{D}\right) \vee\left(r_{B, E} \wedge e_{E}\right) \vee\left(r_{C, D} \wedge e_{D}\right) \vee\left(r_{C, E} \wedge e_{E}\right)
$$

Quantifiers

- Since the universe is finite quantifiers can be handled by expansion

```
all x : Entry | some entries.x
```

三
some entries.\{(D) \} and some entries.\{(E) \}

- Unfortunately this yields no witnesses to existential quantifiers

```
some x : Entry | some entries.x
```

三
some entries.\{(D)\} or some entries.\{(E) \}

Skolemization

- Skolemization replaces existentially quantified variables by free variables
- Free variables are implicitly existentially quantified
- Generates smaller but equisatisfiable formulas
- Skolemized variables are witnesses that can be shown in the visualizer

```
some x : Entry | some entries.x
\equiv
$x :1 {} {(D),(E)}
one $x and some entries.$x
```


Symmetry breaking

- Kodkod performs several optimizations to decrease SAT complexity
- The most significant is symmetry breaking
- Since atoms are uninterpreted isomorphic instances are equivalent
- To avoid returning isomorphic instances a symmetry breaking formula is conjoined to the problem formula
- For efficiency reasons the technique is not complete
- Besides increasing efficiency symmetry breaking is also useful for validation
- Otherwise the user would be overwhelmed with isomorphic instances

