
Mastering Alloy
Alcino Cunha



Subset signatures



Subset signatures
• An arbitrary subset of a signature can be declared with keyword in 

instead of extends


• Subset signatures are not necessarily disjoint


• A signature can be declared as a subset of more than one signature


• Subset signatures cannot be extended


• Subset signatures can be used to simulate multiple-inheritance


• Atoms belonging to subset signatures are labelled in the visualizer



File-system
abstract sig Object {}
sig Dir extends Object {

entries : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {

object : one Object,
name   : one Name

}
sig Name {}



Subset example
sig Trash in Object+Entry {}

fact {
// The root cannot be trashed
Root not in Trash
// All other objects are trashed iff all entries

  // that point to them are trashed
all o : Object-Root | o in Trash iff object.o in Trash
// If a directory is trashed all its entries are trashed
all d : Dir & Trash | d.entries in Trash

}



Visualizing subsets



Subset example

abstract sig Shape {
color : one Color

}
sig Rectangle, Trapezoid extends Shape {}

abstract sig Color {}
one sig Green, Red, Yellow extends Color {}



Subset example
abstract sig Shape {}
sig Rectangle, Trapezoid extends Shape {}

sig Green, Red, Yellow in Shape {}

fact {
Shape = Green+Red+Yellow
no Green & Red
no Red & Yellow
no Green & Yellow

}



Visualizing subsets



N-ary relations



N-ary relationships a la UML



Ternary relation example 

abstract sig Object {}
sig Dir extends Object {

contents : Name -> lone Object
}
sig File extends Object {}
one sig Root extends Dir {}
sig Name {}



Composition

contents
Root Name0 Dir
Root Name1 File
Dir Name0 File
Dir Name1 File

Root . contents

Name0 Dir

Name1 File

Root
Root



Ternary relation example
fact {

// All objects except the root are contained in at least one directory
all o : Object - Root | some contents.o
no contents.Root

// All directories are contained in at most one directory
all d : Dir | lone contents.d

// A directory cannot be contained in itself
all d : Dir | d not in d.^(???)

}



Comprehension

{ : , , :  |  }

{ : , , :  |  } 

 

x1 A1 … xn An ϕ

x1 A1 … xn An ϕ (y1, …, yn)
↔

A1(y1) ∧ … ∧ An(yn) ∧ ϕ[x1 ← y1, …, xn ← yn]



Ternary relation example
fact {

// All objects except the root are contained in at least one directory
all o : Object - Root | some contents.o
no contents.Root

// All directories are contained in at most one directory
all d : Dir | lone contents.d

// A directory cannot be contained in itself
all d : Dir | d not in d.^({d : Dir, o : Object | some d.contents.o})

}



Visualizing N-ary relations



Overloading



Overloading

• Fields in disjoint signatures can be overloaded (have the same name)


• Ambiguity errors may occur



Overloading example
abstract sig Object {}
sig Dir extends Object {

contents : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {

contents : one Object,
name   : one Name

}
sig Name {}



Overloading example
fact {

// All objects except the root are contained in at least one entry
all o : Object - Root | some contents.o
no contents.Root

// All directories are contained in at most one entry
all d : Dir | lone contents.d

// Different entries in a directory must have different names
all d : Dir, n : Name | lone (d.contents & name.n)

// A directory cannot be contained in itself
all d : Dir | d not in d.^(contents.contents)

}



Ambiguity errors

run { some contents }



Resolving ambiguities

run { some d : Dir | some d.contents }

run { some contents & Dir->Entry }

run { some Dir <: contents }



Predicates and functions



Predicates
• Predicates are parametrized reusable constraints


- Can also be derived propositions (without arguments)


- Parameters can be arbitrary relations


• Only hold when invoked in a fact, command, or other predicates


• Recursive definitions are not allowed


• Run commands can directly ask for an instance satisfying a predicate


- Atoms instantiating the parameters are shown in the visualizer



Predicate example

pred isreachable [d : Dir, o : Object] {
o in d.^(entries.object)

}

fact {
// A directory cannot be contained in itself
all d : Dir | not isreachable[d,d]

}



Running a predicate

run isreachable for 4



Higher-order predicate example

pred acyclic [r : univ -> univ] {
no ^r & iden

}

fact {
// A directory cannot be contained in itself
acyclic[entries.object]

}



Functions

• Functions are parametrized reusable expressions


- Parameters can be arbitrary relations


• Functions without parameters can be used to define derived relations


- These show up in the visualizer


• Recursive definitions are not allowed



Function example

fun descendants [d : Dir] : set Object {
d.^(entries.object)

}

fact {
// A directory cannot be contained in itself
all d : Dir | d not in descendants[d]

}



Derived relation example
sig Dir extends Object {

contents : Name -> lone Object
}

fun children : Dir -> Object {
{ d : Dir, o : Object | some d.contents.o }

}

fact {
// A directory cannot be contained in itself
all d : Dir | d not in d.^children

}



Visualizing derived relations



Modules



Modules
• A model can be split into modules 

• A module name is declared in the first line with keyword module

• A module can be imported with an open statement 

• A module name must match the path of the corresponding file


• To disambiguate a call to an entity, the module name can be prepended


• An alias to a module name can be given with the as keyword in an open statement


• A module can be parametrised by one or more signatures



Module example

module relation

pred acyclic [r : univ -> univ] {
no ^r & iden

}



Module example

open relation

fact {
// A directory cannot be contained in itself
acyclic[entries.object]

}



Parametrized module example

module graph[node]

pred complete[adj : node -> node] {
all n : node | n.adj = node-n

}



Parametrized module example

open graph[Person]

sig Person {
friend : set Person

}

fact { complete[friend] }



We are all friends



Predefined modules
util/relation Useful functions and predicates for binary relations

util/ternary Useful functions and predicates for ternary relations

util/graph[A] Useful functions and predicates for graphs with nodes from signature A 

util/natural Natural numbers, including some arithmetic operations

util/boolean Boolean type, including common logical connectives

util/ordering[A] Imposes a total order on signature A



util/ordering
• Imposes a total order on the parameter signature


• For efficiency reasons the scope on that signature becomes exact


• Visualiser attempts to name atoms according to the order


• Many useful functions and relations, including


- next and prev binary relations


- first and last singleton sets


- lt, lte, gt, and gte comparison predicates



util/ordering example
open util/ordering[Date]

sig Date {}
sig Entry {

object : one Object,
name   : one Name,
date   : one Date

}

fact {
// Entries inside a directory must have been created later
all e : object.Dir, c : e.object.entries | lt[e.date, c.date]

}



util/ordering vizualisation



Type system



File-system
abstract sig Object {}
sig Dir extends Object {

contents : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {

contents : one Object,
name   : one Name

}
sig Name {}



Arity error

run { some name & File }



Ambiguity error

run { some contents }



Irrelevance warning

run { some Dir.name }



Type system

• The main goal of Alloy’s type system is to detect irrelevant expressions


• An expression is irrelevant if it can be replaced by none


• The same type system can be used to resolve overloading


- An overloaded name is treated as the union of all respective relations


- Only one of the overloaded relations must be relevant



Types
• The type of an expression is a set of tuples of atomic types 

- An atomic type is a signature that is not further extended


• For non abstract signatures we need a reminder type 

- The reminder contains all atoms not contained in one of the extensions


- The reminder type of signature  is denoted as $ 


• The type of an expression is an upper-bound on its value


- If the type of an expression is empty, the expression is irrelevant

A A



Type inference

• Type inference is guided by the abstract syntax and works in two phases


-  A bottom-up phase computes the bounding types


-  A top-down phase refines these and computes the relevance types


• Unlike bounding types, relevance types depend on the context


- The same expression in different formulas may have different types



Bounding type inference

• The bounding type of a signature or field is inferred from the respective 
declarations


• The bounding type of an expression is computed using the same 
relational operator applied to the bounding types of sub-expressions


- This is possible because types are also relations



Bounding type inference

.

Dir name

Dir.name

{(Root),($Dir)} {(Entry,Name)}

{(Root),($Dir)}.{(Entry,Name)}{}



Bounding type inference

.

. name

(Root.content).name

{(Entry,Name)}

{(Name)}

Root +

contents contents

{(Root)}

{(Root,Entry),($Dir,Entry)}{(Entry,File),(Entry,Root),(Entry,$Dir)}

{(Entry)}

{(Root,Entry),($Dir,Entry),(Entry,File),(Entry,Root),(Entry,$Dir)}



Relevance type inference

• The relevance type of the top expression is equal to its bounding type


• The relevance type of a sub-expression is computed by determining 
which tuples effectively contributed to the parent expression type



Relevance type inference

.

. name

(Root.content).name

{(Entry,Name)}

{(Name)}

Root +

contents contents

{(Root)}

{(Root,Entry),($Dir,Entry)}{(Entry,File),(Entry,Root),(Entry,$Dir)}

{(Entry)}

{(Root,Entry),($Dir,Entry),(Entry,File),(Entry,Root),(Entry,$Dir)}{(Root,Entry)}

{}{(Root,Entry)}



Relational model finding



Architecture

Alloy Kodkod SAT



Kodkod
• A Kodkod problem consists of


- A universe of atoms 


- A set of relation declarations of shape 


‣  is the arity of 


‣  is the lower-bound of , tuples that MUST be present in 


‣  is the upper-bound of , tuples that MAY be present in 


- A relational logic formula 

𝒰

r :a rL rU

a r
rL r r
rU r r

ϕ



Kodkod

• Kodkod is a relational model finder


• It finds a valuation (a model) for the relations such that 


-  is true in that model


- the valuation of each relation  complies with the partial-knowledge 
declared in the bounds

ϕ

r



Alloy ⇄ Kodkod
• Alloy assertions to be checked are negated and conjoined with the facts in the Kodkod formula


- An assertion is valid if its negation is unsatisfiable


• Alloy fields and atomic signatures are declared in the Kodkod problem


- Non-atomic signatures are aliased to a disjunction of atomic ones


• Appropriate bounds are inferred from scopes


- Upper-bounds can be shared between related atomic signatures

‣ Further constraints must be added to ensure a sound structural semantics


- Kodod atom names are meaningless

‣ When building an Alloy instance from a Kodkod instance atoms are renamed



Alloy example
abstract sig Object {}
sig Dir extends Object {

entries : set Entry
}
sig File extends Object {}
one sig Root extends Dir {}
sig Entry {}

run { some entries.Entry } for 3 but 2 Entry



Kodkod translation
{A,B,C,D,E}

$Dir   {} {(A),(B)}
File   {} {(A),(B)}
Root   {(C)} {(C)}
Entry  {} {(D),(E)}
entries  {} {(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)}

no File & $Dir
all x : $Dir+Root | x.entries in Entry
entries.univ in $Dir+Root
some entries.Entry

:1
:1
:1
:1

:2



Kodkod ⇄ SAT

• A relation  of arity  can be represented by a matrix of boolean variables 
of size 


 

r a
|𝒰 |a

r[i1, …, ia] =
⊤ if (𝒰i1, …, 𝒰ia) ∈ rL

ri1,…,ia if (𝒰i1, …, 𝒰ia) ∈ rU∖rL

⊥ otherwise



Kodkod ⇄ SAT

$Dir =

dA

dB

⊥
⊥
⊥

File =

fA
fB
⊥
⊥
⊥

Root =

⊥
⊥
⊤
⊥
⊥

Entry =

⊥
⊥
⊥
eD
eE

entries =

⊥ ⊥ ⊥ rA,D rA,E

⊥ ⊥ ⊥ rB,D rB,E

⊥ ⊥ ⊥ rC,D rC,E

⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥



Kodkod ⇄ SAT
• Relational operators are implemented by matrix operations (in the boolean 

semiring)


• Atomic formulas originate propositional formulas

. Multiplication
+ Addition
& Hadamard product
…

in Conjunction of point-wise implication
some Disjunction
…



Kodkod ⇄ SAT

some

⊥ ⊥ ⊥ rA,D rA,E

⊥ ⊥ ⊥ rB,D rB,E

⊥ ⊥ ⊥ rC,D rC,E

⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

.

⊥
⊥
⊥
eD
eE

some entries.Entry

some

(rA,D ∧ eD) ∨ (rA,E ∧ eE)
(rB,D ∧ eD) ∨ (rB,E ∧ eE)
(rC,D ∧ eD) ∨ (rC,E ∧ eE)

⊥
⊥

(rA,D ∧ eD) ∨ (rA,E ∧ eE) ∨ (rB,D ∧ eD) ∨ (rB,E ∧ eE) ∨ (rC,D ∧ eD) ∨ (rC,E ∧ eE)



Quantifiers
• Since the universe is finite quantifiers can be handled by expansion


all x : Entry | some entries.x 
 

some entries.{(D)} and some entries.{(E)}

• Unfortunately this yields no witnesses to existential quantifiers


some x : Entry | some entries.x
 

some entries.{(D)} or some entries.{(E)}

≡

≡



Skolemization
• Skolemization replaces existentially quantified variables by free variables


- Free variables are implicitly existentially quantified


- Generates smaller but equisatisfiable formulas


- Skolemized variables are witnesses that can be shown in the visualizer


some x : Entry | some entries.x 

$x  {} {(D),(E)}
one $x and some entries.$x

≡
:1



Symmetry breaking
• Kodkod performs several optimizations to decrease SAT complexity


• The most significant is symmetry breaking


- Since atoms are uninterpreted isomorphic instances are equivalent


- To avoid returning isomorphic instances a symmetry breaking formula is 
conjoined to the problem formula


- For efficiency reasons the technique is not complete


• Besides increasing efficiency symmetry breaking is also useful for validation


- Otherwise the user would be overwhelmed with isomorphic instances


